Expression and function of a groEL paralog in the thermophilic cyanobacterium
 Thermosynechococcus elongatus under heat and cold stress
 Shinichiro Sato ${ }^{1}$, Masahiko Ikeuchi ${ }^{2}$ and Hitoshi Nakamoto ${ }^{1 *}$
 ${ }^{1}$ Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
 ${ }^{2}$ Department of Biological Sciences, University of Tokyo, Tokyo 153-8902, Japan

Abstract

Cyanobacterial genomes generally contain two groEL genes, referred to as groEL1 and groEL2. The purpose of this study is to elucidate a role of groEL2 in the adaptation of the thermophilic cyanobacterium Thermosynechococcus elongatus to hot environments. Both groEL genes were found to be heat-induced, while only groEL2 was greatly cold-induced. Primer extension and gel mobility shift analyses indicated that transcriptional regulation of groEL2 is different from that of groESL1. The groEL2 gene was dispensable under normal growth conditions at $50^{\circ} \mathrm{C}$ as a groEL2 disruptant was viable. This groEL2 mutant was highly sensitive to both high and low temperatures.

Key words: CIRCE, cold stress, Cpn60, GroEL, heat-shock protein, HrcA, thermophilic cyanobacterium

Footnotes

*Corresponding author. Address: Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan. Tel, +81-48-858-3403; Fax, +81-48-858-3384; Email: nakamoto@mail.saitama-u.ac.jp

1. Introduction

The genomes of many α-proteobacteria, cyanobacteria, and actinobacteria contain multiple copies of groEL [1, 2, 3, 4]. The presence of at least one groEL gene is essential $[5,6,7,8]$ because it provides the usual housekeeping chaperone functions exemplified by E. coli GroEL [9]. It is not clear what roles are fulfilled by the other groEL genes. Recently, it has been established that a non-essential groEL1 gene plays a specific role in mycolic acid biosynthesis during biofilm formation in Mycobacteria [10]. In vitro experiments have shown that the three GroEL homologues from Rhizobium leguminosarum have distinct properties, differing, for instance, in stability and refolding activities [11].

Cyanobacteria are photosynthetic prokaryotes with highly differentiated membranes called thylakoid membranes. They successfully compete with other organisms in many environments such as subzero lakes in Antarctica and hot springs. Two distinct groEL genes, designated as groEL1 and groEL2, generally exist in a cyanobacterial genome (the CyanoBase database, http://bacteria.kazusa.or.jp/cyanobase/). Interestingly, there is only one groES per genome, and one of the two groEL genes, groEL2, usually does not form an operon with the groES gene, although there are exceptions, such as the groELs from Gloeobacter violaceus PCC 7421, which is, according to phylogenetic analysis, a member of an early branching lineage (CyanoBase). This strain lacks thylakoid membranes. The Gloeobacter genome contains two groEL genes both of which have groES immediately upstream of each groEL. It appears that one of the two groESL operons has lost its groES during the evolutionary cyanobacterial diversification.

The two groEL genes in cyanobacteria such as Synechococcus vulcanus and Synechocystis sp. strain PCC 6803 are expressed to different degrees [12,13]. In silico analysis [14] indicates that negative regulation by the CIRCE operator/HrcA repressor
system [15] is generally involved in the regulation of groESL1 operon expression, while it is not involved in the control of groEL2 expression in some cyanobacteria. This is because CIRCE is not present upstream of some groEL2 genes, including the one in the thermophilic cyanobacterium Thermosynechococcus elongatus, the organism used for this study, while it is highly conserved among the groESL1 operons [14]. We showed that HrcA regulates the CIRCE-containing groE genes of the cyanobacterium Synechocystis sp. PCC 6803 negatively [16]. In addition to the negative regulation, Synechocystis groE expression is regulated by a positive, light-responsive mechanism mediated by novel DNA elements designated as K - and N -boxes [14].

Although it is unclear whether the groEL paralogs play specialized roles in cyanobacterial cells, results of complementation tests in E. coli suggest that the two paralogs are functionally different. The E. coli groEL mutant can almost be returned to wild type by complementation with the cyanobacterial groEL1 gene, but not with the groEL2 gene [12, 13, 17]. Thus, the cyanobacterial groESL1 operon may also play an essential housekeeping role, while the function of groEL2 is enigmatic. It is impossible to disrupt groESL1 of Synechococcus elongatus strain PCC 7942 [18], indicating that the operon is indispensable for the cyanobacterial growth. We hypothesized that groEL2 in cyanobacteria evolved to play a non-essential role under normal growth conditions, but become essential under stress conditions. For the present study, we tested this hypothesis, using a themophile, T. elongatus. This cyanobacterium requires high temperatures for growth. It is not known how it has adapted to high temperature during evolution. In order to test the above hypothesis, the level of expression of T. elongatus groEL2 was analyzed at high and low temperatures, and the importance of the groEL2 expression was evaluated by characterizing a newly constructed groEL2 mutant. The GroEL2 diversification may play an important role in expanding the cyanobacterial habitat range
into a hot environment.

