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We investigate the gauge-Higgs unification models within the scheme of the coset space
dimensional reduction, beginning with a gauge theory in a fourteen-dimensional spacetime
where extra-dimensional space has the structure of a ten-dimensional compact coset space.
We found seventeen phenomenologically acceptable models through an exhaustive search
for the candidates of the coset spaces, the gauge group in fourteen dimension, and fermion
representation. Of the seventeen, ten models led to SO(10)(×U(1)) GUT-like models after
dimensional reduction, three models led to SU(5) × U(1) GUT-like models, and four to
SU(3) × SU(2) × U(1) × U(1) Standard-Model-like models. The combinations of the coset
space, the gauge group in the fourteen-dimensional spacetime, and the representation of the
fermion contents of such models are listed.

§1. Introduction

The Standard Model (SM) has described the interactions of the elementary par-
ticles successfully. In this model, the Higgs scalar plays an essential role in the mecha-
nism of spontaneous breaking of the gauge symmetry from SU(3)C×SU(2)L×U(1)Y

down to SU(3)C × U(1)em, giving masses to the elementary particles. Nevertheless,
the Higgs particle itself is still undiscovered. Not only is it the last frontier of the
SM, it will also provide the key clue to the physics beyond the SM, since the SM
does not address even the most fundamental nature of the Higgs particle, such as its
mass and the self-coupling constants.

The gauge-Higgs unification is one of attractive approaches to the physics be-
yond the SM in this regard1)–3) (for recent approaches, see Refs. 4)–19)). In this
approach, the Higgs sector is embraced into the gauge interactions in the spacetime
with dimensions larger than four, where the extra-dimensional space is compactified
to a small scale to reproduce the four-dimensional spacetime. The scalar particles
originate from the extra-dimensional components of the gauge field and part of the
fundamental properties of Higgs scalar is determined from the gauge interactions.

We consider this approach in the framework of coset space dimensional reduction
(CSDR)20) (for recent approaches, see Refs. 21)–23)). This framework introduces a
compact extra-dimensional space which has the structure of a coset of Lie groups, and
identifies the gauge transformation as the translation within the extra-dimensional
space. This identification determines both the gauge symmetry and the particle
contents of the four-dimensional theory.
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Gauge theories in six- and ten-dimensional spacetime are well investigated. No
known model, however, reproduced the particle content of the SM or Grand Unified
Theory (GUT).1),20),24)–31) The difficulty arises due to the insufficient dimension-
ality of the vector and the spinor representations of the rotational group of the
extra-dimensional space, to one of which all the scalars and fermions need to belong.
One of the promising ways to overcome this difficulty is to increase the dimen-
sionality of extra-dimensional space. The higher-dimensional models enlarge these
representations and thus enriches the particle contents, which hopefully include par-
ticle contents of the SM or GUT. Another merit of such models is the increase of
candidates of the coset space and thus of the gauge group.

In determining the dimensionality of the extra-dimension, we pay special atten-
tion to the chiral structure of the SM and GUT. The representation of the gauge
group in higher-dimension needs to be complex in general to induce a chiral four-
dimensional theory. The exception is the case where the dimensionality is 4n + 2.
This choice allows to start from vector-like representations, leaving larger opportu-
nity to search for an acceptable model. Therefore we investigate fourteen-dimensional
spacetime and search for GUT, GUT-like model, the SM and the SM-like model. A
fourteen-dimensional theory is studied in terms of a bosonic string theory in a twenty-
six dimensional spacetime,32) giving another motivation of the models in the present
work.

In this paper, we search for gauge theories in fourteen-dimensional spacetime
which leads to a phenomenologically acceptable model. We exhaustively determined
the coset spaces and the gauge groups. The scalar contents are completely deter-
mined for each case and the fermion contents are searched. Here we consider the
dimensions of fermion representations less than 1025 since even larger representa-
tions yield numerous higher dimensional representations of fermion, under the gauge
group of the SM or GUTs, in the four-dimensions.

This paper is organized as follows. In §2, we give a brief review of the scheme of
CSDR. In §3, we consider the candidates of the theories which lead to the phenom-
enologically acceptable models after the dimensional reduction. We summarize our
results in §4.

§2. The scheme of coset space dimensional reduction

In this section, we recapitulate the scheme of the coset space dimensional reduc-
tion (CSDR) and the construction of the four-dimensional theory by CSDR.20)

We begin with a gauge theory with a gauge group G defined on a D-dimensional
spacetime MD. The spacetime MD is assumed to be a direct product of the four-
dimensional spacetime M4 and a compact coset space S/R such that MD = M4 ×
S/R, where S is a compact Lie group and R is a Lie subgroup of S. The dimension of
the coset space S/R is thus d ≡ D−4, implying dimS−dim R = d. This assumption
on the structure of extra-dimensional space requires the group R to be embedded
into the group SO(d), which is a subgroup of the Lorentz group SO(1, D−1). Let us
denote the coordinates of MD by XM = (xμ, yα), where xμ and yα are coordinates
of M4 and S/R, respectively. The spacetime index M runs over μ ∈ {0, 1, 2, 3} and
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α ∈ {4, 5, · · · , D − 1}. We define the vielbein eM
A which relates the metric of the

manifold MD (the bulk spacetime), denoted by gMN (X), and that of the tangent
space TXM

D (the local Lorentz frame), denoted by hAB(X), as gMN = eM
AeN

BhAB.
Here A = (μ, a), where a ∈ {4, · · · , D}, is the index for the coordinates of TXM

