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Abstract

We obtained several structural features of an NK fitness landscape by analytical approach.

Particularly, we focused on spatial distributions of ”ascending slopes”, ”highlands”, ”nearly

neutral networks” and ”local optima” along the fitness coordinate W , from the view point of

adaptive walks with step-width d, where d is the number of mutated sites (Hamming distance)

after a generation. The parameter k governs the degree of the ruggedness on the NK landscape,

and we handled cases where k is moderate against the sequence length. From the foot up to

the middle region on the landscape, many ascending slopes exist (high evolvability) and these

slopes extend up near the ”highland”, which is mathematically defined as the specific region

W = W ∗
d where the expectation of the fitness increment becomes zero. Denoting the standard

deviation of the fitness change at W = W ∗
d by SD∗, we considered the existence of ”nearly

neutral networks”, which percolate in the fitness band between W − SD∗ and W + SD∗. Our

results suggest that the highland corresponds to a phase-transition threshold of the formation

of the nearly neutral networks. Near or over the highland, ”local optima at the dth order”

appear drastically (low evolvability), where d means the radius of their basins. The value of

W ∗
d increases with d increasing. Then, as the fitness (=altitude) becomes higher, the basin

size of the local optima increases. This leads to a conclusion that it is very hard or impossible

for walkers with step-width d to reach near the global peak when d is a realistic large value:

d = 1 ∼ 6, and suggests that the region over the middle in real landscapes may be considerably

smooth with small k-values to maintain high evolvability.
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1 Introduction

Biological evolution process is comprehended as the ”adaptive walk” or ”hill-climbing” on a

fitness landscape in genotype space (sequence space). The concept of which was first proposed

by Sewall Wright (Wright,1932), and has been developed in evolutionary biology (Maynard-

Smith,1970; Eigen,1992; Kauffman, 1993; Gavrilets, 2004). In the field of in vitro molecular

evolution, that handles artificial evolution of protein or DNA sequences, the concept of ”fitness”

is extended to a molecular physicochemical property such as propagation rate (Eigen,1985), en-

zymatic activity, binding affinity or thermostability (Arnold, 2000; Matsuura & Yomo, 2006).

Thus, the fitness landscape is regarded as the ”evolutionary attribute” of biopolymers. Many

theoretical studies have been done based on various mathematical models of the landscapes

(Voigt et al., 2000; Gavrilets, 2004). One of the most familiar models is the NK model (Kauff-

man & Weinberger, 1989; Kauffman, 1993). The NK model is a mathematical model describing

a complex system in which an arbitrary element is affected by other k elements. For a protein,

an amino acid site corresponds to the element in the NK model. If the k sites that cooperatively

affect the jth site are located near the jth site, this model is called the ”adjacent neighbor (NK)

model”, whereas, if the k sites are located randomly through the sequence, this model is called

the ”random neighbor (NK) model” (Kauffman, 1993). The fitness landscape constructed by

the NK model is called the ”NK (fitness) landscape”. The NK landscape with k = 0 has a single

peak, whereas the landscape becomes more rugged and has more local peaks with k increasing.

The original NK model was proposed by Kauffman & Levin (1987) and many slightly mod-

ified models have been studied (Barnett, 1998; Newman & Engelhardt, 1998; Iguchi et al.,

2005). In almost all cases, they have adopted a binary sequence space, where the number of

available letters is two (0 or 1). We denote that by λ = 2. Many theorists have been interested

in such issues as: the height of the global peak and local peaks, the number of local peaks, and

the walk length from a random point. These issues were investigated numerically by computer
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simulation in most studies (e.g. Kauffman,1993). The first analytical study was conducted

by Weinberger (1991). Recently, several rigorous analytical studies were conducted by Evans

& Steinsaltz (2002), Durrett & Limic (2003), and Limic & Pemantle (2004), in which they

adopted the adjacent neighbor model with λ = 2. Iguchi et al. (2005) investigated the effect

of a scale-free network of inter-sites interaction on the properties of the NK landscape. The

NK model has also been adopted to study the neutrality on the evolution or neutral evolution

(Barnett, 1998; Ohta, 1998; Newman & Engelhardt, 1998).

Meanwhile, several studies tried to estimate the k-value in real landscapes by fitting the NK

model to experimental data. The k value seems inherent in the physicochemical property of

individual biopolymers. Kauffman and Weinberger applied the NK model to affinity maturation

of the V region in immunoglobulin and estimated that k is about 40, from the view point of

the number of steps of adaptive walk up to the local optima (Kauffman & Weinberger, 1989;

Kauffman, 1993). Fontana et al. (1993) examined the RNA free energy landscape by computer

experiments, and estimated k = 7 − 8 for this landscape in terms of autocorrelation on the

landscape. In our previous paper (Hayashi et al., 2006; Aita et al., 2007), we demonstrated

that the experimental data in an in vitro molecular evolution can be explained quantitatively

by our adaptive-walk theory on an NK landscape, which was defined by the random neighbor

(NK) model. Hayashi and coworkers carried out in vitro molecular evolution beginning with

a defective fd phage carrying a random polypeptide (139 a.a.) in place of the g3p minor coat

protein D2 domain, which is essential for phage infection. Through 20 mutation-selection cycles,

the random polypeptide evolved gradually up to the middle region of the fd-phage infectivity

landscape in the free energy scale (Hayashi et al., 2006). Our analysis of the experimental data

suggested k ≈ 27 for this landscape (Aita et al., 2007).

Therefore, in light of the great importance of the NK landscapes, we examined analytically

structural features of the NK landscape (λ = 20, random neighbor model) from the view

point of an adaptive walker with step-width d. Particularly, we were concerned with spatial
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distributions of the local optima at the dth order, where d means the radius of their basins.

Almost previous studies considered cases where d = 1, because they handled natural evolution

in which mutation occurs infrequently. We want to make a note that our interest is not in

natural evolution but in the in vitro molecular evolution, which can control the number of

mutated sites (Hamming distance) d after a generation and population size. In addition to

this, our originality lies in that we analytically obtained the local fitness distribution over all

possible d-fold point mutants generated from a reference sequence with fitness W (Aita et

al., 2007). Many statistical properties of the landscape were derived from the local fitness

distribution. In this paper, we will refer to the spatial distributions of ”ascending slopes”,

”highlands”, ”nearly neutral networks”, and ”local optima” along the fitness coordinate.

