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GENERALIZED CONTRACTIONS WITH CONSTANTS

IN COMPLETE METRIC SPACES
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Abstract. We prove three fixed point theorems for generalized contractions with con-
stants in complete metric spaces, which are generalizations of very recent fixed point
theorems due to Suzuki. We also raise one problem concerning the constants.

1. Introduction

Throughout this paper we denote by N the set of all natural numbers. For an arbitrary
set A, we also denote by ]A the number of elements of A.

The Banach contraction principle [1] plays a very important role in nonlinear analysis
and has many generalizations; see [2–4, 6–8, 10–15, 17–20] and others. We also know
that the principle cannot characterize the metric completeness of underlying spaces while
Kannan’s fixed point theorem does; see [5, 9, 16]. Very recently, Suzuki [19] proved
the following fixed point theorem, which is a new type of generalization of the Banach
contraction principle and does characterize the metric completeness.

Theorem 1 ([19]). Define a nonincreasing function θ from [0, 1) onto (1
2
, 1] by

(1) θ(r) =





1 if 0 ≤ r ≤ 1
2
(
√

5− 1),

1− r

r2
if 1

2
(
√

5− 1) ≤ r ≤ 1√
2
,

1

1 + r
if 1√

2
≤ r < 1.

Then for a metric space (X, d), the following are equivalent:

(i) X is complete.
(ii) Every mapping T on X satisfying the following has a fixed point:

• There exists r ∈ [0, 1) such that θ(r) d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤
r d(x, y) for all x, y ∈ X.

(iii) There exists r ∈ (0, 1) such that every mapping T on X satisfying the following
has a fixed point:
• 1

10000
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ r d(x, y) for all x, y ∈ X.

Remark. For every r ∈ [0, 1), θ(r) is the best constant.
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It is a very natural and significant question of whether or not we can generalize Theorem
1 as we have generalized the Banach contraction principle. In this paper, we shall extend
Theorem 1 in two directions — set-valued mappings and commuting mappings. We also
discuss the Meir-Keeler fixed point theorem. We remark that the proofs of our results are
not obvious.

The authors are very attracted by θ(r) because θ(r) does not seem to be natural. We
know θ(r) is the best constant because of the existence of counterexamples. To find an
intuitive reason is another motivation. However, we have not found such a reason yet.
On the contrary, we have to raise one problem concerning θ(r).

2. Two Generalizations

In this section, we prove two generalizations of Theorem 1.
Let (X, d) be a metric space. We denote by CB(X) the family of all nonempty closed

bounded subsets of X. Let H(·, ·) be the Hausdorff metric, i.e.,

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y, A)
}

for A,B ∈ CB(X),

where d(x,B) = infy∈B d(x, y).
We first prove the following, which is a generalization of both Theorem 1 and the Nadler

fixed point theorem (Corollary 1 ).

Theorem 2. Define a strictly decreasing function η from [0, 1) onto (1
2
, 1] by

η(r) =
1

1 + r
.

Let (X, d) be a complete metric space and let T be a mapping from X into CB(X). Assume
that there exists r ∈ [0, 1) such that

η(r) d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ r d(x, y)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

Proof. Take a real number r1 with 0 ≤ r < r1 < 1. Then, for each u = u0 ∈ X and
u1 ∈ Tu, we have η(r) d(u, Tu) ≤ η(r) d(u, u1) ≤ d(u, u1). From the assumption,

d(u1, Tu1) ≤ H(Tu, Tu1) ≤ r d(u, u1)

holds. So, there exists u2 ∈ Tu1 such that d(u1, u2) ≤ r1 d(u, u1). Thus, we have a
sequence {un} in X such that un ∈ Tun−1 and d(un−1, un) ≤ r1 d(un−2, un−1). We have

∞∑
n=1

d(un−1, un) ≤
∞∑

n=1

r1
n−1 d(u, u1) < ∞

and hence {un} is a Cauchy sequence. Since X is complete, {un} converges strongly to
some point z ∈ X.

We next show
d(z, Tx) ≤ r d(z, x) for all x ∈ X \ {z}.

Since un → z, there exists ν ∈ N such that d(z, un) ≤ 1
3
d(z, x) for all n ∈ N with n ≥ ν.