2. Materials and methods

Organisms and culture conditions. Unless otherwise indicated, T. elongatus BP-1 cells were grown at $50^{\circ} \mathrm{C}$ under a light intensity of $50 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}$ in liquid BG-11 medium or on BG-11 plates containing $1.5 \%(\mathrm{w} / \mathrm{v})$ agar and $0.3 \%(\mathrm{w} / \mathrm{v})$ sodium thiosulfate [14]. The liquid culture was continuously illuminated and bubbled with air containing $5 \% \mathrm{CO}_{2}$ until sampling.

Northern blot analysis. Total RNA was extracted from cells as previously described [14]. Suitable fragments for the preparation of the groES- (to detect transcripts of the groESL1 bicistronic operon), groEL2-, and rnpB-specific probes for detection of the corresponding RNA from T. elongatus were amplified by polymerase chain reaction (PCR) with genomic DNA as the template and appropriate pairs of primers as listed in Table 1. For the amplification of the DNA fragments, an antisense oligonucleotide primer containing T7 RNA polymerase promoter was used (Table 1). This was directly used for the synthesis of the digoxigenin-labeled complementary RNA probe. For the preparation of the $h s p A$-specific RNA probe, a $0.9-\mathrm{kbp}$ DNA fragment containing the $S . v u l c a n u s h s p A$ gene was amplified by PCR with pBS-HSPAX [19] as a template and a pair of primers, Tel_hspA_06 and Tel_hspA_07 (Table 1). The DNA fragment was cloned into pBluescript II (Stratagene), resulting in pBS-HSPA0706. After digesting pBS-HSPA0706 with HincII, T7 RNA polymerase promoter was used for the synthesis of the digoxigenin-labeled complementary RNA probe. Northern blot analyses with the probes were performed as described previously [14].

Primer extension analysis. The 5^{\prime} '-ends of synthetic oligonucleotides (Table 1), which were complementary to a region downstream of the translational initiation codon of
groESL1 (Tel_groES_PriEx_1) and regions upstream and downstream of the translational initiation codon of groEL2 (Tel_cpn60_PriEx_1, Tel_cpn60_PriEx_2, and Tel_cpn60_PriEx_3) were labeled with $\left[\gamma-{ }^{32} \mathrm{P}\right]$ ATP and used as primers. Primer extension reactions were performed as described previously [20].

Construction of mutants. A region of the T. elongatus genome containing groEL2 was amplified by PCR with the primers Tel_cpn60_02_T7 and Tel_cpn60_-885_F (Table 1). The PCR product was cloned into pT7Blue T-vector (Novagen). The resulting plasmid DNA, pTel_cpn60, contained a unique HpaI restriction site in the coding region of the groEL2 gene. A chloramphenicol-resistant gene cassette was inserted into the restriction site in the forward direction (the same gene orientation as that of groEL2). The cassette was isolated by digesting pTCm56 [21] with HincII. The construct, pTel_cpn60::Cm, was electroporated into cells of T. elongatus to obtain transformed cells having a correctly targeted homologous recombination, and these were segregated for a few generations by single colony selection on BG-11 agar plates to isolate mutant strains [21]. Chloramphenicol ($3.4 \mu \mathrm{~g} / \mathrm{ml}$) was used for selection of transformants.

Protein extraction, SDS-PAGE, and Western blot analysis. Cells growing exponentially were harvested by centrifugation. The cell pellet was suspended in 10 mM Hepes- $\mathrm{KOH}, \mathrm{pH} 7.6$, to adjust the optical density at 730 nm to 10 . The cell suspension was mixed with an equal volume of glass beads (Sigma) and cells were disrupted by vortexing to extract soluble proteins [22]. Equal volume ($20 \mu \mathrm{l}$) of the protein extract was boiled for 3 min in a mixture containing 60 mM Tris- $\mathrm{HCl}, \mathrm{pH} 6.8,60 \mathrm{mM}$ dithiothreitol, 0.1% SDS, 0.03% bromophenol blue, and 6% sucrose and then loaded onto an 8% polyacrylamide gel in the presence of SDS. Western blot analysis was performed to detect GroEL by using anti-S. vulcanus GroEL polyclonal antibodies as probes [22].