D.
We conventionally use μ, ν, λ, · · · to denote the indices for M4; α, β, γ, · · · for the
coset space S/R; a, b, c, · · · for the algebra of the group S/R; M,N, · · · for (μ, α); and
A,B for (μ, a). We introduce a gauge field AM (x, y) = (Aμ(x, y), Aα(x, y)), which
belongs to the adjoint representation of the gauge group G, and fermions ψ(x, y),
which lies in a representation F of G. The action S of this theory is given by

S =
∫
dDX

√−g

×
(
−1

8
gMNgKL TrFMK(X)FNL(X)

+
1
2
iψ̄(X)ΓAeA

MDMψ(X)
)
, (1)

where g = det gMN , FMN (X) = ∂MAN (X) − ∂NAM (X) − [AM (X), AN (X)] is the
field strength, DM is the covariant derivative on MD, and ΓA is the generators of
the D-dimensional Clifford algebra.

The extra-dimensional space S/R admits S as an isometric transformation group,
and we impose on AM (X) and ψ(X) the following symmetry under this transforma-
tion in order to carry out the dimensional reduction.33)–38) Consider a coordinate
transformation which acts trivially on x and gives rise to a S-transformation on y as

(x, y) → (x, sy), (2)

where s ∈ S. We require that this coordinate transformation Eq. (2) should be
compensated by a gauge transformation. This symmetry, connecting nontrivially
the coordinate and gauge transformation, requires R to be embedded into G. The
symmetry further leads to the following set of the symmetric condition on the fields:

Aμ(x, y) = g(y; s)Aμ(x, s−1y)g−1(y; s), (3a)

Aα(x, y) = g(y; s)Jα
βAβ(x, s−1y)g−1(y; s)

+ g(y; s)∂αg
−1(y; s), (3b)

ψ(x, y) = f(y; s)Ωψ(x, s−1y), (3c)

where g(y; s) and f(y; s) are gauge transformations in the adjoint representation and
in the representation F , respectively, and Jα

β and Ω are the rotation in the tangent
space for the vectors and spinors, respectively. These conditions of Eq. (3) make
the D-dimensional Lagrangian invariant under the S-transformation of Eq. (2) and
therefore independent of the coordinate y of S/R. The dimensional reduction is
then carried out by integrating over the coordinate y to obtain the four-dimensional
Lagrangian. The four-dimensional theory consists of the gauge fields Aμ, fermi-
ons ψ, and in addition the scalars φa ≡ ea

αAα. The gauge group reduces to a
subgroup H of the original gauge group G. The dimensional reduction under the
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symmetric condition Eq. (3) and the assumption hAB = diag (ημν ,−gab), where
ημν = diag (1,−1,−1,−1) and gab = diag (a1, a2, · · · , ad) with ai being positive,
leads to the four-dimensional effective Lagrangian Leff given by

Leff = −1
4
F t

μνF
tμν +

1
2
(Dμφa)t(Dμφa)t + V (φ)

+
1
2
iψ̄ΓμDμψ +

1
2
iψ̄Γ aea

αDαψ, (4)

where t is the index for the generators of the gauge group G. It is notable that the La-
grangian Eq. (4) includes the scalar potential V (φ), which is completely determined
by the group structure as

V (φ) = −1
4
gacgbd

×Tr
[(
fab

CφC − [φa, φb]
)(
fcd

DφD − [φc, φd]
)]
, (5)

where C and D run over the indices of the algebra of S, and fab
C is the structure

constants of the algebra of S. This potential may cause the spontaneous symmetry
breaking, rendering the final gauge group K a subgroup of the group H.

The scheme of CSDR substantially constrains the four-dimensional gauge group
H and its representations for the particle contents as shown below. First, the gauge
group of the four-dimensional theory H is easily identified as

H = CG(R), (6)

where CG(R) denotes the centralizer of R in G.33) Note that this implies G ⊃ H×R
up to the U(1) factors. Secondly, the representations of H for the Higgs fields are
specified by the following prescription. Suppose that the adjoint representations of
R and G are decomposed according to the embeddings S ⊃ R and G ⊃ H ×R as

adjS = adjR+
∑

s

rs, (7)

adjG = (adjH, 1) + (1, adjR) +
∑

g

(hg, rg), (8)

where rs and rg denote representations of R, and hg denote representations of H.
The representations of the scalar fields are hg whose corresponding rg in the decom-
position Eq. (8) are contained also in the set {rs}. Thirdly, the representations of H
for the fermion fields are determined as follows.39) Let the group R be embedded into
the Lorentz group SO(d) in such a way that the vector representation d of SO(d) is
decomposed as

d =
∑

s

rs, (9)

where rs are the representations obtained in the decomposition Eq. (9). This em-
bedding specifies a decomposition of the spinor representation σd of SO(d) into
irreducible representations σi of R as

σd =
∑

i

σi. (10)
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Now the representations of H for the four-dimensional fermions are found by decom-
posing F according to G ⊃ H ×R as

F =
∑

f

(hf , rf ). (11)

The representations of our interest are hf whose corresponding rf are found in
{σi} obtained in Eq. (10). Note that a phenomenologically acceptable model needs
chiral fermions in the four dimensions as the SM does. This is possible only when
the coset space S/R satisfies rankS = rankR, according to the non-trivial result
due to Bott.44) The chiral fermions are then obtained most straightforwardly when
we introduce a Weyl fermion in D = 2n (n = 1, 2, · · · ) dimensions and F is a
complex representation.40)–43) Interestingly, they can be obtained even if F is real or
pseudoreal representation, providedD = 4n+2.40),43) The four-dimensional fermions
are doubled in these cases, and these extra fermions are eliminated by imposing the
Majorana condition on the Weyl fermions in D = 4n + 2 dimensions.40),43) From
this condition we obtain chiral fermions for D = 8n + 2 (8n + 6) when F is real
(pseudoreal). It is therefore interesting to consider D = 6, 10, 14, 18, · · · .

