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Abstract
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gauge in the Green-Schwarz formalism.
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1. Introduction

The construction and the quantization of the superstring theory in anti de Sit-
ter (AdS) spacetime have been an important subject since the original AdS/CFT
correspondence [1, 2, 3] was proposed. Metsaev and Tseytlin [4] constructed the
Green-Schwarz type action of the type IIB superstring in AdS; x S as a sigma
model with a coset target space PSU(2,2[4)/[SO(4,1) x SO(5)]. Then the light-
cone gauge-fixing of x transformations and reparametrizations on the worldsheet
were discussed in refs. [5, 6].

In this paper we discuss a global symmetry of the type IIB superstring in AdSs x
S5 by using a group theoretical method. The symmetry is represented by the super-
group PSU(2,2|4). We use the worldsheet action of ref. [5], where the x symmetry
is fixed by the light-cone gauge. We obtain explicit forms of the transformation
laws for the symmetry PSU(2,2|4) in the light-cone gauge. The transformation laws
we obtain will be useful in constructing the Noether charges for this symmetry [6].
They are also useful in finding consistent truncations of the theory, which are needed

in some recent investigations of the gauge/string correspondence [7, 8, 9, 10].

2. IIB superstring in AdS; x S°

The type IIB superstring in AdS; x S® can be described [4] as a sigma model
with a target space PSU(2,2|4)/[SO(4,1) x SO(5)]. The supergroup PSU(2,2|4)
contains a bosonic subgroup SO(4,2) x SO(6), which is the isometry of AdS; x S°.
Its generators are

Tf — Pa,Jab,D,Ka,Jij,Qii,Sii, (1)

where P?, J% D, K are SO(4,2) generators, J'; are SU(4) ~ SO(6) generators, and
Q*, S* are fermionic generators. Here, a,b,--- = 0,1,2,3 and 4,j,--- = 1,2,3,4
denote SO(3,1) and SU(4) indices. The (anti-)commutation relations of these gen-
erators are given in ref. [5], whose conventions we use throughout this paper. The
generators of the subalgebra SO(4,1) x SO(5) are

A 1 1 D/ 1 /2 >7ANN .
Jab7 J4a = K%+ §Pa’ JAB — _5(,YAB )]it]zj7 (2)



where A', B’ = 1,2,3,4,5 are SO(5) indices and 44" are SO(5) gamma matrices. We

use the light-cone coordinates 2+ = %(%3 +£1°), v = J5(a +ia?), T = S5 (2! —ia?)

and define P = P*, P=P® K = K*, K = K*.
We choose a representative of the coset space PSU(2,2/4)/[SO(4,1) x SO(5)] as
G = exp(z*P") exp(07'Q; + 60, QT +07'Q; +0;Q ")
x exp(n 'S+ ST+ ST + ST exp(¢D)
1 X ’ N .
<exp (i ()5 3
where 0 = (07, n¥ = (n™), QFf = (Q*)f, SF = (S*)T. The variables z¢, ¢,
yA, 6 n* are coordinates of the coset space. We then fix the £ symmetry by the
light-cone gauge condition [5]
9+i — n+i =0 (4)
and put 0~ = 0%, n~' = yi for simplicity. The left-invariant Cartan one-forms L
are defined by

GG = L'T!
1 . ) ,
= Lp"P* + iLabJab +LpD + Lg"K* + L;J'; + Ly'QF + Lo, Q™
+LEQr + L&Q " + Lg'S; + L ST + LE'S; + LS. (5)

Using the explicit forms of the Cartan one-forms the world-sheet action in the light-

cone gauge was obtained in ref. [5].

3. PSU(2,2|4) transformations

According to the general theory of the nonlinear realization [11, 12] the PSU(2, 2|4)

transformation of the representative (3) is
G — G =gGh™\(g), (6)

where g is an arbitrary element of PSU(2,2|4), and h(g) is a compensating SO(4,1)
x SO(5) transformation which is chosen such that G’ has a form in eq. (3). After
the light-cone gauge fixing of the k symmetry (4) we also need a compensating x
transformation. An infinitesimal PSU(2,2|4) transformation is thus written as

G 16G = GG — o(e) + G14,,G, (7)
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where € is an arbitrary element of the PSU(2,2[4) algebra
€= &P+ §A“bJ“b +AD + K+ 07+ e Qf + QT
+eQ; + 6/ QT+ 7S + 87 ST+ TS + BFST (8)
and o(e) is a compensating SO(4,1) x SO(5) transformation
1 Ing g = 1 18> /!
0_(6):iAabJab_i_SaJlla_{_i@ABJAB. (9)

The last term in eq. (7) is a compensating x transformation. The parameters 5\“”,

éa, 94B" and those of the k transformation depend on e.

