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We studied the entrainment of two uncoupled detuned limit cycle oscillators subjected
to a common external white Gaussian noise. We found a novel type of entrainment behavior
for a general class of oscillators: as noise intensity increases, the phases of the two oscillators
come to be almost always locked with each other although there is no frequency locking
in the sense that the mean frequency difference remains the same as the natural frequency
difference. We also show that a common noise induces a macroscopic oscillation with no
frequency locking in a population of detuned oscillators.

§1. Introduction

Entrainment is a key mechanism for the emergence of order and coherence in a
variety of physical systems consisting of oscillatory elements. It is one of the fun-
damental themes of nonlinear physics to explore the possible types of entrainments
and clarify their fundamental properties. It is well known that a common external
periodic input may lead to entrainment between two independent slightly detuned
oscillators when their natural frequencies are in resonance with the input frequency
(e.g., see Refs. 1) and 2)). A fundamental property of this resonant entrainment
is that both frequencies and phases of the two oscillators become locked with each
other.

Recent works have shown that not only a periodic signal but also a noiselike
signal can give rise to entrainment between two independent oscillators.3)–9) Ex-
perimental evidence of this phenomenon has been found for systems as diverse as
neuronal networks,3) ecological systems4) and lasers.5) The entrainment by a noise-
like signal is nonresonant in the sense that there is no resonance relationship between
the oscillator and the noise. Therefore, we call it nonresonant entrainment. In order
to fully understand the emergence of order and coherence in the real world, it is
essential to clarify the fundamental properties of nonresonant entrainment.

The nonresonant entrainment between two independent and nondetuned oscil-
lators has been analyzed in the phase approximation of the dynamics.6)–8) It was
shown that when a weak Gaussian noise is applied, stable phase locking is achieved
and the two oscillators maintain the same mean frequency. In this sense, the behavior
is similar to that for a periodic input.

In real systems, any two oscillators will have different natural frequencies, i.e.,
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some finite value of detuning will necessarily exist. Thus, it is crucial to consider the
case of detuned oscillators. This case has been studied in Ref. 9), which also used
phase approximation: it has been shown that the nonresonant entrainment induced
by a common noise also occurs between detuned oscillators but this entrainment is
imperfect in the sense that phase slips occur intermittently. However, details of this
nonresonant entrainment in detuned oscillators have not yet been fully understood.
In particular, no discussion has been made about the frequency locking properties
of the two oscillators in Ref. 9). It is still unclear whether frequency locking occurs
as in the case of periodic driving signals when a sufficiently large noise strength is
applied. On this point, we show that as noise intensity increases, there is no frequency
locking in the sense that the mean frequency difference stays the same as the natural
frequency difference even though the phases of the two oscillators come to be almost
always locked with each other. This type of phase locking with an invariance of
frequency difference is a universal characteristic of nonresonant entrainment. We
emphasize that the invariance of frequency difference is a fundamental property of
nonresonant entrainment, which is different from that of a resonant one.

It is important to be aware of this property when investigating a population of
oscillatory systems driven by common noise. We demonstrate this with an example
of a qualitatively novel type of emergence of macroscopic order in a population of
oscillators with a distribution of frequencies. We show that a common noise induces a
macroscopic oscillation even though there is no frequency locking. Such phenomena
should be observable in experimental systems.

This paper is organized as follows. In §2, we describe a noise-driven oscilla-
tor model and present theoretical results based on phase approximation. In §3, we
show some numerical results to demonstrate our theoretical results on nonresonant
entrainment. In §4, we show numerical results concerning the emergence of macro-
scopic order in a population of oscillators. Finally, conclusions are drawn in §5.