DNA mobility shift assays. Exponentially growing cells at 40,50 , or $63^{\circ} \mathrm{C}$ in the light
were harvested by centrifugation at room temperature. All of the following procedures were carried out at $4^{\circ} \mathrm{C}$ unless stated otherwise. The cells were suspended in 0.24 g of cells $/ \mathrm{ml}$ of 10 mM Hepes- $\mathrm{KOH}, \mathrm{pH} 7.6$, and disrupted by a French press. The resulting cell extract was centrifuged again at $16,000 \mathrm{xg}$ for 20 min . The supernatant fraction was analyzed for DNA binding activity by DNA mobility shift assays. For preparation of a probe, a DNA fragment containing an upstream region of the groESL1 operon was amplified in the presence of a pair of primers, Tel_ESL1_F and Tel_ESL1_R (Table 1), by PCR. To prepare a double-stranded oligonucleotide competitor containing CIRCE, a pair of sense and anti-sense 28 -mer single-stranded oligonucleotides, CIECE_S and CIECE_A (Table 1), were mixed together in an equimolar ratio in 10 mM Tris-HCl, pH 8.0 , containing 1 mM EDTA and 100 mM NaCl , denatured at $95^{\circ} \mathrm{C}$ for 10 min , and then annealed. Assays were performed as in the previous study [23].

Construction of luciferase reporter genes fused with the promoter regions of the groEL2 gene. DNA fragments of the groEL2 promoter region were amplified by PCR with a pair of primers containing either the $B g / I I$ site or the $B s i W I$ site (Tel_cpn60_-96s_BgIII, Tel_cpn60_+38a_BsiWI, Tel_cpn60_-195s_BgIII, and Tel_cpn60_-70a_BsiWI. See Table 1). The nucleotide sequences of the promoter regions were confirmed by DNA sequencing. The PCR products were digested with $B s i \mathrm{WI}$ and $B g / I I$ and cloned into pPT6803-1 digested with the same enzymes to obtain the reporter construct pPgroEL2-luxSpr. The plasmid vector, pPT6803-1, has the promoter-less luxAB genes, the neutral site of Synechocystis sp. strain PCC 6803 (the downstream region of $n d h B$) and the spectinomycin-resistance (Spr) cassette [24]. The Synechocystis sp. PCC 6803 cells were transformed with each construct. Measurements of luminescence from cells harboring luciferase reporter genes were performed as described previously [14].

3. Results

Expression of groESL1, groEL2, and hspA at different temperatures in \boldsymbol{T}.

 elongatus. In order to determine whether groESL1 and groEL2 are differentially expressed, we performed Northern blot analysis with T. elongatus cells incubated at different temperatures. We determined the level of the groESL1, groEL2, and hspA mRNA in cells incubated at 40,50 , and $63^{\circ} \mathrm{C}$. The normal growth temperature was set to be $50^{\circ} \mathrm{C}$. The hspA gene was measured as a control heat shock gene since we have already shown that it is greatly heat-induced in this thermophilic cyanobacterium [23].As shown in Fig.1A, all these heat shock genes were induced by a shift in temperature to $63^{\circ} \mathrm{C}$. Both groEL genes were expressed at $50^{\circ} \mathrm{C}$, while the $h s p A$ gene was not. The T. elongatus groEL2 gene reached the peak of its mRNA accumulation earlier than groESL1 and $h s p A$. Thus, groEL2 may play a role in the early stage of a heat shock response.

Cold shock at $40^{\circ} \mathrm{C}$ caused accumulation of groEL2 mRNA (Fig. 1B). The cold-induction did not show a transient peak within 30 min and sustained a high level for a longer time at $40^{\circ} \mathrm{C}$ than at $63^{\circ} \mathrm{C}$. During this time period, groESL1 were not significantly expressed. The $h s p A$ mRNA was not detected at all.

This increase in the groEL2 mRNA level might have been due not only to transcriptional activation but also to stabilization of the mRNA. In order to examine whether increased transcript stability contributed to cold-shock induction of T. elongatus groEL2, the decay of the level of the groE mRNAs which had accumulated under normal conditions at $50^{\circ} \mathrm{C}$ was monitored at 40 and $50^{\circ} \mathrm{C}$, after inhibition of transcription by rifampin (Fig. 1C). Within 15 min after the addition of rifampin, the mRNA level of both groE transcripts in cells incubated at 40 and $50^{\circ} \mathrm{C}$ reduced to a non-detectable level. In fact, regardless of the incubation temperature, both groE transcripts almost disappeared within 5 \min in the presence of rifampin. These results indicate that there is no apparent change in
the stability of both groE mRNAs in response to temperature change. They also indicate that groEL2 transcription is greatly activated at $40^{\circ} \mathrm{C}$, whereas the groESL1 transcription is suppressed.