2 Model of the NK fitness landscape

We consider all conceivable amino acid sequences with a chain length of ν, and λ letters are

available at every site, where λ is large enough to satisfy (λ− 1)/λ ≈ 1. Then, each sequence

is mapped into the corresponding point in the λ-valued ν-dimensional sequence space. The

fitness W for a given sequence ”A1A2 · · ·Aν” is defined by

W =

ν∑
j=1

wj(Aj |Aj1,Aj2, · · · ,Ajk
), (1)

where wj(Aj |Aj1,Aj2, · · · ,Ajk
) is the ”site-fitness”, i.e. a fitness contribution from a particular

letter Aj at the jth site when the k sites {j1, j2, · · · , jk} are occupied by the particular letters

{Aj1,Aj2, · · · ,Ajk
}. The k sites {j1, j2, · · · , jk} are randomly chosen from all ν − 1 sites except

the jth site (”random neighbor model”). The assignment of site-fitness values is modeled as

follows: with a set of letters {Aj1,Aj2, · · · ,Ajk
} given, a site-fitness value of an arbitrary letter

a (e.g., a =Ala,Cys,· · ·,Tyr) for each site is randomly once assigned from the following set of λ
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values (”quenched model”):

wj(a|Aj1,Aj2 , · · · ,Ajk
) ∈

{
ε

(
1 − 2i

λ− 1

) ∣∣∣i = 0, 1, 2, · · · , λ− 1
}
, (2)

where ε is a positive constant: ε > 0. We do not allow the degeneracy of assignment, that is,

wj(a| · · ·) �= wj(a
′| · · ·) for a �= a′. Therefore, the underlying density function of site-fitness w

at each site is given by the comb function:

1

λ

λ−1∑
i=0

δ

(
w − ε

(
1 − 2i

λ− 1

))
, (3)

where δ(x) is the Dirac’s delta function. The reason why we fix the site-fitness distribution

as shown in eqn. (3) lies in analytical tractability demonstrated in Appendix C 1. We note

that our theoretical conclusion is robust to the shape of the site-fitness distribution (Limic &

Pemantle, 2004) and also robust to the site-dependence of ε-values (Aita et al., 2004). From

eqn. (3), we can see that the mean of the site-fitness values over λ letters is equal to zero, while

the variance, denoted by σ2, is given by

σ2 ≈ ε2

3
, (4)

which is a well-known property of the discrete uniform distribution.

The fitness landscape resulting from this model is called the ”NK landscape”, although

there are several differences from the original NK landscape (Kauffman & Weinberger, 1989;

Weinberger, 1991; Kauffman, 1993). In the case of k = 0, the fitness landscape has a single

peak. As the k-value increases, the fitness landscape becomes more rugged. In spite of the

ruggedness, there are so many slopes from the foot to the middle region, whereas, local peaks

with a large basin size are likely to appear at high altitudes on the landscape. In this paper,

we focus on the cases where k is moderate or large, and describe these features quantitatively

from an analytical approach.

1In more familiar variants of the NK model, site-fitness values are assigned from a continuous (uniform or normal)

distribution.
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In this paper, we describe several landscape properties, such as the occurrence probability

of local optima, along one-dimensional fitness coordinate W . The probability density of the

fitness W over all possible sequences is given approximately as the following normal distribution

with the mean 0 and variance V :

N (W | 0, V ) for −H � W � H, (5)

where

H ≡ ε ν and V = σ2 ν ≈ ε2ν

3
(6)

(derivation is shown in Appendix A). The mean of fitness over the whole sequence space corre-

sponds to the ”foot” of the landscape, while regions where W < 0 corresponds to an ”undersea”

and is negligible for the adaptive walks that start from random points, which are likely to be

at the foot. Since the fitness at the global peak takes about H(= εν) 2, then H corresponds

to the height of the landscape from the foot to the global peak. In this paper, we focus on the

regions from the foot to the global peak: 0 � W � H .

In the NK model mentioned above, an arbitrary single-point mutation causes the changes in

site-fitness at about 1 + k sites, that include both of the mutated site and other k sites affected

by the mutation. That is, the values of wj’s at about 1 + k sites are randomly re-assigned

from eqn. (2) as a result of the mutation. Random d-fold point mutations cause the changes

in site-fitness at about d(1 + k) sites. Let D be the mean number of sites that change their

site-fitnesses as a result of random d-fold point mutations. D is given by

D = ν − (ν − d)

(
1 − k

ν − 1

)d

(7)

≈ d(1 + k) for d k � ν. (8)

The derivation of eqn. (7) is shown in Appendix A in Aita et al., (2007)3. D is plotted as a

function of d in Fig.1(a). D is one of the important parameters in the theory described below.
2This is not necessarily guaranteed for k � 1.
3In this paper, we wrote ”deff” as D .
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3 Local fitness distribution around a reference sequence

We will begin by considering the set of all sequences at distance d from a reference sequence

in the sequence space (Fig.2). That is, the set consists of all conceivable d-fold point mutants

generated from the reference sequence. According to Fontana and Schuster (1998), we designate

the set as the ”d-boundary” of the reference sequence. The size of the d-boundary is denoted

by N †
d :

N †
d ≡

(
ν

d

)
(λ− 1)d, (9)

while we use N as a parameter that represents the number of offsprings generated in the d-

boundary: N � N †
d . Let W be the fitness of the reference sequence, and ∆W be the change in

fitness from the reference sequence to its arbitrary mutant sequence in the d-boundary. The con-

ditional probability density of ∆W with a given W , denoted by Pd(∆W |W ), is approximately

given by the following normal distribution (Ed[∆W |W ] and Vd[∆W |W ] represent respectively

the conditional expectation and conditional variance of ∆W with a given W ):

Pd(∆W |W ) = N (∆W |Ed[∆W |W ],Vd[∆W |W ]) (10)

Ed[∆W |W ] = −wD (11)

= −WD

ν
(12)

Vd[∆W |W ] ≈
(
σ2 + σ̃2

(
1 − D − 1

ν − 1

))
D (13)

=

(
V + σ̃2ν

(
1 − D − 1

ν − 1

))
D

ν
, (14)

where, for eqn. (14), V is the variance of fitness over all possible sequences in the sequence

space (see eqn. (6)), and for equations (11) and (13),

w ≡ 1

ν

ν∑
j=1

wj =
W

ν
(15)

σ̃2 ≡ 1

ν

ν∑
j=1

w2
j − w2, (16)
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where wj represents the site-fitness value at the jth site of the reference sequence:
∑ν

j=1wj =

W . The derivation of eqns (10)- (14) is shown in Appendix B.

Exactly, Vd[∆W |W ] in eqn. (14) depends on σ̃2, that is the variance of site-fitness values

over all sites for the reference sequence. In Appendix C, we deduced the most probable distri-

bution of site-fitness values over all sites when mean site-fitness w is fixed, using the maximal

entropy assumption. In conclusion, the most probable distribution is exponential distribution,

which was confirmed by computer simulation. Therefore, we obtained the most probable σ̃2 as

a function of w (Fig.3). Unfortunately, this function is implicit and does not allow us to make

a further analysis. Then, we adopt the following empirical function for a further analysis:

σ̃2 ≈ σ2

(
1 −

(
w

ε

)2
)

(17)

(Fig.3). Then, Vd[∆W |W ] (eqn. (13) and eqn. (14)) is uniquely determined as a function of

fitness W (or mean site-fitness w). Fig.4 shows values of Ed[∆W |W ] and Vd[∆W |W ] against

fitness W of a reference sequence. The observed values through computer simulation agree well

with the analytically derived ones. There is, however, a discrepancy between the analytical

standard deviation and simulated one when fitness W takes high values. This discrepancy

seems to originate from the approximation shown in eqn. (17).

In the case where k is large, Pd(∆W |W ) in eqn. (10) is approximately an ”independent

identical distribution (i.i.d.)” for assignment of ∆W value to any sequence in the d-boundary,

and is not i.i.d. when k equal to zero (Appendix B).