§3. The search for acceptable candidates

In this section, we search for candidates of the coset space S/R, the gauge group
G, and its representation F for fermions in the spacetime of the dimensionality D =
14 for phenomenologically acceptable models based on CSDR scheme. Such models
should induce a four-dimensional theory that has a gauge groupH ⊃ SU(3)×SU(2)×
U(1), and accommodates chiral fermions contained in the SM. This requirement
constrains the D, S/R, G, F , and the embedding of R in G.

The number of dimensions D should be 2n in order to give chiral fermions in
four dimensions. We are particularly interested in the case of D = 4n + 2, where
chiral fermions can be obtained in four dimensions even if F is real or pseudoreal.
The simplest cases of D = 6 and 10 are well investigated. No known model, however,
reproduced the particle contents of the SM or GUT.1),20),24)–31) This is due to the
small dimensionality of the vector and spinor representations of SO(d). It is difficult
when d = 2 and 6 to match rs from SO(d) vector and σi from SO(d) spinor with rg
from adjG and rf from F , respectively (see Eqs. (9) – (11)). We consider a higher-
dimensional spacetime to enlarge the dimensionality of SO(d) vector and spinor
representations. More rg and rf will satisfy the matching prescription, and hence
richer particle contents are obtained. Another merit of higher-dimensional spacetime
is the increase of candidates of the coset space and thus of the gauge group. We thus
investigate next smallest dimensionality of D = 4n+ 2, which is D = 14.

Coset space S/R of our interest should have dimension d = D−4 = 10, implying
dimS − dim R = 10, and should satisfy rankS = rankR to generate chiral fermions
in four dimensions.44) These conditions limit the possible S/R to the coset spaces
collected in Table I. There the correspondence between the subgroup of R and the
subgroup of S is clarified by the brackets in R. For example, the coset space (2)
suggests the direct sum of SO(7)/SO(6) and Sp(4)/[SU(2)× SU(2)]. The factor of
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R with subscript “max” indicates that this factor is a maximal regular subalgebra
of S. For example, the coset (20) in Table I indicates that [SU(2) × U(1)]max is
the maximal regular subgroup of Sp(4). We show the embedding of R in SO(10) in
Table II. The representations of rs in Eq. (9) and σi in Eq. (10) are listed in the
columns of “Branches of 10” and “Branches of 16”, respectively.

The representation F of G for the fermions should be either complex or pseudo-

Table I. A complete list of ten-dimensional coset spaces S/R with rank S = rank R. The brackets

in R clarifies the correspondence between the subgroup of R and the subgroup of S. The factor

of R with subscript “max” indicates that this factor is a maximal regular subalgebra of S.

No. S/R

(1) SO(11)/SO(10)
(2) SO(7) × Sp(4)/SO(6) × [SU(2) × SU(2)]
(3) G2 × Sp(4)/SU(3) × [SU(2) × SU(2)]
(4) SU(6)/SU(5) × U(1)
(5) SO(9) × SU(2)/SO(8) × U(1)
(6) SO(7) × SU(3)/SO(6) × [SU(2) × U(1)]
(7) SU(4) × Sp(4)/[SU(3) × U(1)] × [SU(2) × SU(2)]
(8) (Sp(4))2 × SU(2)/[SU(2) × SU(2)]2 × U(1)
(9) G2 × SU(3)/SU(3) × [SU(2) × U(1)]
(10) Sp(4) × Sp(4)/[SU(2) × U(1)]max × [SU(2) × SU(2)]
(11) Sp(4) × Sp(4)/[SU(2) × U(1)]non-max × [SU(2) × SU(2)]
(12) Sp(6) × SU(2)/[Sp(4) × SU(2)] × U(1)
(13) G2 × SU(2)/SU(2) × SU(2) × U(1)
(14) Sp(6)/Sp(4) × U(1)
(15) G2/SU(2) × U(1)
(16) Sp(4) × SU(3) × SU(2)/[SU(2) × SU(2)] × [SU(2) × U(1)] × U(1)
(17) SU(4) × SU(3)/[SU(3) × U(1)] × [SU(2) × U(1)]
(18) SO(7) × (SU(2))2/SO(6) × (U(1))2

(19) SU(5) × SU(2)/[SU(4) × U(1)] × U(1)
(20) Sp(4) × SU(3)/[SU(2) × U(1)]max × [SU(2) × U(1)]
(21) Sp(4) × SU(3)/[SU(2) × U(1)]non-max × [SU(2) × U(1)]
(22) SU(3) × Sp(4)/[U(1) × U(1)] × [SU(2) × SU(2)]
(23) SU(4) × SU(2)/SU(2) × SU(2) × U(1) × U(1)
(24) G2 × (SU(2))2/SU(3) × (U(1))2

(25) SU(4)/SU(2) × U(1) × U(1)
(26) Sp(4) × (SU(2))3/[SU(2) × SU(2)] × (U(1))3

(27) (SU(3))2 × SU(2)/[SU(2) × U(1)]2 × U(1)
(28) SU(4) × (SU(2))2/[SU(3) × U(1)] × (U(1))2

(29) Sp(4) × (SU(2))2/[SU(2) × U(1)]max × (U(1))2

(30) Sp(4) × (SU(2))2/[SU(2) × U(1)]non-max × (U(1))2

(31) SU(3) × SU(3)/[U(1) × U(1)] × [SU(2) × U(1)]
(32) Sp(4) × SU(2)/[U(1) × U(1)] × U(1)
(33) SU(3) × (SU(2))3/[SU(2) × U(1)] × (U(1))3