§2. Model and theoretical analysis

Let Xi ∈ R
N be a state variable vector and consider the equation

Ẋi = F (Xi) + δF i(Xi) + G(Xi)ξ(t), i = 1, 2, (2.1)

where F is an unperturbed vector field, δF 1 and δF 2 are small deviations from it,
G is a vector function, and ξ(t) is the white Gaussian noise such that 〈ξ(t)〉 = 0
and 〈ξ(t)ξ(s)〉 = 2D δ(t− s), where 〈· · · 〉 denotes averaging over the realizations of ξ
and δ is Dirac’s delta function. We call the constant D > 0 the noise intensity. The
noise-free unperturbed system Ẋ = F (X) is assumed to have a limit cycle X0(t)
with a frequency ω. We employ the Stratonovich interpretation for Eq. (2.1).

We introduce the phase variables φi, i = 1, 2 using the unperturbed system. Let
us assume the case of weak noise, i.e., 0 < D ≪ 1, to apply the phase reduction
method. Recently, it has been shown in Ref. 10) that the noise-driven oscillator (2.1)
can be reduced into the Ito-type stochastic differential equation

φ̇i = ω + δωi(φi) +D
[

Z(φi)Z
′(φi) + Y (φi)

]

+ Z(φi)ξ(t), (2.2)
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where δωi is the frequency variation due to δF i, the prime denotes differentiation
with respect to φi, and Z is defined by Z(φ) =

(

grad
X
φ|

X=X0(φ)

)

· G(X0(φ)). By
definition, Z(φ) is a periodic function, i.e., Z(φ) = Z(φ + 2π). We assume that Z
is three times continuously differentiable and not a constant. The function Y (φ) is
also a periodic function satisfying Y (φ) = Y (φ+ 2π). An explicit functional form of
Y (φ) is not important for the present discussion and it is given in Appendix A. We
refer the readers to Ref. 10) for details of the derivation of Eq. (2.2).

We define the average δωi =
∫ 2π
0 δωi(φ)dφ/2π and can assume the case of δω1 >

δω2 without loss of generality. In the following theoretical analysis, we assume that
the detuning between the two oscillators is much smaller than unity: i.e., δω1−δω2 ≪
1. It is possible to choose D such that δω1 − δω2 ≪ D ≪ 1 under this assumption.
Note that for such a choice of D, both of the two conditions 0 < D ≪ 1 and
(δω1 − δω2)/D ≪ 1 hold. The first condition ensures the validity of the phase
approximation. Combined with the first condition, the second condition indicates
that it is valid to take the limit (δω1− δω2)/D → 0 within the phase approximation.
We will consider this limit later.

The mean frequencyΩi of the ith oscillator is defined byΩi = limT→∞

∫ T
0 φ̇i(t)dt/T.

This can be calculated by replacing the time average with the ensemble average: i.e.,
Ωi = 〈φ̇i〉. From Eq. (2.2), we have

Ωi = ω + 〈δωi(φi)〉 +D〈Z(φi)Z
′(φi) + Y (φi) 〉, (2.3)

where we used the fact 〈Z(φi)ξ(t)〉 = 〈Z(φi)〉〈ξ(t)〉 = 0 since the correlation between
φi and ξ vanishes in the Ito equation. For an arbitrary function A(φ), the en-
semble average can be calculated using the steady probability distribution Pi(φi)
for φi, which is determined by the Fokker-Planck equation for Eq. (2.2): i.e.,

〈A〉 =
∫ 2π
0 A(φ)Pi(φ)dφ. The steady distribution Pi can be obtained as Pi(φi) =

1/2π + O(σi, D/ω), where σi = max0≤φ<2π |δωi(φ)/ω|. Since δF i is small, σi is a
small parameter. Thus, we can use the approximation Pi ≃ 1/2π for a small D in
Eq. (2.3) and then obtain

Ωi ≃ ω + δωi +DY , (2.4)

where Y =
∫ 2π
0 Y (φ)dφ/2π. Since the white Gaussian noise has no characteristic

frequency, intuitively, one might expect that the noise causes no change in frequency.
However, equation (2.4) shows that it changes Ω: it depends on the sign of Y whether
Ω increases or decreases with increasing D.