Next, we consider the density function of ∆W over the d-boundary when W is fixed, denoted

by ψd(∆W |W ), assuming that a value of ∆W for any sequence in the d-boundary is randomly

and independently assigned from the probability density Pd(∆W |W ). Therefore, the density

ψd(∆W |W ) can be approximately given by

ψd(∆W |W ) ≈
{Pd(∆W |W ) for ∆Wmin � ∆W � ∆Wmax,

0 otherwise,
, (18)
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where ∆Wmax (or ∆Wmin) is the maximal (or minimal) value of ∆W over the d-boundary, that

is, ∆Wmax is the change in fitness from the reference sequence with fitness W to the fittest

sequence in its d-boundary. Several examples of ψd(∆W |W ) are shown schematically in Fig.2.

We are interested in the probability density of ∆Wmax, because the ∆Wmax value determines

whether the reference sequence is a local optimum or not. Note that ∆Wmax for the d-boundary

should be written as ∆W
(d)
max. We write simply ∆Wmax, but write ∆W

(d)
max when necessary,

hereafter. Based on the theory of extreme value density, the probability density of ∆Wmax is

given by:

N †
d Pd(∆Wmax|W )

(∫ ∆Wmax

−∞
Pd(x|W ) dx

)N†
d−1

, (19)

where N †
d is defined in eqn. (9). The expectation and variance of ∆Wmax based on this density

function are respectively given by

Ed[∆Wmax|W ] = Ed[∆W |W ] +
√

Vd[∆W |W ] × ζmax (20)

Vd[∆Wmax|W ] ≈ Vd[∆W |W ]

ζmax
2 + 1

, (21)

where ζmax is defined as follows. Consider that N random numbers are chosen according to

the standard Gaussian probability density N (x|0, 1), and let xm be the mth greatest number

among the N numbers. We denote the expectation of xm by ζm(N) (≡ E[xm]) as a function of

N . The ζm(N) is approximately given by transforming N via:

ζm exp

(
ζ2
m

2

)∫ ζm

−∞
exp(−s

2

2
)ds =

N

m
− 1. (22)

ζmax is defined as ζmax ≡ ζ1(N
†
d). Eqns (20)-(22) were derived in a manner similar to those

shown in Appendix B in Aita et al., (2007). For many cases, N †
d takes a huge value, then ζmax

is roughly given by the following explicit form:

ζmax ≈
√

2 ln
N †

d√
2π
. (23)

ζmax is plotted as a function of d in Fig.1(b). Fig.4 shows values of Ed[∆Wmax|W ] and

Vd[∆Wmax|W ] against fitness W of a reference sequence. The observed values through com-
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puter simulation agree well with the analytically derived ones where fitness W takes low values,

while the discrepancy between analytical one and simulated one becomes larger as W becomes

higher. Obviously, this discrepancy stems from the discrepancy for Vd[∆W |W ].

4 Structural features of the NK fitness landscape

In this section, we consider the structural features of the NK fitness landscape from the view

point of an adaptive walker with step-width d. In this paper, the walker on the landscape

corresponds to the reference sequence, and the walker moves toward the highest point in the

d-boundary. We refer to the following three elements: ascending slopes, highland and local

optima.

4.1 Autocorrelation function

Autocorrelation function of a fitness landscape is defined by

A (d) ≡ 〈W (A)W (B)〉d(A,B)=d − 〈W 〉2
V

, (24)

where W (A) is the fitness of an arbitrary sequence A (Fontana et al.,1993). A and B are

variable under the restriction that the Hamming distance between them is d (d(A,B) = d).

The average 〈· · ·〉 is conducted over the whole sequence space. Applying the definition to the

NK landscape, we obtain

A (d) =
〈W ∫∞

−∞(∆W +W )ψd(∆W |W ) d∆W 〉
V

(25)

=
〈W Ed[∆W |W ] +W 2〉

V
(26)

= 1 − D

ν
(27)

= (1 − d

ν
)

(
1 − k

ν − 1

)d

. (28)

Eqn. (27) is derived by substituting eqn. (12) into eqn. (26). Eqn. (28) is the same form as

that shown in Table I of Fontana et al. (1993) and that in Weinberger (1991), in which they
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handled binary (λ = 2) sequence space. Our result implies that autocorrelation function is

independent of the λ value.

4.2 Ascending slopes and highland

Consider a reference sequence with fitness W and its d-boundary in sequence space. If at least

one sequence in the 1-boundary has a fitness value larger than W , namely, if ∆W
(1)
max > 0,

then we say that the reference sequence is located on an ”ascending slope”. When substituting

eqn. (12) and (14) (with eqns (15) and (17)) into eqn. (20), we can see that eqn. (20) is

the monotonically decreasing function of W for 0 � W � H (see Fig.4 hereafter). In this

paper, W is considered as the fitness of a walker. When W takes a low value around 0 (as

the mean fitness over the sequence space), that is the case where the walker is located on the

foot of the landscape, Ed[∆Wmax|W ] takes a large positive value. This means there are many

steep ascending slopes in this region. As the walker climbs the landscape with W increasing,

Ed[∆Wmax|W ] decreases gradually and finally the walker reaches a specific region W = W ∗
d ,

where W ∗
d is defined as a specific W -value satisfying

Ed[∆Wmax|W ∗
d ] = 0. (29)

By substituting Ed[∆Wmax|W ] = 0 into eqn. (20), in which Ed[∆W |W ] is given in eqn. (12) and

Vd[∆W |W ] is given in eqn. (14) with eqns (15) and (17), and solving the resulting quadratic

equation for W , we can approximately determine the value of W ∗
d as follows:

W ∗
d =

√
V ν

κ(τ †) τ †
(30)

τ † ≡
√

D/2

ζmax

(31)

κ(x) ≡
√√√√2 + (1 − D−1

ν−1
)(σ

ε
)2/x2

2 − D−1
ν−1

(32)

≈
⎧⎨⎩
√

1 + (σ
ε
)2/2x2 for D � ν

√
2 for D ≈ ν .

(33)
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Fig.5 shows analytical values of W ∗
d (d = 1, 2, · · · , 6) against various k-values. We can confirm

that the value of W ∗
d becomes larger with d increasing for any k value shown in the figure.

However, this has not been proven exactly.

We designate the region where W = W ∗
d as the ”highland” at the dth order. The ascending

slopes lead to the highland. Roughly, it is almost guaranteed that adaptive walkers can climb

up near highland without getting trapped in local optima. The highland is a mathematically

characteristic region on the fitness landscape. For actual fitness landscapes of real biopolymers,

it is meaningful for the highland to have a width of fitness. Then, we redefine the ”highland”

(at the dth order) as the region in which the fitness W satisfies the conditions

W ∗
d − SD∗ � W � W ∗

d + SD∗, (34)

where

SD∗ ≡
√

Vd[∆Wmax|W ∗
d ] ≈ 2στ †

κ(τ †)
(35)

(eqn. (35) is derived by combining eqn. (12), (20)-(21), (29)-(31) and with ζmax
2 + 1 ≈ ζmax

2).