(34) (SU(2)/U(1))5

(35) SU(3) × (SU(2))2/[U(1) × U(1)] × (U(1))2
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real but not real, since the fermions of real representation do not allow the Majorana
condition when D = 14 and induces doubled fermion contents after the dimen-
sional reduction.40),43) Table III lists the candidate groups G and their complex
and pseudoreal representations. Here we consider the dimensions of fermion rep-
resentations less than 1025 since even larger representations yield numerous higher
dimensional representations of fermion, under the gauge group of the SM or GUTs,
in the four dimensions. The representations in this table are the candidates of F .

We constrain the gauge group G by the following two criteria once we choose

Table II. The decompositions of the vector representation 10 and the spinor representation 16 of

SO(10) under R’s which are listed in Table I and have two or less U(1) factors. The represen-

tations of rs in Eq. (9) and σi in Eq. (10) are listed in the columns of “Branches of 10” and

“Branches of 16”, respectively. The U(1) charges for the cosets (16) – (35) have freedom of

retaking the linear combination.

S/R Branches of 10 Branches of 16

(1) SO(10) 10 16

(2) (SO(6), SU(2), SU(2)) (6, 1, 1), (1, 2, 2) (4, 2, 1), (4̄, 1, 2)

(3) (SU(3), SU(2), SU(2)) (3, 1, 1), (3̄, 1, 1), (1, 2, 2) (3, 2, 1), (3̄, 1, 2), (1, 2, 1), (1, 1, 2)

(4) SU(5)(U(1)) 5(6), 5̄(−6) 1(−15), 5̄(9), 10(−3)

(5) SO(8)(U(1)) 8v(0), 1(2), 1(−2) 8s(−1), 8c(1),

(6) (SO(6), SU(2))(U(1)) (6, 1)(0), (1, 2)(3), (1, 2)(−3) (4, 2)(0), (4̄, 1)(3), (4̄, 1)(−3)

(7) (SU(3), SU(2), SU(2))(U(1)) (3, 1, 1)(−4), (3̄, 1, 1)(4), (3, 1, 2)(2), (3̄, 2, 1)(−2),

(1, 2, 2)(0) (1, 1, 2)(−6), (1, 2, 1)(6)

(8) (SU(2), SU(2), SU(2), SU(2))(U(1)) (2, 2, 1, 1)(0), (1, 1, 2, 2)(0), (2, 1, 1, 2)(1), (1, 2, 1, 2)(−1),

(1, 1, 1, 1)(2), (1, 1, 1, 1)(−2) (2, 1, 2, 1)(−1), (1, 2, 2, 1)(1)

(9) (SU(3), SU(2))(U(1)) (3, 1)(0), (3̄, 1)(0), (1, 2)(3), (3, 2)(0), (3̄, 1)(3), (3̄, 1)(−3),

(1, 2)(−3) (1, 2)(0), (1, 1)(3), (1, 1)(−3)

(10) (SU(2), SU(2), SU(2))(U(1)) (2, 2, 1)(0), (1, 1, 3)(2), (2, 1, 3)(−1), (1, 2, 3)(1),

(1, 1, 3)(−2) (1, 2, 1)(3), (2, 1, 1)(−3)

(11) (SU(2), SU(2), SU(2))(U(1)) (2, 2, 1)(0), (1, 1, 2)(1), (1, 2, 2)(−1), (1, 2, 1)(0),

(1, 1, 2)(−1), (1, 1, 1)(2) (1, 2, 1)(2), (2, 1, 2)(1)

(1, 1, 1)(−2) (2, 1, 1)(0), (2, 1, 1)(−2)

(12) (Sp(4), SU(2))(U(1)) (4, 2)(0), (1, 1)(2), (1, 1)(−2) (5, 1)(−1), (1, 3)(−1), (4, 2)(1)

(13) (SU(2), SU(2))(U(1)) (4, 2)(0), (1, 1)(2), (1, 1)(−2) (4, 2)(1), (5, 1)(−1), (1, 3)(−1)

(14) Sp(4)(U(1)) 4(1), 4(−1), 1(2), 1(−2) 5(1), 4(−2), 4(0), 1(3), 1(1), 1(−1),

(15a) SU(2)(U(1)) 2(3), 2(−3), 2(1), 2(−1), 3(1), 2(−4), 2(2), 2(−2),

1(−2), 1(2) 2(0), 1(5), 1(3), 1(−3), 1(1), 1(−1)

(15b) SU(2)(U(1)) 4(1), 4(−1), 1(2), 1(−2) 5(1), 4(−2), 4(0), 1(3), 1(1), 1(−1),

(16) (SU(2), SU(2), SU(2))(U(1), U(1)) (2, 2, 1)(0, 0), (1, 1, 2)(3, 0), (2, 1, 2)(0, 1), (1, 2, 2)(0, −1),

(1, 1, 2)(−3, 0), (1, 1, 1)(0, 2) (2, 1, 1)(3, −1), (2, 1, 1)(−3, −1)

(1, 1, 1)(0, −2) (1, 2, 1)(3, 1), (1, 2, 1)(−3, 1)