The general x transformation has a form [4]
G16.G = ky'Qf + RgQT + RE'Qr + 74,Q7
+Rg ST+ Rg ST+ REST + +REST 4+ (J®, JAP terms).  (10)

The coefficients in the present convention are given by

RQ—2Z{L+ —i—L“"“Jﬂ—i-zL‘l“JrZ L”A,(*yA

)ity
{

/%gzz_zz[QL Kty +2LII~‘+Z+ZL4W+L -
Fg' = —2i [2L - ‘“” — QL”%Qf +2'L” [CA (v "j/igfj} ; (11)

where 1 = 0,1 is a world index on the worldsheet and /@féﬂ, ngﬂ on the right-
hand sides are independent transformation parameters. The Lu , Lu , LMAI are the

pullbacks of the following one-forms to the worldsheet

- 1 « , 1 o
LY = LaP — 5[/%(, L4 = —LD, LA = —52(/}/‘4 )Z]I/JZ (12)
For a general variation of the variables X = (29, ¢, y, 6, n') the variation of
G in eq. (3) is given by
G716G = 6XMLy T
= 52t PT +¢€?

dx~ — ;i(@idﬁi +0;00")| P* + e?6xP + e?6zP

1 1
fe? [4( a0t 4 i o+ o )} Kt + 66D
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—1\i o i~ 1 i . 1 —~1 i
+ [(5UU N i (77 nj — 47125]') 5x+} i+ ez (50 + 7] §m> QF
+e37 (00, — i7,67) Q"' — e oxt Q) + ierioxt Q!
1 —~1 1 . 1 -~ 1 .
+e2? ((577 - 2@'772771(5:15*) St 4+ em2? (5171. — 2in2ﬁi5x+) St (13)
where we have used the explicit forms of the Cartan one-form in the light-cone gauge

given in ref. [5]. U'; is the SU(4) matrix determined by the coordinates y*

lyl
2 Y

U = cos |g| + iy n? sin

(14)
where |y> = y¥y?, Y = ¢4 /Jy|, and " = U%;67, 6, = 6;(U~')7;, etc. The com-
pensating transformations in eq. (7) are chosen such that the total transformation
(7) has this form.

We are now ready to obtain explicit forms of the PSU(2,2|4) transformations.
We first compute the first term in eq. (7). Useful formulae to do this are listed in
Appendix. Then, we choose compensating transformations in the second and the
third terms such that the total transformations take the form in eq. (13). Com-
paring the results of these computations and eq. (13) we obtain the PSU(2,2|4)
transformations of the variables X ™.

The transformations for P*, D, Jt—, J+t= J*= JAB" and Q* do not need com-
pensating k transformations and are easy to obtain. They were already given in ref.
[6]. We give them here for completeness.

e P transformations:

drt =&, d(others) = 0. (15)
e D transformations:

, . 1 . o1
da" = —Az®, dp=A, (U'0U); =0, 60" = —g A0, o' = Ay (16)

e JT~ transformations:
bzt = —X"Tat, sz =N"TTrT, Sx=0¢=(U'SU),; =0,
) 1 ) ) 1 )
501 = AR, by = AT (17)
2 2
e J and JT® transformations:

dx” = N"Tx+ N\, dr = —\""z7, d(others) = 0. (18)



e J*T transformations:
_ . 1 - . . 1 - .
dr = A"z, 00" = —5)\””91, on' = 5)\” ‘. O(others) = 0. (19)
e J'; transformations:

0t =0p =0, 80" =—vi 00, on =iy,
1

(UU); = o' + Z@A’B’(U—wf“’B’U)ij. (20)
e Q™ and Q; transformations:
1 1 ‘ ,
ox~ = 52’6{91 + 52’6"@, 00" = e, d(others) = 0. (21)

The transformations for K+ do not need a compensating x transformation either.

e KT transformations:

1 1
ox® = (" (x*x“ — 5% L 2€2¢77a+> , ¢ = —(C a™,
on' = —Catn’, d(others) = 0. (22)

The compensating SO(5) transformation with the parameter 45" in eq. (20) is not
yet fixed. We will determine it and obtain the PSU(2,2[4) transformation of the
independent variables y" in sect. 4.