Then we have

η(r) d(un, Tun) ≤ d(un, Tun) ≤ d(un, un+1)

≤ d(un, z) + d(un+1, z)
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≤ 2

3
d(x, z) = d(x, z)− 1

3
d(x, z)

≤ d(x, z)− d(un, z) ≤ d(un, x)

and hence H(Tun, Tx) ≤ r d(un, x). So, it follows that d(un+1, Tx) ≤ r d(un, x) for n ∈ N
with n ≥ ν. Letting n tend to ∞, we obtain d(z, Tx) ≤ r d(z, x) for all x ∈ X \ {z}.

We next prove that H(Tx, Tz) ≤ r d(x, z) for all x ∈ X. If x = z, then it obviously
holds. So we assume x 6= z. Then for every n ∈ N, there exists yn ∈ Tx such that
d(z, yn) ≤ d(z, Tx) + 1

n
d(x, z). We have

d(x, Tx) ≤ d(x, yn)

≤ d(x, z) + d(z, yn)

≤ d(x, z) + d(z, Tx) +
1

n
d(x, z)

≤ d(x, z) + r d(x, z) +
1

n
d(x, z)

=
(
1 + r +

1

n

)
d(x, z)

for n ∈ N and hence 1
1+r

d(x, Tx) ≤ d(x, z). From the assumption, we have H(Tx, Tz) ≤
r d(x, z).

Finally, since

d(z, Tz) = lim
n→∞

d(un+1, T z) ≤ lim
n→∞

H(Tun, T z) ≤ lim
n→∞

r d(un, z) = 0

and Tz is closed, we obtain z ∈ Tz. ¤
Remark. For each r ∈ {0} ∪ [

1√
2
, 1

)
, η(r) is the best constant because θ(r) = η(r).

However, we do not know that η(r) is best for r ∈ (
0, 1√

2

)
. So we have to raise the

following problem:

“ Is η(r) the best constant for r ∈ (
0, 1√

2

)
? ”

When the second author was proving Theorem 1, he had guessed η(r) is best from his
intuition. However, his guess was false. If we could obtain an affirmative answer to our
new problem, we could say that set-valued mappings are more natural than single-valued
mappings in some sense.

It is obvious that the Nadler fixed point theorem follows directly from Theorem 2.

Corollary 1 (Nadler [13]). Let (X, d) be a complete metric space and let T be a mapping
from X into CB(X). If there exists r ∈ [0, 1) such that

H(Tx, Ty) ≤ r d(x, y) for all x, y ∈ X,

then there exists z ∈ X such that z ∈ Tz.

Next, we generalize Theorem 1 as Jungck in [8] generalized the Banach contraction
principle.

Theorem 3. Define a function θ by (1). Let (X, d) be a complete metric space. Let S
and T be mappings on X satisfying the following:

(a) S is continuous;
(b) T (X) ⊂ S(X);
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(c) S and T commute.

Suppose that there exists r ∈ [0, 1) such that

θ(r) d(Sx, Tx) ≤ d(Sx, Sy) implies d(Tx, Ty) ≤ r d(Sx, Sy)

for all x, y ∈ X. Then there exists a unique common fixed point of S and T .

Remark. θ(r) is the best constant for every r.

Proof. By (b), we can define a mapping I on X satisfying SIx = Tx for all x ∈ X. Since
θ(r) ≤ 1, θ(r) d(Sx, Tx) = θ(r) d(Sx, SIx) ≤ d(Sx, SIx) holds. From the assumption, we
have

(2) d(SIx, SIIx) = d(Tx, TIx) ≤ r d(Sx, SIx)

for x ∈ X. Let u ∈ X. Put u0 = u and un = Inu for all n ∈ N. Then we note un+1 = Iun

and Sun+1 = Tun for n ∈ N. By (2), we have

d(Sun, Sun+1) = d(SIun−1, SIIun−1) ≤ r d(Sun−1, SIun−1)

= r d(Sun−1, Sun) ≤ · · · ≤ rn d(Su0, Su1)

and hence
∑∞

n=1 d(Sun, Sun+1) < ∞. So, {Sun} is a Cauchy sequence in X and by the
completeness of X, there exists a point z ∈ X such that Sun → z.

We next show

(3) d(Tx, z) ≤ r d(Sx, z) for all x ∈ X with Sx 6= z.