(17) (SU(3), SU(2))(U(1), U(1)) (3, 1)(0, −4), (3̄, 1)(0, 4), (3, 2)(0, 2), (3̄, 1)(3, −2), (3̄, 1)(−3, −2),

(1, 2)(3, 0), (1, 2)(−3, 0) (1, 2)(0,−6), (1, 1)(3, 6), (1, 1)(−3, 6)

(18) SO(6)(U(1), U(1)) 6(0, 0), 1(2, 0), 1(−2, 0), 4(1, −1), 4(−1, 1), 4̄(1, 1),

1(0, 2), 1(0, −2) 4̄(−1,−1),

(19) SU(4)(U(1), U(1)) 4(0, −5), 4̄(0, 5), 1(2, 0), 6(−1, 0), 4(1, 5), 4̄(1, −5),

1(−2, 0) 1(−1, 10), 1(−1, −10)

(20) (SU(2), SU(2))(U(1), U(1)) (3, 1)(0, 2), (3, 1)(0,−2), (3, 2)(0,−1), (3, 1)(3, 1), (3, 1)(−3, 1),

(1, 2)(3, 0), (1, 2)(−3, 0) (1, 2)(0, 3), (1, 1)(3, −3), (1, 1)(−3, −3)

(21) (SU(2), SU(2))(U(1), U(1)) (2, 1)(1, 0), (2, 1)(−1, 0), (2, 2)(−1, 0), (1, 2)(2, 0), (1, 2)(0, 0),

(1, 2)(0, 3), (1, 2)(0,−3) (2, 1)(1, 3), (2, 1)(1, −3), (1, 1)(0, 3),

(1, 1)(2, 0), (1, 1)(−2, 0) (1, 1)(0,−3), (1, 1)(−2, 3), (1, 1)(−2, −3),

(22) (SU(2), SU(2))(U(1), U(1)) (2, 2)(0, 0), (1, 1)(a, c), (2, 1)(0, 0), (1, 2)(0, 0),

(1, 1)(b, d), (1, 1)(−a, −c) (2, 1)(b, d), (2, 1)(a, c)

(1, 1)(−b, −d), (2, 1)(−a − b, −c − d),

(1, 1)(a + b, c + d), (1, 2)(a + b, c + d),

(1, 1)(−a − b,−c − d) (1, 2)(−a, −c), (1, 2)(−b, −d)

(continued)
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Table II.
S/R Branches of 10 Branches of 16

(23) (SU(2), SU(2))(U(1), U(1)) (2, 2)(0, 2), (2, 2)(0, −2), (3, 1)(−1, 0), (1, 3)(−1, 0), (2, 2)(1, −2),

(1, 1)(2, 0), (1, 1)(−2, 0) (2, 2)(1, 2), (1, 1)(−1, 4), (1, 1)(−1, −4),

(24) SU(3)(U(1), U(1)) 3(0, 0), 3̄(0, 0), 1(2, 0), 3(1, −1), 3(−1, 1), 3̄(1, 1), 3̄(−1, −1),

1(−2, 0), 1(0, 2), 1(0, −2) 1(1, −1), 1(−1, 1), 1(1, 1), 1(−1, −1)

(25) SU(2)(U(1), U(1)) 2(−1, 2), 2(1, 2), 2(−1, −2), 3(−1, 0), 2(2, 2), 2(0, 2), 2(0, −2), 2(2, −2),

2(1, −2), 1(2, 0), 1(−2, 0) 1(−1, 4), 1(−1, −4), 1(−3, 0), 1(1, 0), 1(−1, 0)

(26) (SU(2), SU(2))(U(1), U(1), U(1)) (2, 2)(0, 0, 0), (1, 1)(2, 0, 0), (2, 1)(1, 1, 1), (2, 1)(−1,−1, 1),

(1, 1)(−2, 0, 0), (1, 1)(0, 2, 0), (2, 1)(1, −1, −1), (2, 1)(−1, 1, −1),

(1, 1)(0, −2, 0), (1, 1)(0, 0, 2), (1, 2)(1, −1, 1), (1, 2)(−1, 1, 1),

(1, 1)(0, 0, −2) (1, 2)(1, 1, −1), (1, 2)(−1, −1, −1)

(27) (SU(2), SU(2))(U(1), U(1), U(1)) (2, 1)(3, 0, 0), (2, 1)(−3, 0, 0), (2, 2)(0, 0, −1), (2, 1)(0, 3, 1),

(1, 2)(0, 3, 0), (1, 2)(0, −3, 0), (2, 1)(0, −3, 1), (1, 2)(3, 0, 1),

(1, 1)(0, 0, 2), (1, 1)(0, 0, −2) (1, 2)(−3, 0, 1), (1, 1)(3, 3, −1),

(1, 1)(−3, 3, −1), (1, 1)(3, −3, −1),

(1, 1)(−3, −3, −1)

(28) SU(3)(U(1), U(1), U(1)) 3(−4, 0, 0), 3̄(4, 0, 0), 3(2, −1, 1), 3(2, 1, −1),

1(0, 2, 0), 1(0, −2, 0), 3̄(−2, 1, 1), 3̄(−2, −1, −1),

1(0, 0, 2), 1(0, 0, −2) 1(6, 1, 1), 1(−6, −1, 1),

1(−6, 1, −1), 1(6, −1, −1)

(29) SU(2)(U(1), U(1), U(1)) 3(2, 0, 0), 3(−2, 0, 0), 3(−1, 1, 1), 3(−1, −1, −1),

1(0, 2, 0), 1(0, −2, 0), 3(1, 1, −1), 3(1, −1, 1),

1(0, 0, 2), 1(0, 0, −2) 1(3, 1, 1), 1(3, −1, −1),

1(−3, 1, −1), 1(−3, −1, 1)