Other transformations need compensating x transformations and are more in-
volved.

e J % and J~* transformations:
St = ATTx 4+ X"z,
— 1. 3¢/ ip— ~A—i 1. —Lo/pin— ~A—i
dr~ = e (n'Rg; +mikg") + gle? (0'kg; + 0ikg")
1 . iy
_1i672¢>()\+x0inz+)\+mezm)n2’
dr = =\ (93_ — 12'92 + 1i6_2¢772> ;
2 4

1 .y .
56 = —5 (N7, = X0y

. — . . 1 ! ! / ! y
(UTSU)'; = X0 + AT40;m" — (trace part) + ZGA B(u—y By,
00" = 6_%(15/%652 — 1)\”6_2‘1)77277’,
B e%(bl%gz + 5)\4—1‘772‘92 + )\-i—xejn]nz’ (23)
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where we have defined
Ry = (UTGRG, RS = (USRS (24)

To obtain the form (13) we need to choose the parameters of the x transformation
as
R = ATesdgl, kg = ATTem a0y, (25)

As we will see in sect. 4 /%éi, k3" in the transformation (23) are determined from
these conditions. Similarly, we obtain other transformations and conditions on the
parameters of the s transformations as follows.

e K and K transformations:

dxt = (Cx+(x)a’,
1 , . 1 . A
St~ = Zi@—%%n%gi +nikg") + iie_%(b(ezl%éi + 0ikg')
- 1 1 1 _ .
+(x (x + 2i92) + ¢z (a: — 2i92) + Zi672¢$+(wlm — "),
or = fxz — (o™ (:v_ — 1i02> — 1{6_2(75 (1 + 1@':17+n2>
2 2 2 ’
= I S i
dp = —(Cx +(T) — §$+(C9 ni — COimn'),
. — . . 1 I »Y4 =% o
(U0 = 27(CO'n; + ¢ 9;m') — (trace part) + Z&A B(u—yAB Uy,

4 s T P |y i
00" = e 2%k + (Co + CT)O + Fice 2¢ (1 + 2m+n2) ',

) ) _ 1 S o
o' = e2®Rg 4+ iC (1 — 2z':c+772> 0" — Can' + Cxr o', (26)
R = e Catl, R = et (27)

e K~ transformations:

1 1
St = (¢t (x:c+ —gTT - 262¢) ,

1. 1, PR DU PO L B 1
Gu” = (e By + Oikg) + e (R + k) + (27)° = (6%

1 ) 1 ) ) 1
+oe 0 mbm’ + e n* (w0’ + 26'm;) + 6_4¢("2)2}’

16
1 1 < 1
(x — 2i92> T+ e (Hzm - ian)

_ t
oz =¢ 2 2

)




dp = (" <—$_ - §$9i77Z + 2$9177i> ;

(UT1U); = =it (926’]- +ixn'd; —izf'n; — 2€2¢>nznj> — (trace part)
1 1/ 'R/ ;
+16A B (U_l"}/A B U)lj,
i + | —2hp—i A 1~—2¢ j [ AR
00" = (" e %Ry + (@ —528 9—526 977]““5”77 n'l,
. R R B Z.
oyt = (* |e?igl + W07 (0" +ian') — 5:1:7729 + e 2¢77277] ,
) . 1 ) ) . .
ko =(C" <—xe§¢9’ + 2i6_3¢172) , ke = (te 2% (HZ + ixn’) .
e Q7' and Q; transformations:
szt =0, dx = ief 0", 0p = —§(efn’ — ey,
_ 1 Lo rpia— ~—i 1 30/ in— ~—i
dr~ = gie? (0"Rgi + Oikg') + ri (N'Rgi+nikg")
1 . .
+§i6_2¢’l72(€?_771 + €+Z77i>a