4.3 Nearly neutral networks

According to Gavrilets (2004), the region in which the fitness W satisfies the conditions W1 <

W < W2 is called the ”(W1,W2)-fitness band”. Regarding all the sequences that belong to

the fitness band as the ”nearly neutral sequences”, he referred to the existence of ”percolating

nearly neutral networks” (or ”giant components”) in the fitness band, where the nearly neutral

network is defined as a contiguous set of the nearly neutral sequences (Gavrilets, 2004). The

highland we defined is a specific fitness band in terms of the percolation in sequence space. We

will mention the reason in the following.

We carried out a computer simulation of random walks with step-width d in the following

protocol. Giving a reference sequence with fitness W as a starting point, we conducted random

walks with step-width d (we set d = 1 or 2) in the region in which fitnesses take values between
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W − z×SD∗ and W + z×SD∗ until the maximal Hamming distance from the initial sequence

to the walker cannot be updated, where parameter z controls the width of the fitness band.

Let HDmax be the maximal Hamming distance. If HDmax = ν, independent of any initial

sequence, we can guess that there are percolating nearly neutral networks in this region, in

which sequences are connected at intervals of the Hamming distance d. In this paper, we

designate the network as the nearly neutral network at the dth order. Fig.6 shows observed

values of HDmax against W values, for the case of d = 1. There seems to be two phases,

HDmax/ν = 1 and HDmax/ν = 0 ∼ 0.2, and the average of HDmax/ν was about 0.5 at

W = W ∗
1 for the case where z = 1. This means that the phase transition for the case where

z = 1 occurred at around W = W ∗
1 . The percolation threshold was lower (or higher) when z

decreased (or increased). We also observed similar features for the case where d = 2 (data not

shown).

These results from the simulation study were supported theoretically as follows. Let us

consider a reference sequence that takes the stationary fitness value W ∗
d , and its d-boundary.

Concentrating on the number of nearly neutral sequences (in the d-boundary) that belong to

the fitness band defined as W ∗
d − z × SD∗ � W � W ∗

d + z × SD∗ (see eqn.(34)), we calculated

the average number analytically (Appendix D). Particularly, this average number for d = 1

is called ”the average degree of (nearly) neutrality” (Huynen et al., 1996; Barnett, 1998). As

a result, the average number was 1.4 for z = 0.5, 2.4 for z = 1.0, 4.0 for z = 1.5 and 6.7

for z = 2.0. Interestingly, it turned out that this average number is sensitive to z but almost

insensitive to other parameters, such as d, under our conditions (the details are in Appendix D).

These analytical values shown above almost agree with those obtained by another computer

simulation (Table 1). The critical average number that governs the percolation threshold is

expected to be 2 ∼ 3 (see Fig. 4.2 in Gavrilets, (2004)). These numbers are almost equal to 2.4

(for z = 1.0) shown above, suggesting that the phase transition occurs at around the highland

defined in eqn. (34), that is, the highland is approximately the upper limit of the existence of
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nearly neutral networks for z = 1.0, or more precisely the collapse point for the networks.

The neutrality on the evolution and (nearly) neutral networks have been studied by using

modified NK model (Ohta, 1998; Newman & Engelhardt, 1998; Barnett, 1998; Gravner et al.,

2007). In the ”Discussion” section, we refer to the relation between these studies and ours.

4.4 Local optima and local mountains

Let pd(W ) be the probability that the fitnesses of all the sequences in the d-boundary are less

than the fitness W of the reference sequence. pd(W ) is a function of W and is given by

pd(W ) =

(∫ 0

−∞
Pd(∆W |W ) d∆W

)N†
d

(36)

=

(∫ −Ed[∆W |W ]/
√

Vd[∆W |W ]

−∞
N (x|0, 1)dx

)N†
d

. (37)

Let Wd(p) be the inverse function of pd(W ). It is more convenient for the mathematical analysis

of local optima to handle Wd(p) rather than pd(W ). Thus, to derive Wd(p), we introduce the

following function of the probability p, ξ(p) = ξ:(∫ ξ

−∞
N (x|0, 1)dx

)N†
d

≡ p (0 � p � 1). (38)

By comparing eqn. (38) with (37), the function Wd(p) is given by the following implicit form:

−Ed[∆W |Wd(p)]√
Vd[∆W |Wd(p)]

≡ ξ. (39)

Interestingly, eqn. (39) is the same form as eqn. (20) by replacing ζmax in eqn. (20) with ξ and

setting the right-hand side in eqn. (20) to be zero. Therefore, by the same manner of derivation

of eqn. (30), Wd(p) is determined as follows:

Wd(p) =

√
V ν

κ(τ ‡) τ ‡
(40)

τ ‡ ≡
√

D/2

ξ(p)
, (41)

where κ(x) is defined in eqn. (32). ξ(p) is approximately given by

ξ(p) ≈
√

2 ln
N †

d/(− ln p)√
2π

, (42)
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for large ξ. Eqn. (42) is derived by substituting
∫ ξ

−∞ N (x|0, 1)dx = 1 − ∫∞
ξ

N (x|0, 1)dx into

eqn. (38), and using ln(1−δ) ≈ −δ and
∫∞

y
N (x|0, 1)dx ≈ N (y|0, 1) for y 
 2. The difference

between eqn. (40) and eqn. (30) stems from the difference between eqn. (42) and eqn. (23).

Then, we can easily see that Wd(1/e) = W ∗
d . As a result, we found pd(W ) to be a sigmoidal

function of W , as shown in Fig.7. The pd(W ) represents the probability that the adaptive

walker with step-width d gets trapped at altitude W , when the walker is put on the altitude.

By performing an additional computer simulation of the adaptive walks starting from random

sequences, we obtained the frequency distribution of altitude (=fitness) where the walkers got

trapped. The frequency distribution was approximately of the Gaussian-type with the following

mean ± standard deviation of fitness W : when ν = 20 and K = 10, W = 0.60± 0.05 for d = 1

and W = 0.67 ± 0.03 for d = 2; when ν = 120 and K = 27, W = 0.47 ± 0.03 for d = 1 and

W = 0.51 ± 0.02 for d = 2. These values almost meet with the raising phase of pd(W ) shown

in Fig.7.

Consider a reference sequence with fitness W , and the set of all sequences in the 1-, 2-,

· · ·, r-boundary of the reference sequence, that is, the set is mapped to the inner region of the

hyper-ball with the radius of r centering at the reference sequence. We designate the hyper-ball

as the ”r-ball” of the reference sequence. If all the sequences (except the reference sequence)

in the r-ball have fitness values less than W and there is, in the (r + 1)-boundary, at least

one sequence with fitness greater than W , we designate the reference sequence as the ”local

optimum at the rth order”, and designate the r-ball as the ”local mountain at the rth order”.

By an analogy to the energy landscape theory, the r should be designated as the ”basin size”.