The mean frequency difference is given by

Ω1 −Ω2 = δω1 − δω2, (2.5)

from Eq. (2.4). Equation (2.5) indicates that the mean frequency difference is in-
dependent of the noise intensity D and its constant value is given by the natural
frequency difference, although the mean frequency itself does change in each oscilla-
tor. The two oscillators are detuned, i.e., δω1 6= δω2. Thus, on average, the phase
difference |φ1 − φ2| increases in proportion to time t. It can be concluded that a
common white Gaussian noise does not cause frequency locking between the two
oscillators.
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We calculate the steady probability distribution of the phase difference between
the two oscillators. Let P (t, φ1, φ2) be the joint probability distribution of φ1 and
φ2. The Fokker-Planck equation corresponding to Eq. (2.2) is given by

∂P

∂t
= −

2
∑

i=1

∂

∂φi

[{

ω + δωi(φi) +DY (φi) +DZ(φi)Z
′(φi)

}

P
]

+D
2

∑

i,j=1

∂2

∂φi∂φj
[Z(φi)Z(φj)P ] . (2.6)

If we introduce the new variables ϕi, i = 1, 2 defined by ϕi = φi − ωt, Eq. (2.6) is
rewritten as

∂P̃

∂t
= −

2
∑

i=1

∂

∂ϕi

[

{

δωi(ϕi + ωt) +DY (ϕi + ωt) +DZ(ϕi + ωt)Z ′(ϕi + ωt)
}

P̃
]

+D
2

∑

i,j=1

∂2

∂ϕiϕj

[

Z(ϕi + ωt)Z(ϕj + ωt)P̃
]

, (2.7)

where P̃ (t, ϕ1, ϕ2) = P (t, ϕ1 +ωt, ϕ2 +ωt). For small D and δωi, the right-hand side
of Eq. (2.7) is small and it is expected that P̃ varies slowly with time. Therefore,
we can perform the time-averaging with respect to t over the period [0, 2π/ω]. The
time-averaged Fokker-Planck equation is obtained as

∂P̃

∂t
= −

2
∑

i=1

[

( δωi +DY )
∂P̃

∂ϕi
+DΓ (0)

∂2P̃

∂ϕ2
i

]

+ 2D
∂2

∂ϕ1ϕ2

[

Γ (ϕ1 − ϕ2)P̃
]

, (2.8)

where Γ (θ) =
∫ 2π
0 Z(φ)Z(φ+ θ)dφ/2π. Let θ and ψ be defined by θ = ϕ1 − ϕ2 and

ψ = ϕ1 + ϕ2, respectively. These two variables are related to the original phases φ1

and φ2 as θ = φ1 − φ2 and ψ = φ1 + φ2 − 2ωt. The variable θ measures the phase
difference between the two oscillators. If we change the independent variables from
(t, ϕ1, ϕ2) to (t, θ, ψ) in Eq. (2.8), we have

∂Q

∂t
= −( δω1 − δω2 )

∂Q

∂θ
− ( δω1 + δω2 )

∂Q

∂ψ
+D

∂2

∂θ2
[u(θ)Q] +D

∂2

∂ψ2
[v(θ)Q], (2.9)

where Q(t, θ, ψ) = P̃ (t, (ψ + θ)/2, (ψ − θ)/2), u(θ) = 2{Γ (0) − Γ (θ)}, and v(θ) =
2{Γ (0) + Γ (θ)}.