Analysis of the transcriptional regulatory regions of the groE genes. Next, we turned to the mechanisms underlying the differential expression of the two groEs, especially at low temperatures. The transcription start sites for groEs in thermophilic cyanobacteria had not previously been determined. In order to accurately identify the transcriptional start sites from which the transcription of either the groESL1 operon or the groEL2 gene takes place at 40,50 , and $63^{\circ} \mathrm{C}$, primer extension analysis with RNA from Thermosynechococcus cells incubated at various temperatures for 15 min was performed. A single and identical 5^{\prime} end was detected in the groESL1 mRNA, independent of the incubation temperature. The 5 ' end was mapped 121 bp upstream of the translational start codons (Fig. 2A). The consensus promoter sequences recognized by the E. coli major sigma factor were localized upstream of the transcriptional start site. The CIRCE element, TTAGCACTC-N9-GAGTGCTAA, overlapping the putative -10 promoter sequence was also present, just as in the case of Synechocystis and Synechococcus groESL1 [16, 25]. Although the length of the 5'-untranslated region differed between Synechocystis, Synechococcus, and Thermosynechococcus, the location of CIRCE in relation to the transcription start site (C) of the groESL1 operons was completely conserved (Fig. 2B). The transcription of groESL1 from the vegetative promoters overlapping CIRCE was clearly induced at $63^{\circ} \mathrm{C}$ (Fig. 2A).

Thus, our results strongly indicate that the transcription of groEL1 is repressed under normal growth conditions by the interaction of HrcA with CIRCE. As proposed for Bacillus subtilis [15], the groESL1 operon may be de-repressed due to the inactivation of the HrcA protein under heat stress. This explanation was supported by DNA mobility shift
assays. As shown in Fig. 2C, we detected a mobility-shift of a groESL1 probe during PAGE when the CICRE-containing groESL1 probe was mixed with the extract of cells incubated at $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$ for 15 min . There was no shift when the probe was mixed with extract of cells incubated at $63^{\circ} \mathrm{C}$. The specific binding of a protein to CIRCE was confirmed by competition assays with an unlabeled 28 -nt DNA fragment containing CIRCE. Previously, we had done similar experiments with cell extracts from Synechocystis sp. strain PCC 6803 and S. elongatus strain PCC 7942. In spite of great effort, we could not detect any mobility shift with CIRCE-containing DNA fragments [14]. Like the HrcA protein of Bacillus subtilis [26], HrcA from these mesophilic cyanobacteria may have a strong tendency to aggregate. There had thus been no direct evidence that CIRCE acts as a protein binding element in cyanobacteria. The HrcA protein from T. elongatus may be more stable than HrcA proteins from these mesophillic cyanobacteria.

In contrast to the groESL1 mRNA, two potential transcriptional start sites for groEL2 were identified, 73 - and $166-\mathrm{bp}$ upstream of its translational start codon as two 5 ' ends of the groEL2 mRNAs were detected by the primer extension analysis (Figs. 3A and 3B). The consensus promoter sequences were found to be present upstream of the two sites (Fig. 3C). The question arose whether both of these promoter sequences were functional, or if the 5 '-end of the shorter groEL2 transcript was only the result of degradation of the longer mRNA. We thus performed promoter assays, but in Synechocystis sp. strain PCC 6803 instead of Thermosynechococcus, since promoter assays in Synechocystis are well established by ample reports and since it was much easier to transform the mesophilic cyanobacterium than the thermophilic one. As shown in Fig. 4, both promoters were active and we concluded that both promoters are functional in the transcription of the Thermosynechococcus groEL2. The TS2 promoter was also active in E. coli (data not shown), which further confirms that the shorter mRNA is not the degradation product of the
longer one. We performed a gel-shift assay in order to identify a protein that binds specifically to an upstream region of groEL2. We used several probes of various lengths from +14 to -268 relative to the translational initiation site, and used extracts from various cultures. However, we could not detect any protein binding to the probes (data not shown). These negative results support the idea that the HrcA protein is not involved in the transcriptional regulation of the groEL2 gene.

Disruption of groEL2. The transcriptional activation of the groEL2 gene indicates a role of this gene under heat and cold stresses. To test whether the absence of GroEL2 would affect the performance of T. elongatus under heat and cold stress conditions, the groEL2 gene was disrupted by double crossover insertion of a chloramphenicol resistance gene cassette into the chromosome (Fig.5A). Correct integration and complete segregation of the mutation in all the copies of the genome was confirmed by PCR (Fig.5B). The results indicate that the gene is dispensable under normal growth conditions at $50^{\circ} \mathrm{C}$. This is the first report of the construction of a cyanobacterial mutant lacking a GroEL.