Since Sun → z, there exists ν1 ∈ N such that d(Sun, z) ≤ 1
3
d(Sx, z) for all n ∈ N with

n ≥ ν1. Then we have

θ(r) d(Sun, Tun) ≤ d(Sun, Tun) = d(Sun, Sun+1)

≤ d(Sun, z) + d(Sun+1, z)

≤ 2

3
d(Sx, z) = d(Sx, z)− 1

3
d(Sx, z)

≤ d(Sx, z)− d(Sun, z) ≤ d(Sun, Sx)

and hence d(Tun, Tx) ≤ r d(Sun, Sx) for n ∈ N with n ≥ ν1. Therefore we have

d(Tx, z) = lim
n→∞

d(Tx, Sun) = lim
n→∞

d(Tx, Tun−1)

≤ lim
n→∞

r d(Sx, Sun−1) = r d(Sx, z)

for x ∈ X with Sx 6= z.
Let us prove that z is a fixed point of S. In the case where ]{n : d(Sun, Tun) >

d(Sun, SSun)} = ∞, there exists a subsequence {unj
} of {un} such that d(Sunj

, Tunj
) >

d(Sunj
, SSunj

). Then we have

d(Sz, z) = lim
j→∞

d(SSunj
, z) ≤ lim

j→∞

{
d(SSunj

, Sunj
) + d(Sunj

, z)
}

≤ lim
j→∞

{
d(Sunj

, Tunj
) + d(Sunj

, z)
}

= lim
j→∞

{
d(Sunj

, Sunj+1) + d(Sunj
, z)

}
= 0.
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This implies z = Sz. In the other case, where ]{n : d(Sun, Tun) > d(Sun, SSun)} <
∞, there exists ν2 ∈ N such that d(Sun, Tun) ≤ d(Sun, SSun) for all n ≥ ν2. So,
d(Tun, TSun) ≤ r d(Sun, SSun) for all n ≥ ν2. Then we have

d(Sun, SSun) = d(Tun−1, STun−1) = d(Tun−1, TSun−1)

≤ r d(Sun−1, SSun−1) ≤ · · · ≤ rn−ν2 d(Suν2 , SSuν2)

and hence limn d(Sun, SSun) = 0. This implies z = Sz. Therefore z is a fixed point of S
in both cases.

We next show that

(4) d(T nz, T n+1z) ≤ rn d(z, Tz) for n ∈ N.

We put T 0z = z. Since

θ(r) d(ST n−1z, T nz) ≤ d(ST n−1z, T nz) = d(ST n−1z, T nSz) = d(ST n−1z, ST nz),

we have

d(T nz, T n+1z) ≤ r d(ST n−1z, ST nz) = r d(T n−1Sz, T nSz) = r d(T n−1z, T nz).

Using this inequality, we can prove (4).
We shall prove that z is a fixed point of T , dividing the following four cases:

• 0 ≤ r ≤ 1
2
(
√

5− 1)

• 1
2
(
√

5− 1) < r < 1√
2

• 1√
2
≤ r < 1 and ]{n : Sun 6= z} = ∞

• 1√
2
≤ r < 1 and ]{n : Sun 6= z} < ∞

In the first case, we note r2 + r − 1 ≤ 0 and 2 r2 < 1. We can prove that

(5) θ(r) d(TTz, TTTz) ≤ d(TTz, z).

If not, then since d(TTz, z) < d(TTz, TTTz), we have by (4)

d(Tz, z) ≤ d(Tz, TTz) + d(TTz, z) < d(Tz, TTz) + d(TTz, TTTz)

≤ (r + r2) d(z, Tz) ≤ d(z, Tz),

which implies a contradiction. Therefore (5) holds. Hence

θ(r) d(STTz, TTTz) = θ(r) d(TTz, TTTz) ≤ d(TTz, z) = d(STTz, Sz)

holds. From the assumption, we have

(6) d(TTTz, Tz) ≤ r d(STTz, Sz) = r d(TTz, z).

Arguing by contradiction, we assume that TTz 6= z. Then we note that STTz 6= z and
STz = Tz 6= z. Using (3) two times, we obtain

d(TTTz, z) ≤ r d(STTz, z) = r d(TTz, z) ≤ r2 d(STz, z) = r2 d(Tz, z).

Using this inequality and (6), we have

d(z, Tz) ≤ d(z, TTTz) + d(TTTz, Tz) ≤ r2 d(z, Tz) + r d(TTz, z)

≤ 2 r2 d(z, Tz) < d(z, Tz).