It is generally possible that Z has a period smaller than 2π. Since Z is not
constant, we suppose that Z(φ) = Z(φ + 2π/n), where n is a positive integer. It
can be shown that u(θ) ≥ 0 for any θ ∈ [0, 2π). The zero points sm of u are given
by sm = 2πm/n, m = 0, 1, . . . , n − 1, where s0 = 0. Equation (2.9) has the steady
solution Qs(θ) such that it is a continuous function of θ only and satisfies the two

conditions (i) Qs(θ) = Qs(θ+ 2π) and (ii)
∫ 2π
0 Qs(θ)dθ = 1. In fact, if we substitute

the form Qs(θ) into Eq. (2.9), we have

D
d

dθ
[u(θ)Qs] −

(

δω1 − δω2

)

Qs = C, (2.10)
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where C is an integration constant, which is to be determined from conditions (i)
and (ii). From Eq. (2.10), the solution Qs is obtained in each interval (sm, sm+1) as

Qs(θ) =
ε

2πu(θ)

∫ sm+1

θ
exp

[

−ε
∫ x

θ

1

u(y)
dy

]

dx, (2.11)

where ε = (δω1 − δω2)/D > 0. The right-hand side of Eq. (2.11) has singularities at
the zero points of u. The Qs for each sm is given by Qs(sm) = limθ→sm Qs(θ) = 1/2π
for any ε > 0 (Appendix B).

We consider the limit ε → 0. Note that taking this limit within the phase
approximation is valid because of the assumption δω1 − δω2 ≪ D ≪ 1. Assume
that θ ∈ (sm, sm+1), i.e., θ is an arbitrary regular point. It can be shown that
limε→0Qs(θ) = 0 holds due to the factor ε in the numerator. This implies that the
probability has to concentrate at the singular points sm, m = 0, 1, . . . , n−1 because
Qs satisfies condition (ii). Thus, Qs in the limit ε→ 0 is given by

Qs(θ) =
1

n

n−1
∑

m=0

δ(θ − sm), (2.12)

where δ is Dirac’s delta function. Equation (2.12) indicates that multiple peaks exist
if Z has a period smaller than 2π, i.e., n > 1. The existence of multiple peaks has
been pointed out in the case of nondetuned oscillators.8)

We explain how Qs converges to Eq. (2.12) as ε goes to zero. For small positive
ε, Qs has narrow and sharp peaks near θ = sm, m = 0, 1, . . . , n− 1 while Qs is close
to zero in regions other than the neighborhoods of these singular points. Let θ∗m be θ
such thatQs takes a maximum over the interval [sm, sm+1), wherem = 0, 1, . . . , n−1,
i.e., θ∗m represents the positions of the peaks of Qs. The peak position θ∗m depends on
ε. It is clear that θ∗m 6= sm for any ε > 0 since Qs(sm) = 1/2π. In fact, if θ∗m = sm,
then Qs has to be the uniform distribution Qs(θ) = 1/2π. As ε approaches zero,
the peaks of Qs become narrower and higher, and their positions θ∗m converge to the
singular points sm, m = 0, 1, . . . , n− 1 (see Figs. 1(c) and 2).

The above-mentioned profile of Qs clearly shows that the phase locking states,
where θ mod 2π ≃ sm, are achieved for a large fraction of time during the time
evolution when the noise intensity D is relatively large with respect to the natural
frequency difference δω1 − δω2. Let δ be a small positive constant and Uδ be the
δ-neighborhood defined by Uδ = ∪n−1

m=0(sm − δ, sm + δ), where mod 2π is taken for
s0 − δ. We identify the phase locking state by the condition θ ∈ Uδ. As shown in
Eq. (2.5), the present entrainment is not characterized by the coincidence of the
mean frequencies of the two oscillators. Therefore, as a measure of entrainment, we
introduce the phase locking time ratio µ defined by

µ = lim
T→∞

TL

T
, (2.13)

where TL represents the total time length for which θ ∈ Uδ happens during the
period T . This ratio can also be expressed in terms of Qs by µ =

∫

Uδ
Qs(θ)dθ, where
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the integral is taken over the set Uδ. Equation (2.12) shows that µ→ 1 in the limit
ε = (δω1 − δω2)/D → 0.