No difference in growth rates was observed at $50^{\circ} \mathrm{C}$ (Fig. 6A). However, the mutant cells stopped growing immediately after a shift to $62^{\circ} \mathrm{C}$ (Fig.6B). The mutant was also cold-sensitive as it stopped growing 40 h after a shift to $40^{\circ} \mathrm{C}$ (Fig. 6C). The level of GroEL2 was higher at $40^{\circ} \mathrm{C}$ in the wild type cells than at $50^{\circ} \mathrm{C}$, while GroEL2 was not detected in the mutant cells incubated at those temperatures, confirming the inactivation of the groEL2 gene in the mutant (Fig.6D). It was possible to separate GroEL2 from GroEL1 since the electrophoretic movement of the GroEL2 protein during SDS-PAGE was slower than that of the GroEL1 protein, which was confirmed by Western blot analysis using cell extract of an E. coli strain which over-expresses either S. vulcanus GroEL1 or GroEL2 (data not shown). The amino acid sequences of GroEL1 and GroEL2 of the thermophilic cyanobacterium S. vulcanus $[12,17]$ are the same as those of T. elongatus (CyanoBase).

4. Discussion

We have shown that the groEL2 gene, as well as the groESL1 operon, is heat-induced in the thermophilic cyanobacterium T. elongatus. Cold-shock induces only the groEL2 gene greatly. Our primer extension analysis and DNA mobility shift assays strongly suggest that while the groESL1 operon is regulated by the CICRE/HrcA system, the groEL2 gene is regulated by other mechanisms. The GroEL2 protein is not essential under normal growth conditions, but plays an important role under high and low temperature stresses.

An important finding of the present study is that the GroEL2 protein is required for the bacterial growth at high and low temperatures, although the GroEL1 protein is co-existing at these temperatures. As shown in Fig. 6D, the cellular level of the GroEL2 protein at $40^{\circ} \mathrm{C}$ is less than the GroEL1 protein. Thus, GroEL1 cannot substitute for GroEL1 under the stress conditions. As described above, the amino acid sequences of GroEL1 and GroEL 2 of S. vulcanus are the same as those of T. elongatus. Thus, as shown in these GroELs [12, 17], we can predict that T. elongatus GroEL1 complements the temperature-sensitive phenotype of the E. coli groEL mutant, while GroEL2 does not. In total, our results strongly indicate that the groEL2 paralog in T. elongatus has evolved unique properties to protect cells under stresses such as heat and cold stress.

In E.coli, expression of the groESL operon is suppressed in the cold, and its overproduction, while protective against high temperatures, reduces viability at $4^{\circ} \mathrm{C}$ [27]. Just like the E. coli groESL operon, expression of the T. elongatus groESL1 was suppressed in the cold, while that of the groEL2 was induced (Fig. 1B). The T. elongatus GroES/GroEL may provide housekeeping chaperone functions like the E. coli GroES/GroEL, while GroEL2 may play a specific role to acclimate to cold stress. The
increase in the GroEL2 level does not have a negative effect for the growth of T. elongatus at low temperatures.

The groEL2 genes have undergone much more divergence than the groEL1 genes in terms of regulatory elements for transcription and the deduced amino acid sequences (see Figure S2 of reference 14). The results of this study on T. elongatus indicate that GroEL2 has diversified in terms of gene expression and function to play roles under heat and cold stresses, whereas GroEL1 focuses on housekeeping more, in conjunction with GroES. The GroEL2 diversification may have an important implication in the cyanobacterial adaptation to a hot or cold environment.

5. Acknowledgements

This work was supported in part by Grant-in-Aid for Scientific Research on Priority Area (A) (No. 17053003) to HN from the Ministry of Education, Science, Sports and Culture of Japan.