(30) SU(2)(U(1), U(1), U(1)) 2(1, 0, 0), 2(−1, 0, 0), 2(1, 1, −1), 2(1, −1, 1),

1(2, 0, 0), 1(−2, 0, 0), 2(−1, 1, 1), 2(−1, −1, −1),

1(0, 2, 0), 1(0, −2, 0), 1(2, 1, 1), 1(2, −1, −1),

1(0, 0, 2), 1(0, 0, −2) 1(−2, 1, −1), 1(−2, −1, 1),

1(0, 1, 1), 1(0, −1, −1),

1(0, 1, −1), 1(0, −1, 1)

(31) SU(2)(U(1), U(1), U(1)) 2(3, 0, 0), 2(−3, 0, 0), 2(0, 1, 3), 2(0, 1, −3),

1(0, 2, 0), 1(0, −2, 0), 2(0, 0, 0), 2(0, −2, 0),

1(0, 1, 3), 1(0, −1, −3), 1(3, 2, 0), 1(−3, 2, 0),

1(0, 1,−3), 1(0, −1, 3) 1(3, 0, 0), 1(−3, 0, 0),

1(3, −1, 3), 1(−3, −1, 3),

1(3, −1, −3), 1(−3, −1, −3)

(32) (U(1), U(1), U(1)) (2, 0, 0), (−2, 0, 0), (0, −2, 0), (3, 1, −1), (3, −1, 1), (−3, −1, −1),

(0, 2, 0), (0, 0, 2), (0, 0, −2), (−3, 1, 1), (1, 3, 1), (−1, −3, 1),

(2, 2, 0), (−2, −2, 0), (2, −2, 0), (−1, 3, −1), (1, −3, 1), (−1, 1, 1),

(−2, 2, 0) (1, −1, 1), (1, −1, −1), (−1, 1, 1),

(1, 1, 1), (−1, −1, 1), (1, 1, −1),

(−1, −1, −1)

(continued)

S/R out of the coset spaces listed in Table I. First, G should have an embedding
of R whose centralizer CG(R) is appropriate as a candidate of the four-dimensional
gauge group H (recall Eq. (6)). In this paper, we consider the following groups as
candidates of H: the GUT gauge groups such as E6, SO(10), and SU(5); the SM
gauge group SU(3) × SU(2) × U(1); and those with an extra U(1). Secondly, we
consider only the regular subgroup of G when we decompose it to embed R. We
then find that no candidate of G and S/R that satisfy this requirement gives E6,
E6 × U(1), and SU(5) as H. We note that the number of U(1) in R must be no
more than that in H, since the U(1) in R is also a part of its centralizer, i.e. a part
of H. We can thus exclude (26) – (35) in Table I. The candidates of G for each S/R
satisfying the above conditions are summarized in Table IV.

Careful consideration is necessary when there are more than one branch in
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Table II.
S/R Branches of 10 Branches of 16

(33) SU(2)(U(1), U(1), U(1), U(1)) 2(3, 0, 0, 0), 2(−3, 0, 0, 0), 2(0, 1, −1, 1), 2(0, −1, 1, 1),

1(0, 2, 0, 0), 1(0, −2, 0, 0), 2(0, 1, 1,−1), 2(0, −1, −1, −1),

1(0, 0, 2, 0), 1(0, 0, −2, 0), 1(3, 1, 1, 1), 1(−3, 1, 1, 1),

1(0, 0, 0, 2), 1(0, 0, 0, −2) 1(3, −1 − 1, 1), 1(−3, −1, −1, 1),

1(3, 1, −1,−1), 1(−3, 1, −1,−1),

1(3, −1, 1,−1), 1(−3, −1, 1,−1)

(34) (U(1), U(1), U(1), U(1), U(1)) (2, 0, 0, 0, 0), (−2, 0, 0, 0, 0), (1, 1, 1, −1, 1), (−1,−1, 1, −1, 1),

(0, 2, 0, 0, 0), (0, −2, 0, 0, 0), (1, 1,−1, 1, 1), (−1,−1, −1, 1, 1),

(0, 0, 2, 0, 0), (0, 0, −2, 0, 0), (1, 1, 1, 1, −1), (−1,−1, 1, 1, −1),

(0, 0, 0, 2, 0), (0, 0, 0, −2, 0), (1, 1,−1, −1, −1), (−1,−1, −1, −1, −1),

(0, 0, 0, 0, 2), (0, 0, 0, 0, −2) (1, −1, 1, 1, 1, ), (−1, 1, 1, 1, 1),

(1, −1,−1, −1, 1), (−1, 1, −1, −1, 1),

(1, −1, 1, −1, −1), (−1, 1, 1, −1, −1),

(1, −1,−1, 1, −1), (−1, 1, −1, 1, −1)

(35) (U(1), U(1), U(1), U(1)) (1, 3, 0, 0), (−1, −3, 0, 0), (2, 0,−1, 1), (−2, 0, 1, 1),

(−1, 3, 0, 0), (1, −3, 0, 0), (2, 0, 1, −1), (−2, 0,−1, −1),

(2, 0, 0, 0), (−2, 0, 0, 0), (0, 0,−1, 1), (0, 0, 1, 1),

(0, 0, 2, 0), (0, 0, −2, 0), (0, 0, 1, −1), (0, 0, −1,−1),

(0, 0, 0, 2), (0, 0, 0, −2) (1, 3, 1, 1), (1, −3, 1, 1),

(−1, 3, −1, 1), (−1, −3,−1, 1),

(1, 3,−1, −1), (1, −3,−1, −1),

(−1, 3, 1, −1), (−1, −3, 1, −1)

Table III. The gauge groups that have either complex or pseudoreal representations and their

complex and pseudoreal representations whose dimension is no larger than 1024.45) The groups

SU(8) and SU(9) are not listed here since they do not lead to the four-dimensional gauge group

of our interest for any of S/R in Table I.