This is a contradiction. Thus we obtain TTz = z. By (4),

d(Tz, z) = d(Tz, TTz) ≤ r d(z, Tz),
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which implies Tz = z. In the second case, we note 2 r2 < 1. If (5) does not hold, then we
obtain by (4)

d(z, Tz) ≤ d(z, TTz) + d(TTz, Tz) < θ(r) d(TTz, TTTz) + d(TTz, Tz)

≤ θ(r) r2 d(z, Tz) + r d(z, Tz) = d(z, Tz),

which implies a contradiction. Therefore (5) holds. As in the first case, we can prove
Tz = z. In the third case, there exists a subsequence {unj

} of {un} such that Sunj
6= z.

By (3), we have

θ(r) d(Sunj
, Tunj

) ≤ θ(r)
(
d(Sunj

, z) + d(Tunj
, z)

)

≤ θ(r)
(
d(Sunj

, z) + r d(Sunj
, z)

)

= d(Sunj
, z).

By the assumption, we have d(Tunj
, T z) ≤ r d(Sunj

, z) and hence

d(z, Tz) = lim
j→∞

d(Sunj+1, T z) = lim
j→∞

d(Tunj
, T z) ≤ lim

j→∞
r d(Sunj

, z) = 0.

Thus, Tz = z holds. In the fourth case, there exists ν3 ∈ N such that Sun = z for n ≥ ν3.
In particular, Suν3 = Suν3+1 = z. We have

Tz = TSuν3 = STuν3 = SSuν3+1 = Sz = z.

We have shown that z is a common fixed point of S and T in all the cases.
We conclude the proof by showing that the common fixed point is unique. Suppose

that y is a common fixed point of S and T . Since θ(r) d(Sz, Tz) = 0 ≤ d(Sz, Sy), we
have

d(z, y) = d(Tz, Ty) ≤ r d(Sz, Sy) = r d(z, y)

and hence z = y. ¤

3. The Meir-Keeler’s Theorem

Finally, we generalize another result in [19] as Park and Bae in [14] generalized the
Meir-Keeler fixed point theorem [12]. See also [20].

Theorem 4. Let (X, d) be a complete metric space. Let S and T be mappings on X
satisfying (a)–(c) in Theorem 3. Assume that

1

2
d(Sx, Tx) < d(Sx, Sy) implies d(Tx, Ty) < d(Sx, Sy)(7)

for all x, y ∈ X, and that for any ε > 0, there exists δ(ε) > 0 such that

1

2
d(Sx, Tx) < d(Sx, Sy) and d(Sx, Sy) < ε + δ(ε) imply d(Tx, Ty) ≤ ε(8)

for all x, y ∈ X. Then there exists a unique common fixed point of S and T .

Remark. 1
2

is the best constant because θ(r) in Theorem 1 is best.

Proof. By (b), we can define a mapping I on X satisfying SIx = Tx for all x ∈ X, and
Ix = x for all x ∈ X with Sx = Tx. For x ∈ X with Sx 6= Tx, we have d(Sx, Tx) <
2 d(Sx, Tx) = 2 d(Sx, SIx). It follows from (7) that d(Tx, TIx) < d(Sx, SIx). Therefore

d(SIx, SIIx) < d(Sx, SIx) for all x ∈ X with Sx 6= SIx.(9)



FIXED POINT THEOREM 7

Thus,

d(SIx, SIIx) ≤ d(Sx, SIx) for all x ∈ X.(10)

Let u ∈ X. Put u0 = u and un = Inu for all n ∈ N. By (10), {d(Sun, Sun+1)} is a
nonincreasing sequence and hence {d(Sun, Sun+1)} converges to some α ≥ 0. Suppose
α > 0. Then by (9), {d(Sun, Sun+1)} is strictly decreasing and hence d(Sun, Sun+1) >
α for n ∈ N. Take j ∈ N with d(Suj, Suj+1) < α + δ(α). It follows from (8) that
d(Suj+1, Suj+2) ≤ α. This is a contradiction. Therefore we obtain α = 0, that is,

(11) lim
n→∞

d(Sun, Sun+1) = 0.

Fix ε > 0 and put δ1 = min
{
δ(ε), ε

}
. By (11), we can choose ν1 ∈ N such that

d(Sun, Sun+1) < δ1 for all n ≥ ν1. Fix ` ∈ N with ` ≥ ν1. We shall show that

(12) d(Su`, Su`+m) < ε + δ1

for m ∈ N by induction. If m = 1, (12) obviously holds. Suppose that d(Su`, Su`+m) <
ε + δ1 holds for some m ∈ N. In the case where d(Su`, Su`+m) ≤ ε, we have

d(Su`, Su`+m+1) ≤ d(Su`, Su`+m) + d(Su`+m, S`+m+1) < ε + δ1.