6. References

[1] Mazodier, P., Guglielmi, G., Davies, J., and Thompson, C.J. (1991). Characterization of the groEL-like genes in Streptomyces albus. J Bacteriol. 173, 7382-7386.
[2] Fischer, H.M., Babst, M., Kaspar, T., Acuna, G., Arigoni, F., and Hennecke, H. (1993). One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J. 12, 2901-2912.
[3] Kong, T.H., Coates, A.R., Butcher, P.D., Hickman, C.J., and Shinnick, T.M. (1993). Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A. 90, 2608-2612.
[4] Lehel, C., Los, D., Wada, H., Gyorgyei, J., Horvath, I., Kovacs, E., Murata, N., and Vigh, L. (1993). A second groEL-like gene, organized in a groESL operon is present in the genome of Synechocystis sp. PCC 6803. J Biol Chem. 268, 1799-1804.
[5] Servant, P., Thompson, C., and Mazodier, P. (1993). Use of new Escherichia coli/Streptomyces conjugative vectors to probe the functions of the two groEL-like genes of Streptomyces albus G by gene disruption. Gene. 134, 25-32.
[6] Barreiro, C., Gonzalez-Lavado, E., Brand, S., Tauch, A., and Martin, J. F. (2005). Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. J. Bacteriol. 187, 884-889.
[7] Bittner, A.N., Foltz, A., and Oke, V. (2007). Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. J Bacteriol. 189, 1884-1889.
[8] Gould, P., Maguire, M., and Lund, P.A. (2007). Distinct mechanisms regulate
expression of the two major groEL homologues in Rhizobium leguminosarum. Arch Microbiol. 187, 1-14.
[9] Fayet, O., Ziegelhoffer, T., and Georgopoulos, C. (1989). The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol. 171, 1379-1385.
[10] Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W.R. Jr., and Hatfull, G.F. (2005). GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell. 123, 861-873.
[11] George, R., Kelly, S.M., Price, N.C., Erbse, A., Fisher, M., and Lund, P.A. (2004). Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochem Biophys Res Commun. 324, 822-828.
[12] Tanaka, N., Hiyama, T., and Nakamoto, H. (1997). Cloning, characterization and functional analysis of groESL operon from thermophilic cyanobacterium Synechococcus vulcanus. Biochim Biophys Acta. 1343, 335-348.
[13] Kovács, E., van der Vies, S.M., Glatz, A., Török, Z., Varvasovszki, V., Horváth, I., and Vígh, L. (2001). The chaperonins of Synechocystis PCC 6803 differ in heat inducibility and chaperone activity. Biochem Biophys Res Commun. 289, 908-915.
[14] Kojima, K., and Nakamoto, H. (2007). A novel light- and heat-responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria. FEBS Lett. 581, 1871-1880.
[15] Schumann, W. (2003). The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones. 8, 207-217.
[16] Nakamoto, H., Suzuki, M., and Kojima, K. (2003). Targeted inactivation of the hrcA repressor gene in cyanobacteria. FEBS Lett. 549, 57-62.
[17] Furuki, M., Tanaka, N., Hiyama, T., and Nakamoto, H. (1996). Cloning,
characterization and functional analysis of groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES. Biochim Biophys Acta. 1294, 106-110.
[18] Sato, M., Nimura-Matsune, K., Watanabe, S., Chibazakura, T., and Yoshikawa, H. (2007). Expression analysis of multiple dnaK genes in the cyanobacterium Synechococcus elongatus PCC 7942. J Bacteriol. 189, 3751-3758.
[19] Roy, S.K., and Nakamoto, H. (1998). Cloning, characterization, and transcriptional analysis of a gene encoding an alpha-crystallin-related, small heat shock protein from the thermophilic cyanobacterium Synechococcus vulcanus. J Bacteriol. 180, 3997-4001.
[20] Nakamoto, H., Tanaka, N., and Ishikawa, N. (2001). A novel heat shock protein plays an important role in thermal stress management in cyanobacteria. J Biol Chem. 276, 25088-25095.
[21] Iwai, M., Katoh, H., Katayama, M., and Ikeuchi, M. (2004). Improved genetic transformation of the thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1. Plant Cell Physiol. 45, 171-175.
[22] Roy, S.K., Hiyama, T., and Nakamoto, H. (1999). Purification and characterization of the $16-\mathrm{kDa}$ heat-shock-responsive protein from the thermophilic cyanobacterium Synechococcus vulcanus, which is an alpha-crystallin-related, small heat shock protein. Eur J Biochem. 262, 406-416.
[23] Kojima, K., and Nakamoto, H. (2002). Specific binding of a protein to a novel DNA element in the cyanobacterial small heat-shock protein gene. Biochem Biophys Res Соттип. 297, 616-624.
[24] Aoki, S., Kondo, T., and Ishiura, M. (2002). A promoter-trap vector for clock-controlled genes in the cyanobacterium Synechocystis sp. PCC 6803. J

Microbiol Methods. 49, 265-274.
[25] Webb, R., Reddy, K.J., and Sherman, L.A. (1990) Regulation and sequence of the Synechococcus sp. strain PCC 7942 groESL operon, encoding a cyanobacterial chaperonin. J Bacteriol. 172, 5079-5088.
[26] Mogk, A., Homuth, G., Scholz, C., Kim, L., Schmid, F.X., and Schumann, W. (1997). The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J. 16, 4579-4590.
[27] Kandror, O., and Goldberg, A.L. (1997). Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci U SA. 94, 4978-4981.