. . - 1 1! 1/ 5
(U10U)'; = —(efn’ + €"'n;) — (trace part) + ZQN)A B (U—44 By,

. 1 ~_ 3 . l ~_ 4 . . 1 .
00" = e_i‘i’sz, on' = 62‘%51 — eyt — 57726—“,
i 1o 44 i
kG = —e2%et ke =0.

e ST and S} transformations:

(5ZE+ = O, or = [E+5i_917 (5¢ = 52‘7;4_(61_772 + ﬁ_lni),
— 1 i —ips— N 1 —Lpa—i . —i

dr~ = 529 (e72%hg; — 120 ) + izei(e 2Ry’ +ixB7")
1 - 1

+—ie”2n’ {eé%%gi - (1 — 2ix+772> 6[}

: e%‘ﬁ/%gZ - (1 + 2ix+772) B

?

. ) - 4 —i 1~ ! _ '/ 7
(UT'6U)'; = ia™ (B’ — B~'n;) — (trace part) + —oM B (U B Y,

4
00" = e 20k —ixf,

8
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Rt = —iates?pT i =0 (33)
e S~%and S; transformations:

szt =0, Sx = 236" + 26 3,

Lo 840 e N U Py i
ow” = e ('R, + miks') + 5t 2 (0" + 0ikq)

1 . 1 . i i i 1 . ] 7
—l—zze 2¢ KQj — 2mnj) B — <99 + 22xn]> 7]j5+z'77

1/ 1., +'i_1( 1.2) +ig

by (27— 5i62) 507 = 5 (a7 + 5i6*) 576,
1 . . 1 ..

0¢ = =581 (0" —iwn’) + 5 B%(0: + izmy),

. . . . 1 ! '/ ;
(UT16U)'; = B (0" +ian') + (0, — izn;) — (trace part) + Zf)A B(U—yYB U,

A A A 1 S
00" = e %o + BHOG 4 (w — 2@02> g+ 3¢ 225
i Loa_y i i . i 1 . 1 7
o' = e2%Rg' + BT (0 +ian') — <9j - 2W7j> BT, (34)
Ry = —imeBt, g = —eh0pT (35)

4. Compensating SO(5) and « transformations

Here we fix the compensating SO(5) and « transformations left undetermined
above. Let us first consider the SO(5) transformations. The PSU(2,2|4) transfor-
mations of U obtained in egs. (20), (23), (26), (28), (30), (32), (34) have a form

— 1~I/ _ 1!
(ULU)Y; = o i+ 70 B (U P, (36)

where v’} is a given function of the variables X* and the transformation parameters,
and 4P’ represents a compensating SO(5) transformation. On the other hand, a

variation of the independent variables y4’ in eq. (14) gives

’ ! / ]_ / ! !/ / !
U- 16U—2 O S“|fl||y| AA (FAB A B 5y B
+i gin? |y|,yA’B/ A’5 B (37)
lyl 2



We choose the compensating SO(5) transformations such that eq. (36) has the form
(37). Decomposing v'; in eq. (36) as

. 1 / N 1 2% 'B'\i
Z'=§WA(VA)J‘—1UAB(7AB)J' (38)

v

we find that 4% and the PSU(2,2|4) transformations of 4" are given by

74P = AP 4 2tan |g|n[A/vB/],
Sy = oA Y 4 AP || (5,4'3’ _nA’nB’) B (39)
tan [y

Next, we shall obtain &g’, &' from the conditions on &', %" in egs. (25), (27),
(29), (31), (33), (35), which we write as

ke =Tt kY =1L (40)

From eq. (11) these conditions are satisfied if we choose the independent & transfor-

mation parameters as

1. 1.7 , ,
n—1 . Q p—i _ +. '8 ptto o ptt
Kl — i, Ko = Si=", ks =rg =0, (41)
4 L+ 8 L,*

where p = +, — are indices of the world-sheet light-cone coordinates. Substituting

these equations into &g, &g’ in eq. (11) we obtain

figh = 1 ( Oz | O ) TH+ Lie—o < 0:9 | 09 ) T

2\ 0zt O_xt 4 Jyxt O at

1 LA LA b
Pes (B ) oy

4 Oyxt  O_x™t
s 1fox 0w\, 1. (06 0.0,
s T Ty <8+x+ * 63:*) st 2'° <8+x+ - o o+ ]7e
1 L A’ L_A/ L
_ =9 + A'Ni
7€ <n6‘+x+ + 8_:p+> (v*)'570, (42)

where we have used the explicit forms of eq. (12) given in ref. [5]