According to van Nimwegen & Crutchfield (2000), the r + 1 corresponds to the width of the

”fitness barrier”. The probability that a certain sequence with fitness W is the local optimum

at the rth order is approximately

Pr(W ) ≈ (1 − pr+1(W ))
r∏

d=1

pd(W )
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=
r∏

d=1

pd(W ) −
r+1∏
d=1

pd(W ), (43)

where we adopt a mean field approximation, that is we assume that p1(W ), p2(W ), · · · , pr+1(W )

are independent. As special cases where r = 0 and r = ν, we define P0(W ) ≡ 1 − p1(W ) and

Pν(W ) ≡∏ν
d=1 pd(W ). P0(W ) represents the probability that the reference sequence is located

on ascending slopes, and Pν(W ) represents the probability that the reference sequence is the

global optimum. It is easy to show that
∑ν

r=0 Pr(W ) = 1. As a result, we found Pr(W ) to

be a Gaussian-like function of W , as shown in Fig.7. To confirm the validity of our analytical

prediction, we carried out computer experiments to obtain numerical values of W ∗
d , pd(W )

and Pr(W ) by random sampling. The result is shown in Fig.7(bottom). As a whole, the

observed values by computer simulation agree almost exactly with the analytically derived

ones. There is, however, a considerable discrepancy between the analytical and simulated ones

for ν = 120, k = 27.

A statistical view of the local mountains at the rth order is as follows. Fitness distribution

over the d-boundary of the central point (=reference sequence) obeys eqn. (18). Therefore, a

majority of sequences belonging to the local mountain is located at around W + Er[∆W |W ],

where Er[∆W |W ] is given in eqn. (12) with d = r. Intuitively, the absolute value of Er[∆W |W ]

can be interpreted as the ”height” of the local mountain:

height = |Er[∆W |W ]| ≈ Wr(1 + k)

ν
, for r(1 + k) � ν, (44)

where W is the fitness of the local peak. This means, given that k is larger and the local

mountain stands at higher altitudes on the global landscape, the local mountain is higher and

steeper.

4.5 An extensive view of NK fitness landscape

In this subsection, we take an extensive view of the NK landscape, based on concepts of

Ed[∆Wmax|W ] shown in eqn. (20) and W ∗
d defined in eqn. (29). In the left corner of Fig.7(top
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and middle), several types of the local structural features are shown schematically. For example,

Type A represents the ascending slopes, and Type E represents the local mountain at the second

order. Thus, Fig.7 shows a hierarchical distribution of ascending slopes, highlands, and local

optima at the dth order. The dashed vertical lines indicate the values of W ∗
d for d = 1, 2, · · ·,

calculated by eqn. (30). Type X (X=A,B,· · ·,F) appears mainly in Region X indicated at the

top of each figure. The features of each Region are mentioned below. We refer to the existence

of nearly neutral networks, which percolate in the fitness band between W−SD∗ and W+SD∗,

where SD∗ is defined in eqn. (35).

Region A (W � W ∗
1 ) : 0 < E1[∆Wmax] < E2[∆Wmax] < E3[∆Wmax] · · ·. The ascending

slopes exist everywhere in this region, and then the walker can continue climbing upward.

In addition, there are nearly neutral networks at the dth order (d = 1, 2, 3, · · ·).

Region B (W = W ∗
1 ) : E1[∆Wmax] = 0 < E2[∆Wmax] < · · ·. We can expect that the highest

point in the 1-boundary of a reference sequence takes almost the same fitness value as

the reference W . Adaptive walkers with step-width d = 1 can climb up near this region

without getting trapped in local optima. Then, we designate this region as the highland at

the first order. The nearly neutral network at the first order becomes broken. Sequences

potentially become local optima at the first order with the probability of P1(W ).

Region C : E1[∆Wmax] < 0 < E2[∆Wmax] < · · ·. The probability P1(W ) takes the maximal

value.

Region D (W = W ∗
2 ) : E1[∆Wmax] < E2[∆Wmax] = 0 < E3[∆Wmax] · · ·. This region corre-

sponds to the highland at the second order. Adaptive walkers with step-width d = 2 can

climb up near this region without getting trapped in local optima. The nearly neutral

network at the second order becomes broken. Sequences potentially become local optima

at the second order with the probability of P2(W ).
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Region E : E1[∆Wmax],E2[∆Wmax] < 0 < E3[∆Wmax] · · ·. The probability P2(W ) takes the

maximal value.

In higher regions, we can explain the emergence of the highlands, nearly neutral networks and

local optima at higher orders by expanding the explanation mentioned above.

Returning to Fig.5, we can see that there are no local optima from the foot up to the middle

regions on the landscapes for moderate k against ν. This suggests that evolvability is high up

to the middle regions on the landscapes, while evolvability becomes drastically lower over the

middle. More considerations are given in the ”Discussion” section.

5 Discussion

We obtained several structural features of an NK fitness landscape by analytical approach.

Particularly, we focused on spatial distributions of ”ascending slopes”, ”highlands”, ”nearly

neutral networks” and ”local optima” along the fitness coordinate W , from the view point of

adaptive walks with step-width d, where d is the number of mutated sites (Hamming distance)

after a generation. The parameter k governs the degree of the ruggedness on the NK landscape,

and we handled cases where k is moderate against the sequence length. From the foot up to

the middle region on the landscape, many ascending slopes exist (high evolvability) and these

slopes extend up near the ”highland”, which is mathematically defined as the specific region

W = W ∗
d where the expectation of the fitness increment becomes zero. Denoting the standard

deviation of the fitness change at W = W ∗
d by SD∗, we considered the existence of ”nearly

neutral networks”, which percolate in the fitness band between W − SD∗ and W + SD∗. Our

results suggest that the highland corresponds to a phase-transition threshold of the formation

of the nearly neutral networks. Near or over the highland, ”local optima at the dth order”

appear drastically (low evolvability), where d means the radius of their basins. The value of

W ∗
d increases with d increasing. Then, as the fitness (=altitude) becomes higher, the basin size
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of the local optima increases.

The neutrality on the evolution and (nearly) neutral networks have been studied by using

modified NK models. Newman & Engelhardt (1998) and Gravner et al. (2007) investigated

some properties of neutral networks by using a NK model with the discrete uniform distribution

(just like eqn.(2)) for site-fitness assignment. A major difference between their model and ours

lies in the following. They considered cases where the number of available letters (λ, in our

paper) is small, particularly λ = 2 in almost cases, whereas we considered cases where λ is

large enough to satisfy (λ − 1)/λ ≈ 1. Thus, in their NK model, the effect of discrete fitness

on its landscape structure becomes strong and then the landscape have neutral regions. In

our model, the resulting landscape is considered as the approximately continuous one and then

we introduced ”nearly” neutral regions as a fitness band (Gavrilets, 2004). The reason we

handled the discrete fitness model (eqn.(2)) lies in the analytical tractability, and then we do

not emphasize the effect of discrete fitness. Essentially, their strong discretization is almost

equivalent to our coarse-graining for the nearly neutrality. Intuitively, the width of the fitness

band (the width is controled by z in this paper) has the almost same effect on the existence of

nearly neutral networks as the discretization of the fitness (the discretization is controled by λ

in this paper, and F in Newman & Engelhardt (1998)) does. Fig.3 of Newman & Engelhardt

(1998) shows that the fitness of the most fit percolating neutral network becomes higher as

the F -value becomes smaller, whereas Fig.6 in our paper shows that the percolating neutral

networks exist up to higher regions as the z-value becomes larger. Maybe both tell the almost

same things as each other. However, a question remains what criterion of the nearly neutrality

is.