A phase locking state cannot continue for the infinite time but phase slips have
to happen because Ω1 6= Ω2. Equation (2.5) has shown that Ω1 − Ω2 is constant.
This implies that the average number of phase slips, which happen in a unit time
interval, does not decrease with increasing D but is constant. In other words, the
average inter-phase-slip interval is constant. On the other hand, the probability
for θ /∈ Uδ decreases and converges to zero as D increases: the phases come to be
almost always locked with each other. These two facts imply that the time needed
for one phase slip decreases and converges to zero as D increases, i.e., the velocity
θ̇ during a phase slip motion increases. We emphasize that the almost-always phase
locking with the invariance of mean frequency difference is an essential feature of the
nonresonant entrainment in detuned oscillators. This property is very different from
that of resonant entrainment by a periodic signal, where the average inter-phase-slip
interval diverges and the mean frequencies become identical to each other as the
signal intensity approaches the threshold for entrainment.

§3. Numerical examples

In order to demonstrate the above analytical results, we show numerical results
for an example described by the Ito stochastic differential equations

φ̇i = ωi +D sin(φi) cos(φi) + sin(φi) ξ(t), i = 1, 2, (3.1)

where ωi, i = 1, 2 are slightly different constants. This corresponds to the case
Z = sinφi, Y = 0 in Eq. (2.2).

Figure 1(a) shows the mean frequency difference ∆Ω = Ω1 − Ω2 plotted as a
function of D, where ω1 = 1 and five different values of ω2 are employed. Except in
the case ω1 = ω2 = 1, ∆Ω is not zero. It is clearly shown that ∆Ω is independent of
D and takes a constant value, which equals the natural frequency difference ω1−ω2.
This coincides with the analytical result of Eq. (2.5) .

The time evolution of the phase difference θ = φ1−φ2 is shown for three different
values of D in Fig. 1(b), where ω1 = 1 and ω2 = 0.98. These results clearly show
that the phases are locked near θ ≃ 2πn, n ∈ Z and phase slips occur intermittently.
It should be noted that the time needed for a single phase slip becomes shorter as
D increases, in other words, θ̇ during the phase slip motion becomes larger. This
observation is in agreement with the analytical result.

The numerically obtained distribution Qs(θ) is shown in Fig. 1(c) for three
different values of D, where ω1 = 1 and ω2 = 0.98. The analytical results of Eq.
(2.11) are also shown for the corresponding values of ε = (ω1 − ω2)/D. A good
agreement between them is confirmed. It is seen that Qs is close to the uniform
distribution for small D or large ε. In contrast, the distribution has a sharp peak
near θ = 0 for a large D or a small ε. The peak in Qs becomes narrower and higher
and its position approaches θ = 0 as D increases. It is also seen that the peak is not
centered at θ = 0 but is shifted to the positive direction, i.e., the phase φ1 of the
larger-natural-frequency oscillator is kept advanced with respect to φ2 even in the
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Fig. 1. Entrainment in phase model (3.1): (a) mean frequency difference ∆Ω vs D, (b) time

evolution of phase difference θ = φ1 − φ2, (c) probability distribution Qs(θ) for D =

0.02 (×), 0.05 (•), and 0.1 (◦), where analytical results are shown by solid line, and (d) dis-

tribution of inter-phase-slip interval for D = 0.2 with reference line for Pτ (τ) = λ exp[−λτ ],

λ = (ω1 − ω2)/2π. The inset in (c) shows µ plotted against D, which is obtained for δ = π/4.

In (b)-(d), ω1 = 1 and ω2 = 0.98.

phase locking state. The inset of Fig. 1(c) shows that the phase locking time ratio
µ monotonically increases and approaches unity with increasing D, where the size δ
of the neighborhood Uδ is δ = π/4. Figure 1(c) clearly demonstrates that the phases
are locked for a larger fraction of the time as D increases.