7. Figure legends

Fig. 1. Northern blot analyses. (A) Time course for the accumulation of the groESL1, groEL2, and hspA transcripts from T. elongatus cells after a temperature shift from $50^{\circ} \mathrm{C}$ to $63^{\circ} \mathrm{C}$ for 5,15 , and $30 \mathrm{~min} .1 .5 \mu \mathrm{~g}$ of total RNA was electrophoresed in a denaturing agarose gel. $2.8-\mathrm{kb}, 2.3-\mathrm{kb}$, and $1.3-\mathrm{kb}$ rRNAs on nylon membrane were detected by methylene blue staining, and shown as references for the amount of RNA loaded to each lane. (B) Time course for the accumulation of the groESL1, groEL2, and $h s p A$ transcripts from T. elongatus cells after a temperature shift from $50^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ for 5,15 , and 30 min . $1.5 \mu \mathrm{~g}$ of total RNA was electrophoresed in a denaturing agarose gel. The mRNA of the constitutively expressed $r n p B$ gene was used as a loading reference. (C) Effect of rifampin on the stability of the groESL1 and groEL2 mRNA in T. elongatus. Cells growing at $50^{\circ} \mathrm{C}$ were kept at either the same temperature or shifted to $40^{\circ} \mathrm{C}$ immediately after rifampin was added to a concentration of $200 \mu \mathrm{~g} / \mathrm{mL}$ (Rif +). As a control, the same volume of methanol, the solvent used to dissolve rifampin, was added instead of the rifampin solution (Rif-). RNA was isolated and analyzed at the time points shown across the top. $2.3 \mu \mathrm{~g}$ of total RNA was electrophoresed in a denaturing agarose gel. $2.8-\mathrm{kb}, 2.3-\mathrm{kb}$, and $1.3-\mathrm{kb}$ rRNAs on nylon membrane were detected by methylene blue staining, and are shown as references for the amount of RNA loaded to each lane.

Fig. 2. Mapping of the 5^{\prime}-end of the groESL1 mRNA by primer extension analysis (A), alignment of nucleotide sequences of 5^{\prime}-upstream regions of various cyanobacterial groESL1 (B), and DNA mobility shift assays to detect a protein binding to the groESL1 upstream region (C). Primer extension reactions were performed with total RNA isolated from cells before (lane 2) and after shifting from $50^{\circ} \mathrm{C}$ to either $40^{\circ} \mathrm{C}$ (lane 1) or $63^{\circ} \mathrm{C}$
(lane 3) for $15 \mathrm{~min} . \mathrm{T}, \mathrm{G}, \mathrm{C}$, and A indicate the dideoxy-sequencing ladder obtained with the same oligonucleotide as that used for the primer extension analysis and a genomic DNA containing groESL1 as a template. The arrow indicates the location of the extended product. In B, all the transcription start sites $(+1)$ in the alignment were deduced by primer extension analysis, not by in silico analysis. The pair of arrows and underlined letters indicate the location of the consensus CIRCE inverted repeat sequences and promoter sequences, respectively. The abbreviations for various species, S6803, S7942, and Telon, indicate Synechocystis sp. strain PCC 6803, Synechococcus elongatus strain PCC 7942, and Thermosynechococcus elongatus, respectively. DNA mobility shift assays were performed with 15 fmol of a DIG-labeled probe and cell extract ($150 \mu \mathrm{~g}$ protein, indicated as 'protein + ') from T. elongatus incubated at 40,50 , or $63^{\circ} \mathrm{C}$ for 15 min . C and F stand for protein/probe complex, and free probe, respectively. 'CIRCE + ' indicates the addition of a competitor DNA fragment (100 pmol) which contains the CIRCE element.

Fig. 3. Mapping of the 5^{\prime} 'end of the groEL2 mRNAs by primer extension analysis (A and B), and nucleotide sequence of 5^{\prime}-upstream region of groEL2 (C) from T. elongatus. Primer extension reactions were performed with total RNA isolated from cells before (lane 2) and after shifting from 50 to either $40^{\circ} \mathrm{C}$ (lane 1) or $63^{\circ} \mathrm{C}$ (lane 3) for $15 \mathrm{~min} . \mathrm{T}, \mathrm{G}$, C , and A indicate the dideoxy-sequencing ladder obtained with the same oligonucleotide as that used for the primer extension analysis and a genomic DNA containing groEL2 as a template. Promoter sequences are indicated as underlined letters.

Fig. 4. Detection of the groEL2 promoters by the luxAB reporter assays. (A) Constructs of PgroEL2-luxAB reporter genes. DNA fragments indicated by lines R1 to R3, were fused
to the promoter-less $l u x A B$ operon in plasmid pPT6803a. Positions are numbered relative to the translational initiation site $(+1)$ of the groEL2 gene. The transcription start sites deduced by primer extension analysis are shown as TS1 and TS2. Each strain carrying one of the PgroEL2-luxAB reporter genes was designated as EL2_R1, EL2_R2, and EL2_R3 according to the fused groEL2 region (A). (B) Levels of luminescence measured from the control Synechocystis strain with no T. elongatus DNA and strains harboring various PgroEL2-lucAB reporter genes. Each value shows means and standard deviations of at least three independent experiments.