_i/“+ = e(baﬂx—i_, _fj#x = 6458#% f/p,4 - - #¢7
) 1 . . . 1 ~
L = =iV [@UU i (70— ) | (4
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Using these &7 ’s in egs. (23), (26), (28), (30), (32), (34) we obtain explicit transfor-

mation laws.

From eq. (30) we see that the @~ transformation of 2" vanishes. This means in
particular that the commutator of two (Q~ transformations is zero on z*, which at
first sight looks inconsistent with the PSU(2,2|4) algebra

(@@ ) =iPs. (44)

This apparent inconsistency can be resolved as follows. Since we have not fixed
a gauge for reparametrizations on the worldsheet, the commutator algebra closes
up to a reparametrization. From egs. (30), (31), (42) the commutator of two @~
transformations on z, which should vanish according to the PSU(2, 2|4) algebra (44),

becomes
[Bo- (), 0g-(€3))w = (§7 04 + £70-)x, (45)
where ]
& = o ileel - i) (46)

This is a reparametrization with the parameters £*. As the reparametrization of z*
with these parameters is

(70, + &0 )2t =i(egef’ — efies”), (47)
the commutator on 2™ can be written as
[0g-(e1), 00 (€3)]a™ = —i(egef” — efied”) + (60— + €70, )™ (48)

The first term on the right-hand side is a P~ transformation of 2 expected from the
PSU(2,2|4) algebra (44). Thus, the algebra (44) is satisfied up to a reparametriza-
tion.

Appendix
We summarize formulae useful in computing G~eG. From the formula
1 1
e"Be~t = B+ [A B+ 5j[A [A Bl + 5 [A [A [A B+ (49)

we obtain the following identities.
efx-PJabez-P —_ Jab o l’an 4 xbpa’
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e "PDe"" =D —x-P,

e T PRaeP — o _ qap 4 gbgba 4 gan po_ ;x -x P,

e TP GtigrP — gt _at =i 4zt

et P g=ieP _ g—i _ il,—Q-H: _ ixQ‘i,
e QT gt Q" — gt 4 ;9 Q7
IS = L GQF  6,QT) — it P
e R JTEfQT = g g — ;i82P,

e " DT = D — ;0 QT

e VK" = K +i0'S) + ;iQQJ”,
e VUK = KT — (0787 — 6,577 + ;z’QQJ” — 070,

Q) 0@ + ()P,

e Jien @t = i 0'QF +0,Q"" — 0’0, P — (trace part),
e 0TI = Q' 1 ip P,

6_9.Q+Q—i69~Q+ _ Q—i + Zelp,
6—9-Q+S+z‘€e~Q+ — gt _ eifri’

00 guigh QT _ iy ;Qi(ﬁ_ T D)+ 6T,
+;92Q+i I 91‘9]‘@; 4 ;i@iHQPJF,
e 5T Pt = P —inQt + ;Zﬁffrw,
oSt pe St _ p _ 2(771@; _ mQﬂ‘) I ;Z'TIQJCEJS i iﬁiﬁjc]ji
(") K,

o ('S — ST +

1
DT = Dt ST,

1 =

e ST grmenST — gt 4 ;n -8t

12



1 . . 1
5(77152‘+ —n;S7") — §i772K+,

|
e~ ST JreenST — jrr 9" — 52'772[(,

—n-St 727 n.St 7
67}5’ JacazenS :Jxx+

e JlenSt = gt — n'S; +n; St +in'n, KT — (trace part),
e—n~s+Q+z‘6n.S+ _ Q+i + niJ—I—x’
—n-ST =i _n-ST 1 - Tz 71
IR = Q —517(JJr +J"™ +D)—nJY
i 1 i Lo
=0 Sf = oS + i KT
e~ ST gtign ST _ g+i iniKJr’

e ST gTien ST — gt in'K. (50)
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