Group Complex representations Pseudoreal representations

SU(7) 21, 28, 35, 84, 112, 140, · · ·
SO(12) 32, 32′, 352, 352′

SO(13) 64, 768

Sp(12) 208, 364

E6 27, 351, 351′

SO(14) 64, 832

Sp(14) 350, 560, 896

Sp(16) 544, 816

SU(10) 45, 55, 120, 210, 220, 330, · · ·
SO(18) 256

SO(19) 512

Sp(18) 798

SO(20) 512

SO(21) 1024

decomposing G to its regular subgroup H × R, since the different decomposition
branches lead to different representations of H and R. Two cases deserve close at-
tention. The first is the decomposition of SO(2n+1). It has essentially two distinct
branches of decomposition, one being

SO(2n+ 1) ⊃ SO(2k0 + 1) ×
∏

i

SO(2ki). (12)
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Table IV. The allowed candidates of the gauge group G for each choice of H and S/R. The top

row indicates H and the left column indicates S/R by the number assigned in Table I.

SO(10) SO(10) × U(1) SU(5) × U(1) SU(3) × SU(2) × U(1) SU(3) × SU(2) × U(1) × U(1)

(1) SO(20)

(2) SO(20)

(4) SO(20), SO(21) SU(10) SU(10), SO(18), SO(19)

(5) SO(20), SO(21) SO(18), SO(19) SO(18), SO(19)

(6) SO(20), SO(21) SO(19) SO(18), SO(19), Sp(18)

(7) SO(19), Sp(18)

(8) SO(20), SO(21) SO(18), SO(19), Sp(18) Sp(16) SO(18), SO(19), Sp(18)

(9) Sp(16)

(10) SO(18), SO(19) Sp(16) SO(14), Sp(14) Sp(16)

(11) SO(18), SO(19) Sp(16) SO(14), Sp(14) Sp(16)

(12) SO(19) Sp(16) Sp(14) Sp(16)

(13) SO(14), Sp(14) SO(13), Sp(12) SO(14), Sp(14)

(14) Sp(14) Sp(12) Sp(16)

(15) SO(14) SU(7), SO(13), Sp(12) SO(10), SO(11), Sp(10) SU(7), SO(12), SO(13), Sp(12), E6
(16) Sp(16)

(17) Sp(16)

(18) SU(9), Sp(16)

(19) SU(9), Sp(16)

(20) SO(14), Sp(14)

(21) SO(14), Sp(14)

(22) SO(14), Sp(14)

(23) SO(14), Sp(14)

(24) SU(8), Sp(14)

(25) SU(7), SO(12), SO(13), Sp(12), E6

and the other being

SO(2n+ 1) ⊃ SO(2n) ⊃
∏

i

SO(2ki). (13)

An example is the decomposition of Sp(4) � SO(5) into SU(2) × U(1). One of
the two branches of decomposition is Sp(4) ⊃ SU(2) × U(1), which is equivalent to
SO(5) ⊃ SO(3) × SO(2), corresponding to Eq. (12). The other branch is Sp(4) �
SO(5) ⊃ SO(4) � SU(2) × SU(2) ⊃ SU(2) × U(1), corresponding to Eq. (13). The
two branches of decomposition lead to different branching of the representations.
The second is the normalization of U(1) charge. The different normalizations provide
different representations of H for four-dimensional fields.

3.1. H = SO(10)(×U(1))

First we search for viable SO(10) models in four dimensions. We list below the
combinations of S/R, G and F that provide H = SO(10)(×U(1)) and the repre-
sentations which contain field contents of the SM for the scalars and the fermions.
We indicate the coset S/R with its number assigned in Table I. The embedding of
R into G is shown for each candidate since this embedding uniquely determines all
the representations of the scalars and fermions in the four-dimensional theory. In
Table V, we show all the field contents in four dimensions for each combination of
(S/R,G, F ).

(a) S/R (11) = Sp(4)×Sp(4)/[SU(2)×U(1)]non-max× [SU(2)×SU(2)], G = SO(19),
and F = 512

We embed R in the subgroup SU(2)×SU(2)×SU(2)×U(1) of SO(19) according
to the decomposition

SO(19) ⊃ SO(10) × SO(9)
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Table V. The field contents in four dimensions with H = SO(10)(×U(1)) for each combination

of (S/R, G, F ). Coset spaces are indicated by the number assigned in Table I. Numbers in a

superscript of the representations denote its multiplicity.