In the other case, where ε < d(Su`, Su`+m) < ε + δ1, since

d(Su`, Su`+1) < δ1 ≤ ε < d(Su`, Su`+m) < 2 d(Su`, Su`+m),

we have d(Su`+1, Su`+m+1) ≤ ε by (8). Hence,

d(Su`, Su`+m+1) ≤ d(Su`, Su`+1) + d(Su`+1, Su`+m+1) < δ1 + ε.

So, by induction, we obtain (12) for all m ∈ N. Since ε is arbitrary, we have

lim
n→∞

sup
m>n

d(Sum, Sun) = 0.

This implies that {Sun} is a Cauchy sequence. Since X is complete, {Sun} converges to
some point z ∈ X.

Next we show that z is a fixed point of S. In the case where ]{n : d(Sun, Tun) ≥
2 d(Sun, SSun)} = ∞, there exists a subsequence {unj

} ⊂ {un} such that d(Sunj
, Tunj

) ≥
2 d(Sunj

, SSunj
). Then it follows from (a) that

d(Sz, z) = lim
j→∞

d(SSunj
, z) ≤ lim

j→∞

(
d(SSunj

, Sunj
) + d(Sunj

, z)
)

≤ lim
j→∞

(1

2
d(Sunj

, Tunj
) + d(Sunj

, z)
)

= lim
j→∞

(1

2
d(Sunj

, Sunj+1) + d(Sunj
, z)

)
= 0.

This implies that z = Sz. In the other case, where ]{n : d(Sun, Tun) ≥ 2 d(Sun, SSun)} <
∞, there exists ν2 ∈ N such that d(Sun, Tun) < 2 d(Sun, SSun) for all n ≥ ν2. It follows
from (7) that

d(Sun+1, SSun+1) = d(Tun, TSun) < d(Sun, SSun)

for n ≥ ν2, thus, {d(Sun, SSun)} is strictly decreasing for large n ∈ N. This implies that
{d(Sun, SSun)} converges to some β ≥ 0, and d(Sun, SSun) > β for n ≥ ν2. Suppose β >
0. Then from the definition of β, we can take j ∈ N such that j ≥ ν2 and d(Suj, SSuj) <
β + δ(β). From (8) and (c), we obtain d(Suj+1, SSuj+1) = d(Tuj, TSuj) ≤ β. This is a
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contradiction. Thus, we obtain β = 0, that is, limn d(Sun, SSun) = 0, which implies that
z = Sz.

Let us prove Tz = z. We consider the following two cases:

• There exists ν ∈ N such that Suν = Suν+1.
• Sun 6= Sun+1 for all n ∈ N.

In the first case, we note uν = uν+1 from the definition of I. Hence un = uν for all
n ≥ ν. Since Sun → z, we have Sun = z for n ≥ ν. Hence, we obtain

Tz = TSuν = STuν = SSuν+1 = Sz = z.

In the second case, we note Sun 6= Tun for n ∈ N. Suppose d(Sun, Sun+1) ≥ 2 d(Sun, z)
and d(Sun+1, Sun+2) ≥ 2 d(Sun+1, z) for n ∈ N. Then we have

d(Sun, Sun+1) ≤ d(Sun, z) + d(Sun+1, z)

≤ 1

2

(
d(Sun, Sun+1) + d(Sun+1, Sun+2)

)

< d(Sun, Sun+1)

by (9). This is a contradiction. Therefore we have either

d(Sun, Sun+1) < 2 d(Sun, z) or d(Sun+1, Sun+2) < 2 d(Sun+1, z)

for n ∈ N. Then, from (7), either

d(Tun, T z) < d(Sun, z) or d(Tun+1, T z) < d(Sun+1, z)

holds for n ∈ N. Since Tun = Sun+1 and Sun → z, there exists a subsequence of {Sun}
converging to Tz. This implies that Tz = z. Therefore, in all the cases, we have shown
z is a common fixed point of S and T .

We conclude the proof by showing that the common fixed point is unique. Suppose
that y is another common fixed point of S and T . Since d(Sz, Tz) = 0 < 2 d(z, y) =
2 d(Sz, Sy), we have

d(z, y) = d(Tz, Ty) < d(Sz, Sy) = d(z, y).

This is a contradiction. ¤
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