Figure 1(d) shows the probability distribution Pτ of the inter-phase-slip interval
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Fig. 2. Entrainment in SL oscillators with G = (−1, 0). Probability distribution Qs(θ) is shown

for D = 0.02 (×), 0.05 (•), and 0.1 (◦), where analytical results are shown by solid line. The

inset shows ∆Ω vs D. (α1, β1) = (1, 0) and (α2, β2) = (0.98, 0).

τ . The result is well described by the exponential distribution Pτ (τ) = λ exp[−λτ ],
where λ = (ω1 − ω2)/2π. The exponential distribution with the same λ has been
observed for different D values. The agreement becomes better as D increases.

In order to validate the theory based on the phase reduction method, we carried
out numerical experiments on the Stuart-Landau (SL) oscillator

ẋi = xi − αiyi − (x2
i + y2

i )(xi − βiyi) +Gxξ(t), (3.2)

ẏi = αixi + yi − (x2
i + y2

i )(βixi + yi) +Gyξ(t), (3.3)

where αi and βi are constants, G = (Gx, Gy) is a vector function of (xi, yi), and i =
1, 2. The natural frequency is given by ωi = αi−βi. The Stratonovich interpretation
is employed for Eqs. (3.2) and (3.3).

We assume the case G = (−1, 0), in which the SL oscillator is reduced to the
Ito type phase model φ̇i = ωi +D sin(2φi) + sin(φi)ξ(t). In Fig. 2, the numerically
obtained Qs(θ) is shown for three different values of D, where (α1, β1) = (1, 0) and
(α2, β2) = (0.98, 0), i.e., ω1 = 1 and ω2 = 0.98. The analytical results obtained
from the phase model are also shown. A sharp peak of Qs appears near θ = 0. It
approaches θ = 0 and becomes narrower and higher as D increases. The agreement
between the numerical and analytical results is excellent, particularly in the small
D region, where the phase reduction method gives a good approximation. The inset
shows the mean frequency difference∆Ω = Ω1−Ω2 plotted againstD. It is clear that
∆Ω does not depend on D and its constant value is given by ω1 − ω2. The almost-
always phase locking with the invariance of mean frequency difference is clearly
confirmed. This also agrees with the theory based on the phase approximation. The
agreements in the behaviors of Qs and ∆Ω validate the theory based on the phase
model.
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Fig. 3. Order parameter |M̄ | vs D for SL oscillators with (a) G = (−1, 0) and (b) G = (xi, 0).

Analytical estimation given by Eq. (4.3) is shown by solid line. The inset shows the frequency

distribution ρ for D = 0 (◦) and 0.2 (•). The parameters are ω0 = 1, σ = 0.01, and N = 1000.

§4. Emergence of macroscopic rhythm

A common noise can induce macroscopic oscillation in a population of detuned
oscillators. As examples, we employ N noise-driven SL oscillators of the form (3.2)
and (3.3) with two different Gs. The first example is G = (−1, 0) with the parameters
αi = 1 and different βi. The second one is G = (xi, 0) with the parameters αi = 2 and
different βi. In both the examples, the natural frequencies ωi = αi−βi are distributed
according to the Gaussian distribution g(ω) = exp[−(ω − ω0)

2/2σ2]/
√

2πσ, where
ω0 = 1 and σ = 0.01.

In order to measure macroscopic oscillation, we introduce an order parameter.
Consider a noise-driven SL oscillator having the natural natural frequency ω0 and
denote its phase variable by φ0. We employ this oscillator as a reference. Let
θi, i = 1, . . . , N be defined by θi = φi −φ0, which measures the deviation of φi from
the reference oscillator’s phase φ0. As mentioned in §2, there is the possibility that
an entrainment state consisting of n clusters appears, where n is the number of zero
points of u(θ). Taking into account this possibility, we define the order parameter
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M as

M =
1

N

N
∑

i=1

exp[ inθi ], (4.1)

where n = 1 for the first example and n = 2 for the second one. If the phases evolve
collectively, |M | takes a value close to unity.