Fig. 5. Schematic drawing showing the gene organization, restriction sites, groEL2-encoding region of the chromosomal site, and the site where a chloramphenicol-resistant gene cassette (Cm) was inserted (A) and PCR analyses using chromosomal DNAs of the wild type (WT) and of the mutant ($\triangle \mathrm{EL} 2$) of T. elongatus as a template and primers specific for the groEL2 gene in order to verify the disruption in the chromosomal DNAs of the mutant. Lane M, HindIII-cut DNA used as fragment size marker.

Fig. 6. Growth analyses of the wild type (WT) and the groEL2 mutant (\triangle EL2) of T. elongatus at $50^{\circ} \mathrm{C}(\mathrm{A}), 62^{\circ} \mathrm{C}(\mathrm{B}), 40^{\circ} \mathrm{C}(\mathrm{C})$ after a shift from $50^{\circ} \mathrm{C}$, and Western blot analysis of GroEL1 and GroEL2 using extracts of equal number of cells before or after a shift to $40^{\circ} \mathrm{C}$ for 24 h from $50^{\circ} \mathrm{C}$ (D). In the growth curves, each value of the apparent optical density at $730 \mathrm{~nm}\left(\mathrm{OD}_{730}\right)$ of a cyanobacterial culture shows the mean of 3 independent experiments with all the strains. The circle, and square symbols indicate the wild type, and the groEL2 mutant, respectively.

Primer name	Primer sequence (5' to 3')	
Tel_groES_01	Usage $^{\mathrm{b}}$	
Tel_groES_02_T7	taatacgactcactatagggCCCACAATGGCCAAGATG	groESL1_N
Tel_cpn60_01	CCAGTCGCATTGACGCAC	groEL2_N
Tel_cpn60_02_T7	taatacgactcactatagggCCCATACCGCCATTAGCG	groEL2_NM
Tel_hspA_06	AGGTGGCCTAAGCTTCATAGTT	hspA_N
Tel_hspA_07	GAAGTCCCTCGAGTGATCCTGTG	hspA_N
Rnase_P3	AGTTAGGGAGGGAGTTGC	RNase P_N
Rnase_P2_T7	taatacgactcactatagggTAAGCCGGGTTCTGTTCC	RNase P_N
Tel_groES_PriEx_1	TTCACAGTTGAAACGCTTAGAGATACG	groESL1_P
Tel_cpn60_PriEx_1	TCTTCATGAAATGCAACTAACTTTGCC	groEL2_P
Tel_cpn60_PriEx_2	TCACAATACTCTGGAGCAGTGTCTTAG	groEL2_P
Tel_cpn60_PriEx_3	TGGCAACACATCAGCAGACTTCTTAGC	groEL2_P
Tel_ESL1_F	TCGCGGTATTGCCACTACGG	groESL1_E
Tel_ESL1_R	GGGAGTGAGAGCATCCTTGG	groESL1_E
CIECE_S	TTAGCACTCGTGAGGGTGGGAGTGCTAA	groESL1_E
CIRCE_A	TTAGCACTCCCACCCTCACGAGTGCTAA	groESL1_E
Tel_cpn60_-96s_BglII	ggagaTCTGCTGATGTGTTGCCAG	groEL2_R
Tel_cpn60_+38a_BsiWI	ttcgtaCGGGATTGAGGAACTGC	groEL2_R
Tel_cpn60_-195s_BglII	tgagatcTCCTTGGCCGCTGCAAG	groEL2_R
Tel_cpn60_-70a_BsiWI	ttcgtaCGCCCATCCTGGCAACAC	groEL2_R
Tel_cpn60_-885_F	GGACGTGGAGAGGCCGTAAG	groEL2_M

Table1. Sequences of oligonucleotide primers used for probe preparation.

a. Lower-case letters and underlined lower-case letters indicate a restriction site and a T7 RNA polymerase promoter sequence, respectively.
b. The last capital letters, N, M, P, E, and R, indicate Northern blot analysis, construction of mutants, primer extension analysis, DNA mobility shift assays, and reporter assays, respectively.

Fig 1

C

A
Sequence ladder
$\begin{array}{lllllll}1 & 2 & 3 & \text { T } & \text { G } & \text { C }\end{array}$

C

B

Specie
-35
-10
+1
S6803 TGTTGCACTGGGTCAAGCAATTTAGCTAAATTAGCACTCGTGAGGTGGGAGTGCTAAACCCTCTCCC
S7942 CGTTGCCCTCCGAGAAGGCGGCCCGTACATTAGCACTCAGGTACTGGGAGTGCTAATCCATGCGGA
Telon AGTTGCGATCGCCAACCGTCTCTCGCTACATTAGCACTCGAAGGGTGAGAGTGCTAAGCCATTACCA

Fig 3

Fig 4

B

Fig 5

A

Fig 6