A part of this view is compatible with our experimental study we mentioned in our ”Intro-

duction” (Hayashi et al., 2006). Hayashi and coworkers carried out in vitro molecular evolution

beginning with a defective fd phage carrying a random polypeptide (139 a.a.) in place of

the g3p minor coat protein D2 domain, which is essential for phage infection. Through 20
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mutation-selection cycles cycles, the random polypeptide evolved gradually up to the middle

region of the fitness landscape. Our analysis of the experimental data suggested k ≈ 27 for

the fd-phage infectivity landscape in the free energy scale (Aita et al., 2007). According to our

results for ν = 120 and k = 27 in this paper, adaptive walkers with step-width d = 1 can easily

climb up to the middle region on the landscape, but gets trapped in a local optimum (at the

first order) at around W = 0.47 (the global peak is W = 1). By enlarging the step-width to be

d = 2, the walker can escape from it and step upward, but after a few steps, he will get trapped

in another local optimum (at the second order) at around W = 0.51. As the fitness becomes

higher, the basin size of the local optima becomes larger. Our rough calculation suggested that

it is impossible for the walkers with a realistic step-width (ex. d = 1 ∼ 6) to reach the global

optimum, for such a large k (data not shown). Recombination is also not expected to surmount

them because there are not schema in this random neighbor model (Kauffman,1993; Perelson

& Macken,1995).

Several theoretical studies proposed the use of diffusion on neutral networks to reach higher

regions (Barnett, 1998; Newman & Engelhardt, 1998; van Nimwegen & Crutchfield, 2000). Bar-

nett (1998) incorporated the neutralily into the original NK landscape. The resulting landscape

is called the ”NKp landscape” and he examined the structural features of the NKp landscapes.

They predict the punctuated emergence of novel sequences with higher fitness through the

diffusion. This may be one of the reasons how proteins in the origin of life could evolve to ob-

tain high biological function and stability. Considering that an evolving population surmounts

a ”fitness barrier” or ”entropy barrier” toward a higher region, van Nimwegen & Crutchfield

(2000) gave the scaling function for the required time to cross the barrier. However, as Voigt

et al. (2000) pointed out, the required time scale seems not feasible, with current methods in

in vitro molecular evolution.

Another speculation is that even if the region under the middle is rugged with large k-

values, the region over the middle may be considerably smooth with small k-values (Aita &
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Husimi, in press). Saito et al. proposed a scenario of the emergence of the native conforma-

tion from a random peptide (Saito et al., 1997). According to them, a random peptide has

some functional conformations and innumerable nonfunctional ones. The selection on the local

configurations at the active sites locks the lowest-energy conformation in one of the functional

conformations. Intuitively, it seems possible that the k value may change before and after the

”lock” of conformational framework.
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Appendix A: Derivation of eqn. (6)

Consider the following sum of fitness over all the sequences of λν :

S1 ≡
∑

all sequences

W =
∑

all sequences

ν∑
j=1

wj(Aj |Aj1,Aj2, · · · ,Ajk
).

In the set of all the sequences, there are λν−(1+k) sequences which include a set of letters,

{Aj,Aj1, · · · ,Ajk
}. Then,

S1 =

ν∑
j=1

λν−(1+k)
∑

{Aj ,Aj1
,···,Ajk

}
wj(Aj |Aj1, · · · ,Ajk

)

=

ν∑
j=1

λν−(1+k)
∑

{Aj1
,···,Ajk

}

∑
a

wj(a|Aj1, · · · ,Ajk
).

Here, let us focus on ∑
{Aj1

,···,Ajk
}

∑
a

wj(a|Aj1 , · · · ,Ajk
).

With a set {Aj1 , · · · ,Ajk
} fixed, we can see

∑
a

wj(a|Aj1, · · · ,Ajk
) = 〈w〉λ,

where 〈w〉 is the mean site-fitness over λ letters and is set to be 〈w〉 = 0 in this paper. This

equation holds for all possible λk states of {Aj1, · · · ,Ajk
}. Then

S1 = νλν−(1+k)〈w〉λλk = 〈w〉νλν.

Therefore, the mean of fitness over all the sequences is given by

〈W 〉 =
S1

λν
= 〈w〉ν = 0.

Next, consider the following sum of the square of fitness over all the sequences of λν :

∑
all sequences

W 2 = S2 + S3

S2 ≡
∑

all sequences

ν∑
j=1

wj(Aj |Aj1, · · · ,Ajk
)2

S3 ≡
∑

all sequences

2
∑
i<j

wi(Ai|Ai1, · · · ,Aik)wj(Aj |Aj1, · · · ,Ajk
).
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We can easily calculate S2 through the procedure similar to the calculation of S1:

S2 = νλν−(1+k)(〈w〉2 + σ2)λλk = (〈w〉2 + σ2)νλν .

The calculation of S3 is done in the following way. Let qij be the number of sites included in

{i1, · · · , ik, j1, · · · , jk} except sites i and j. For example, if there are no overlapped sites between

{i1, · · · , ik} and {j1, · · · , jk}, and sites i and j are not included in them, we get qij = 2k. The

number of sites that affect the site-fitness of the ith and jth sites (wi and wj) is then 2+ qij. In

the set of all the sequences, there are λν−(2+qij) sequences which include a set of 2 + qij letters,

{Ai,Ai1 , · · · ,Aik ,Aj ,Aj1, · · · ,Ajk
}. Then,

S3 = 2
∑
i<j

λν−(2+qij)
∑

{Ai,Ai1
,···,Aik

,Aj ,Aj1
,···,Ajk

}
wi(Ai|Ai1 , · · · ,Aik)wj(Aj|Aj1 , · · · ,Ajk

)

= 2
∑
i<j

λν−(2+qij)
∑

{Ai1
,···,Aik

,Aj1
,···,Ajk

}

∑
a

∑
b

wi(a|Ai1 , · · · ,Aik)wj(b|Aj1 , · · · ,Ajk
).

Here, let us focus on ∑
a

∑
b

wi(a|Ai1, · · · ,Aik)wj(b|Aj1 , · · · ,Ajk
).

Since the site-fitness values are assigned randomly from the discrete uniform distribution with

mean 〈w〉 and variance σ2 without degeneracy (see Section 2), then the covariance of site-

fitnesses is zero for large λ:

1

λ2

∑
a

∑
b

wi(a|Ai1 , · · · ,Aik)wj(b|Aj1 , · · · ,Ajk
) − 〈w〉2 = 0. (45)

Therefore, ∑
a

∑
b

wi(a|Ai1 , · · · ,Aik)wj(b|Aj1 , · · · ,Ajk
) = (〈w〉λ)2.

This equation holds for all possible λqij states of {Ai1 , · · · ,Aik ,Aj1, · · · ,Ajk
}. Then

S3 = 2
∑
i<j

λν−(2+qij)(〈w〉λ)2λqij

= 2
ν(ν − 1)

2
〈w〉2λν = 〈w〉2ν(ν − 1)λν .
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Therefore, the variance of fitness over all the sequences is given by

V =
S2 + S3

λν
− 〈W 〉2 = (〈w〉2 + σ2)ν + 〈w〉2ν(ν − 1) − (〈w〉ν)2

= σ2ν.