We numerically computed the time average M̄ of the order parameter. Figures
3(a) and (b) show |M̄ | plotted against D for the first example G = (−1, 0) and the
second example G = (xi, 0), respectively. It is shown that |M̄ | increases and becomes
close to unity as D increases, indicating the emergence of macroscopic oscillation.
In the inset of each figure, the mean frequency distribution ρ(Ω) is shown for D = 0
and 0.2. In the case of D = 0, ρ coincides with the natural frequency distribution g.
In both the examples, the profile of ρ is preserved as D increases although its center
shifts to the smaller Ω direction in Fig. 3(b). This center shift is due to the term
DY in Eq. (2.4). It can be shown that Y = 0 for the first example and Y = −1/4 for
the second example. Since Y = 0, no apparent center shift is observed in Fig. 3(a),
where a slight center shift may be due to a higher order effect in D. In Fig. 3(b), the
center shift is clearly observed and the amount of the center shift is about −0.05,
which coincides with the theoretical value DY = −0.05. We emphasize that this
preservation of ρ profile is a characteristic of the nonresonant entrainment, which is
different from the periodic signal case, where the frequency locking occurs.

We calculate the order parameter using the phase approximation theory in §2
and compare it with the numerical results. If we replace the time average of M by
the ensemble average, we can calculate M̄ as

M̄ =

∫ 2π

0
dθ1 . . .

∫ 2π

0
dθN

(

1

N

N
∑

i=1

einθi

)

Ps(θ1, . . . , θN ), (4.2)

where Ps(θ1, . . . , θN ) is the steady joint distribution of θi, i = 1, . . . , N . Although
these variables θi, i = 1, . . . , N are generally not independent, we employ the ap-
proximation Ps(θ1, . . . , θN ) ≃ ∏N

i=1Qs(θi; εi), where Qs is the two-body steady dis-
tribution given by Eq. (2.11) and we indicated that it depends on the parameter
εi = (ωi − ω0)/D. If we use this approximation and consider the limit N → +∞ in
Eq. (4.2), we have

M̄ =

∫ +∞

−∞

dω

∫ 2π

0
dθ einθQs(θ; ε(ω))g(ω), (4.3)

where ε = (ω − ω0)/D. In Figs. 3(a) and (b), |M̄ | computed by using Eq. (4.3)
is shown by a solid line. This theoretical estimation is in good agreement with the
numerical results in both examples. The slight discrepancies may be due to the
approximation by the two-body steady distribution and phase approximation.

§5. Conclusions

In conclusion, we studied the nonresonant entrainment of two detuned limit cy-
cle oscillators subjected to a common external white Gaussian noise. We showed
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that their phases come to be almost always locked with each other as noise intensity
increases even though no frequency locking occurs in the sense that the mean fre-
quency difference remains identical to the natural frequency difference. Moreover, it
has been shown that common noise can induce a macroscopic oscillation in a popula-
tion of detuned oscillators without changing the frequency distribution profile except
for a constant center shift.
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Appendix A

Functional Form of Y (φ)

Consider the noise-driven oscillator

Ẋ = F (X) + G(X)ξ(t), (A.1)

which is Eq. (2.1) with δF i = 0. The phase coordinate φ can be defined using
the unperturbed system Ẋ = F (X) in a neighbourhood U of the limit cycle X0

in phase space. We can define the other N − 1 coordinates r = (r1, . . . , rN−1) such
that det ∂(φ, r)/∂X 6= 0 in U . We assume that r = a on the limit cycle, where a =
(a1, . . . , aN−1) is a constant vector. If we perform the transformation (x1, . . . , xN ) 7→
(φ, r1, . . . , rN−1), Eq. (A.1) is rewritten into the Stratonovich stochastic differential
equations

φ̇ = ω + h(φ, r)ξ(t), (A.2)