From eqn. (2), the underlying probability density of site-fitness w in each site is given by

the comb function:

f(w) ≡ 1

λ

λ−1∑
i=0

δ

(
w − ε

(
1 − 2i

λ− 1

))
, (46)

where δ(x) is the Dirac’s delta function, and the site-fitnesses between arbitrary sites i and j

are uncorrelated for large λ (eqn. (45)). Then, the joint probability density of w1, w2, · · · , wν

is approximately given by
ν∏

j=1

f(wj).

Then, the probability density of fitness W over the whole sequence space is approximately given

by ∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞

ν∏
j=1

f(wj) δ

(
ν∑

j=1

wj −W

)
dw1dw2 · · ·dwν .

=
ν∗ f(W )

≈ N (W | 0, σ2ν) for large ν.

7 Appendix B: The derivation of equations (10)- (14)

Consider a reference sequence with the fitness-value of W and its d-boundary in λ-valued ν-

dimensional sequence space, and consider a change in fitness, ∆W , from the reference sequence

to an arbitrary sequence in the d-boundary. Note that an arbitrary sequence in the d-boundary

results from random d-fold point mutations occurring in the reference sequence. Let D be

the mean number of sites that change their site-fitnesses as a result of random d-fold point

mutations, and consider that the arbitrary sequence also has the number D . D is given by eqn.

(7).
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The fitness change ∆W is divided into the fitness income ∆W in and fitness outgo ∆W out:

∆W = ∆W in − ∆W out. (47)

From eqn. (2), the underlying probability density of site-fitness w in each site is given by the

comb function:

f(w) ≡ 1

λ

λ−1∑
i=0

δ

(
w − ε

(
1 − 2i

λ− 1

))
, (48)

where δ(x) is the Dirac’s delta function. Therefore, the probability density of ∆W in is given

by the D-fold convolution of f(w):

P in(∆W in) =
D∗ f(∆W in) (49)

≈ N (∆W in| 0, σ2D) for large D , (50)

which is a result from the central limit theorem. This is one of the reasons that our theoretical

conclusion is robust to the shape of the site-fitness distribution (Limic & Pemantle, 2004).

Denote the site-fitness at the j-th site on the reference sequence by wj: W =
∑ν

j=1wj. The

probability density of ∆W out is given by

Pout(∆W out) =
1(
ν
D

)∑
j1<

∑
j2<

· · ·
∑
<jD

δ(∆W out −
D∑

l=1

wjl
)

=
1(
ν
D

)∑
S

gS,D δ(∆W
out − S), (51)

where S ≡∑D
l=1wjl

and gS,D is defined as the coefficient of the following generating function:

G(X,Z) = (1 +Xw1Z)(1 +Xw2Z)(1 +Xw3Z) · · · (1 +XwνZ)

=

ν∑
D=0

(∑
S

gS,DX
S
)
ZD . (52)

The coefficient gS,D satisfies

1(
ν
D

)∑
S

gS,D = 1.

If the distribution of site-fitness values over all sites, {w1, w2, · · · , wν}, obeys an ordinary dis-

tribution, then the probability distribution of S ≡ ∑D
l=1wjl

for large D , that is gS,D/
(

ν
D

)
,
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tends to be a normal distribution. Then, the probability density Pout(∆W out) (eqn. (51)) is

approximately given by

Pout(∆W out) ≈ N

(
∆W out

∣∣∣wD , σ̃2D

(
1 − D − 1

ν − 1

))
for large D , (53)

where w ≡ 1
ν

∑ν
j=1wj = W/ν and σ̃2 ≡ 1

ν

∑ν
j=1w

2
j − w2. The probability density of ∆W

(= ∆W in − ∆W out) is given by

P(∆W ) =

∫ ∞

−∞

∫ ∞

−∞
P in(x)Pout(y) δ(∆W − (x− y)) dxdy

≈ N (∆W |Ed[∆W |w],Vd[∆W |σ̃2]). (54)

The conditional mean and variance of ∆W with w and σ̃2 given are respectively obtained as

follows:

Ed[∆W |w] ≡
∫ ∞

−∞
∆W P(∆W ) d∆W

= −wD (55)

Vd[∆W |σ̃2] ≡
∫ ∞

−∞
∆W 2 P(∆W ) d∆W − Ed[∆W |w]2

≈
(
σ2 + σ̃2

(
1 − D − 1

ν − 1

))
D . (56)

P(∆W ) corresponds to eqn. (10).

Here, we note that P in(∆W in) and Pout(∆W out) include the information of all possible

changes of site-fitnesses. The number of all possible patterns of site-fitness changes is
(

ν
D

)
(λ−1)D

(= N∂D). However, actually the number of all possible d-fold point mutations is
(

ν
d

)
(λ − 1)d

(= N †
d). When k is large, N †

d � N∂D . This is the reason for considering P(∆W ) in eqn.

(54) or Pd(∆W |W ) in eqn. (10) to be approximately an independent identical distribution

(i.i.d.) for assignment of ∆W value to any sequence in the d-boundary, when k is large.

This approximation is more valid as k increases. When k = 0, P(∆W ) in eqn. (54) or

Pd(∆W |W ) in eqn. (10) is not i.i.d. but equivalent to the density of ∆W over the d-boundary:

ψd(∆W |W ) = Pd(∆W |W ).
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8 Appendix C: The most probable distribution of site-fitness values

over all sites when fitness W is given

The probability density of fitness in the d-boundary of a reference sequence is dependent on

the distribution of site-fitness values over all sites of the sequence. Our aim in this section is

to deduce the most probable distribution of site-fitness values over all sites when fitness W

of the sequence is given. Let wi be the site-fitness for the ith available letter among λ ones,

and let pi be the occurrence probability of the ith letter over all sites. Then,
∑λ−1

i=0 pi = 1 and∑λ−1
i=0 wipi = w. From eqn. (2), the underlying site-fitness distribution function for each site is

the discrete uniform distribution:

wi ≡ ε

(
1 − 2i

λ− 1

)
, i = 0, 1, 2, · · · , λ− 1. (57)

Adopting the maximal entropy assumption, we deduced the most probable distribution by

Lagrange’s method of undetermined multipliers:

{p0, p1, · · · , pλ−1} = arg max

{
−

λ−1∑
i=0

pi ln pi

}
(58)

with constraint condition

λ−1∑
i=0

pi = 1

λ−1∑
i=0

wi pi = w. (59)

Solving eqn. (58), we obtain

pi = eβwi/Z , where Z ≡
λ−1∑
i=0

eβwi . (60)

Substituting eqn. (57) and eqn. (60) into eqn. (59), we obtain pi as the following exponential

distribution:

pi = xi/Z(x) , where Z(x) ≡
λ−1∑
i=0

xi =
1 − xλ

1 − x
, (61)
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where x is determined by solving

w

ε
= 1 − 2xZ ′(x)

(λ− 1)Z(x)
= 1 − 2x

(λ− 1)

d lnZ(x)

dx

= 1 − 2

(λ− 1)

(
λxλ

xλ − 1
+

x

1 − x

)
. (62)

Fig.3 shows the following variance by using eqn. (61) with eqn. (62):

σ̃2 =
λ−1∑
i=0

w2
i pi − w2. (63)

From Fig.3, we can see that the analytically derived σ̃2 agrees well with the observed values by

computer simulation.

9 Appendix D: Rough estimation of the average number of nearly

neutral sequences in the d-boundary

In Aita et al. (2004), we referred to the probability density of the fitness for the m-th fittest

mutant among N mutants (m � N), which are randomly chosen from the d-boundary. Fol-

lowing the results, we estimate roughly the average number of nearly neutral sequences in the

d-boundary. Let us consider a reference sequence with the stationary fitness W ∗
d , and its d-

boundary. Picks up N sequences randomly from the d-boundary. Let ∆W ∗
m be the change

in fitness from the reference sequence to the m-th fittest sequence among the N sequences

(m� N). The probability density of ∆W ∗
m is roughly given by

ϕm(∆W ∗
m) ≈ N

(
∆W ∗

m

∣∣∣− a(ζ1 − ζm),
a2

mζ2
m

)
, (64)

where a ≡ √
2V D/ν and ζm ≈

√
2 ln(N/

√
2πm). Eqn.(64) is derived from eqns (20)-(24),

(35), (36) and (C.5) in Aita et al., (2004)4. The probability that n sequences among the N

sequences belong to the fitness band defined as W ∗
d −z×SD∗ � W � W ∗

d + z×SD∗ is roughly

given by

P(n) ≈ C ×
∫ z×SD∗

−z×SD∗
ϕn(x)dx

∫ −z×SD∗

−∞
ϕn+1(x)dx, (65)

4In this paper, we wrote ” �Nm” as ζm.
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where C is a normalization constant. Note that P(0) ≈ C × ∫ −z×SD∗

−∞ ϕ1(x)dx.

We focus on the case where N = N †
d , that is a large value. Then SD∗ ≈ a/ζ1, which is easily

derived from eqn.(35) with ζmax = ζ1. By using ζ1 − ζm ≈ (lnm)/ζ1 and ζ−1
m ≈ ζ−1

1 , eqn.(64) is

approximated by

ϕm(∆W ∗
m) ≈ N

(
∆W ∗

m

∣∣∣− a lnm

ζ1
,
a2

mζ2
1

)
. (66)

Then, eqn.(65) is approximated by

P(n) ≈ C ×
∫ z

−z

N (x| − lnn, 1/n)dx

∫ −z

−∞
N (x| − ln(n+ 1), 1/(n+ 1))dx. (67)

It is remarkable that the probability P(n) shown in eqn.(67) is dependent on z but independent

of other parameters. The analytical numbers presented in Table 1 were calculated by E[n] =∑
n nP(n) with eqn.(67).
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Figure 1: Two important parameters D and ζmax as a function of Hamming distance d.

(Top) D values were calculated by eqn. (7). ν = 120. The values of parameter k were indicated

in the figure. (Bottom) ζmax values were calculated by eqn. (22) and eqn. (23) with eqn. (9).

λ = 20, ν = 120.
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Figure 2: The d-boundary and fitness distribution on it. (Top) Global sequence space is

schematically represented by concentric circles centering at the global peak ”O”. The radius of

each concentric circle represents the Hamming distance. The thick concentric circle with radius d

centering at a reference sequence ”R” represents the d-boundary of the reference sequence. (Bottom)

Each Gaussian-like distribution represents the density function of fitnesses on the d-boundary (=

ψd(∆W |W )). Three cases for the location of reference sequences are shown: W = H (peak), W = H/2

(middle) and W = 0 (foot).
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Figure 3: σ̃2 against w. The result of the computer simulation is plotted with mean (circles) and

standard deviation (error bar). The dashed line shows the analytically derived one (eqns (61)-(63)),

which was obtained by using the maximal entropy assumption (details are in Appendix C). The solid

line shows the parabola shown in eqn. (17). Parameters are λ = 20 and ε = 1.

z 0.5 1.0 1.5 2.0

Analytical number 1.4 2.4 4.0 6.7

Simulation (N†
d = 102) 1.9 2.6 3.7 5.5

Simulation (N†
d = 103) 1.9 2.7 4.2 6.2

Simulation (N†
d = 104) 1.9 2.7 4.2 6.4

Table 1: The average number of nearly neutral sequences in the d-boundary, in which the

reference sequence takes the stationary fitness W ∗
d . The parameter z governs the width of the

fitness band, W ∗
d − z ×SD∗ � W � W ∗

d + z ×SD∗. The analytical numbers were calculated based on

eqn.(67) in Appendix D. N †
d represents the number of all the sequences in the d-boundary.
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Figure 4: The mean (Ed[∗]) and standard deviation (
√

Vd[∗]) of ∆W and ∆Wmax against

fitness W of a reference sequence. The regions W = 0 and W = 1 correspond to the foot and

global peak, respectively. The simulated mean and standard deviation are plotted with symbols and

error bars: the circle (d = 1), triangle (d = 2), and square (d = 3). The solid and dotted lines show

the analytical mean and standard deviation, respectively, according to eqns (12),(14),(20), and (21).

Parameters are as follows: (top) λ = 20, ν = 20, k = 10; (bottom) λ = 20, ν = 120, k = 27; ε = 1/ν.37
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Figure 7: Hierarchical distribution of ascending slopes, highlands, and local optima along

the fitness coordinate W . (Top and middle) the analytically predicted view. The dashed vertical

lines indicate the values of W ∗
d : (from left to right) W ∗

1 ,W ∗
2 ,W ∗

3 ,W ∗
4 . The solid sigmoidal lines

(thin lines) represent pd(W ): (from left to right) p1, p2, p3, p4. The Gaussian-like lines (thick lines)

represent Pr(W ): (from left to right) P1, P2, P3. In the left corner, several types of local structural

features (A,B,C,D,E,F) are shown schematically. The dot at d = 0 indicates the fitness of a reference

point, and the three dots at d = 1, 2, 3 indicate their respective Ed[∆Wmax|W ]. For example, Type

A represents an ascending slope, and Type E represents the local optimum (mountain) at the second

order. Type X (X=A,B,· · ·,F) appears mainly in Region X (X=A,B,· · ·,F) on the fitness coordinate. A:

ascending slopes exist everywhere. B: the highland at the first order. C: the probability P1(W ) takes

the maximal value. D: the highland at the second order. E: the probability P2(W ) takes the maximal

value. Parameters are as follows: (top) λ = 20, ν = 20, k = 10; (middle) λ = 20, ν = 120, k = 27;

ε = 1/ν. Details are in the main text. (Bottom) a result of computer experiments to compare with

the top and middle figures. Let N and n be the number of samples and the number of objects,

respectively. The dot represents n/N and the error bar represents
√

n(N − n)/N3. The solid lines

are for λ = 20, ν = 20, k = 10, while the broken lines are for λ = 20, ν = 120, k = 27.
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