ṙj = fj(φ, r) + gj(φ, r)ξ(t), (A.3)

where j = 1, . . . , N−1. The functions h, fj , and gj are defined as h(φ, r) = (grad
X
φ)·

G(X(φ, r)), fj(φ, r) = (grad
X
rj) · F (X(φ, r)), gj(φ, r) = (grad

X
rj) · G(X(φ, r)),

where the gradients are evaluated at the point X(φ, r). These functions h, fj , and
gj are 2π-periodic with respect to φ. The functions Z(φ) and Y (φ) in Eq. (2.2) are
given in the (φ, r) coordinates as

Z(φ) = h(φ,a), Y (φ) =
N−1
∑

j=1

∂h(φ,a)

∂rj
gj(φ,a). (A.4)

Since h and gj are 2π-periodic, Z(φ) and Y (φ) are also 2π-periodic: Z(φ+2π) = Z(φ)
and Y (φ + 2π) = Y (φ). When the term δF i exists, only ω and fj are modified in
Eqs. (A.2) and (A.3), while h and gj do not change. Therefore, Z(φ) and Y (φ) are
also the same in the case of δF i 6= 0.
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Appendix B

Proof of limθ→sm Qs(θ) = 1/2π

For simplicity, we assume the case n = 1 and show the outline of the proof of
limθ→0Qs(θ) = 1/2π. In this case, Qs is given by

Qs(θ) =
ε

2πu(θ)

∫ 2π

θ
exp

[

−ε
∫ x

θ

1

u(y)
dy

]

dx. (B.1)

If we introduce the new integration variables s = x−θ and t = y−θ, then Eq. (B.1)
is rewritten as

Qs(θ) =
ε

2πu(θ)

∫ 2π−θ

0
exp

[

−ε
∫ s

0

1

u(θ + t)
dt

]

ds. (B.2)

Assume θ ≃ 0 and recall the facts that u(θ) ≥ 0 and u(0) = 0. When θ ≃ 0 and
t is small, 1/u(θ + t) ≫ 1 holds. Thus, the integrand exp[−ε

∫ s
0 1/u(θ + t)dt] is a

rapidly decreasing function of s. Because of this fact, it can be proved that, in Eq.
(B.2), the dominant contribution to the integral comes from the interval s ∈ [0, θ3/2].
Therefore, we can obtain

Qs(θ) ≃
ε

2πu(θ)

∫ θ3/2

0
exp

[

−ε
∫ s

0

1

u(θ)
{1 +R(t)} dt

]

ds, (B.3)

where we expanded 1/u(θ + t) with respect to t. The term R(t) is given by R(t) =
−u(θ)(u′(η)/u(η)2) · t, where θ ≤ η ≤ θ + t and η depends on t. We estimate the
order of R(t). The function u(θ) can be expanded as u(θ) = (u′′(0)/2) θ2 + o(θ2),

where u′′(0) =
∫ 2π
0 {Z ′(φ)}2dφ/2π 6= 0 whenever Z(φ) is not a constant. As for η,

we can use the evaluation η = θ since η ∈ [θ, θ + θ3/2]. In addition, note that t is at
most t = θ3/2. If we use the expansion of u and the estimations η = θ and t = θ3/2,
then we have R(t) = O(θ1/2). Therefore, the term R(t) is negligible in taking the
limit θ → 0. We remark that this fact can be proved, however, only we have roughly
explained it. If we neglect the term R(t), we arrive at

lim
θ→0

Qs(θ) = lim
θ→0

ε

2πu(θ)

∫ θ3/2

0
exp

[

− ε

u(θ)
s
]

ds, (B.4)

= lim
θ→0

1

2π

(

1 − exp
[

− ε

u(θ)
θ3/2

]

)

, (B.5)

=
1

2π
, (B.6)

where we used u(θ) = (u′′(0)/2) θ2 + o(θ2) in the last equality.
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