14D model 4D model

S/R G F H Scalars Fermions

(1) SO(20) 512 SO(10) 10 16

(2) SO(20) 512 SO(10) {10}2 {16}2

(4) SO(20) 512 SO(10) × U(1) 10(2), 10(−2) 16(−1), 16(3), 16(−5)

(5) SO(20) 512 SO(10) × U(1) 10(0), 10(2), 10(−2) 16(1), 16(−1)

(6) SO(20) 512 SO(10) × U(1) 10(0), 10(1), 10(−1) 16(0), 16(1), 16(−1)

(8) SO(20) 512 SO(10) × U(1) 10(0), 10(0), 10(2), 10(−2) 16(1), 16(1), 16(−1), 16(−1)

(10) SO(18) 256 SO(10) × U(1) 10(0) 16(3), 16(−3), 16(−3), 16(3)

(11) SO(18) 256 SO(10) × U(1) 10(0) 16(2), 16(−2), 16(−2), 16(2)

(11) SO(19) 512 SO(10) × U(1) 10(0), 10(2), 10(−2) 16(1), 16(−1), 16(1), 16(−1)

(15) SO(14) 64 SO(10) × U(1) (a): 10(1), 10(−1), 1(2), 1(−2) (a): 16(0), 16(1), 16(−1),

16(0), 16(−1), 16(1)

(b): 10(3), 10(−3) (b): 16(0), 16(3), 16(−3),

16(0), 16(−3), 16(3)

⊃ SO(10) × SU(4) × SU(2)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × U(1). (14)

Note that there is another branch of the decomposition such as

SO(19) ⊃ SO(18) ⊃ SO(10) × SO(8)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × SU(2)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × U(1). (15)

As mentioned at the beginning of this section, it gives different representations of the
subgroup SO(10) × SU(2)× SU(2) × SU(2) × U(1) for a representation of SO(19).
For example, the adjoint representation 171 of SO(19) is decomposed according to
decomposition branch Eqs. (14) and (15) as follows:45),46)

171 = (45,1,1,1)(0) + (1,3,1,1)(0)
+(1,1,3,1)(0) + (1,1,1,3)(0) + (1,1,1,1)(0)
+(1,2,2,1)(2) + (1,2,2,1)(−2) + (1,2,2,3)(0)
+(1,1,1,3)(2) + (1,1,1,3)(−2)
+(10,2,2,1)(0) + (10,1,1,1)(2)
+(10,1,1,1)(−2) + (10,1,1,3)(0), (16)

171 = (45,1,1,1)(0) + (1,3,1,1)(0)
+(1,1,3,1)(0) + (1,1,1,3)(0) + (1,1,1,1)(0)
+(10,1,1,1)(0) + (10,2,2,1)(0)
+(1,2,2,1)(0) + (1,1,1,1)(2) + (1,1,1,1)(−2)
+(1,2,2,2)(1) + (1,2,2,2)(−1)
+(10,1,1,2)(1) + (10,1,1,2)(−1)
+(1,1,1,2)(1) + (1,1,1,2)(−1). (17)
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The singlets of SU(2) × SU(2) × SU(2) × U(1), which are (45,1,1,1)(0) and
(10,1,1,1)(0), form an adjoint representation of SO(11) which is (55,1,1,1)(0).
This indicates that the centralizer of SU(2) × SU(2) × SU(2) × U(1) is not H =
SO(10) × U(1) but SO(11) × U(1), which is irrelevant to our purpose.

(b) S/R (15a) = G2/SU(2) × U(1), G = SO(14), and F = 64
We embed R in the subgroup SU(2) × U(1) of G = SO(14) according to the

decomposition

SO(14) ⊃ SO(10) × SU(2) × SU(2)
⊃ SO(10) × SU(2) × U(1). (18)

There are two branches of embedding which leads to the field contents of the SM in
this case, owing to the freedom of the normalization of U(1) charges as mentioned in
the beginning part of this section. For example, the adjoint representation of SO(14)
can be decomposed according to Eq. (18) as45),46)

91 = (45,1)(0) + (1,3)(0) + (1,1)(0)
+(1,1)(2x) + (1,1)(−2x)
+(10,2)(x) + (10,2)(−x), (19)

where x is an arbitrary number reflecting the freedom of the normalization. The
choice of x = 1 and x = 3 leads to the scalar contents (a) and (b) of Table V
respectively, as can be seen by comparing the U(1) charges of Eq. (19) with those in
the row (15a) of Table II.

(c) S/R (1) = SO(11)/SO(10), G = SO(20), and F = 512
We embed R in the subgroup SO(10) of G = SO(20) according to the decom-

position
SO(20) ⊃ SO(10) × SO(10). (20)

(d) S/R (2) = SO(7)×Sp(4)/SO(6)× [SU(2)× SU(2)], G = SO(20), and F = 512
We embed R in the subgroup SU(4)×SU(2)×SU(2) of G = SO(20) according

to the decomposition

SO(20) ⊃ SO(10) × SO(10)
⊃ SO(10) × SU(4) × SU(2) × SU(2). (21)

(e) S/R (4) = SU(6)/SU(5) × U(1), G = SO(20), and F = 512
We embed R in the subgroup SU(5) × U(1) of G = SO(20) according to the

decomposition

SO(20) ⊃ SO(10) × SO(10)
⊃ SO(10) × SU(5) × U(1). (22)

(f) S/R (5) = SO(9) × SU(2)/SO(8) × U(1), G = SO(20), and F = 512
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We embed R in the subgroup SO(8) × U(1) of G = SO(20) according to the
decomposition

SO(20) ⊃ SO(10) × SO(10)
⊃ SO(10) × SO(8) × U(1). (23)

(g) S/R (6) = SO(7) × SU(3)/SO(6) × [SU(2) × U(1)], G = SO(20), and F = 512
We embed R in the subgroup SU(4) × SU(2) × U(1) of G = SO(20) according

to the decomposition

SO(20) ⊃ SO(10) × SO(10)
⊃ SO(10) × SU(4) × SU(2) × SU(2)
⊃ SO(10) × SU(4) × SU(2) × U(1). (24)

(h) S/R (8) = {Sp(4)}2×SU(2)/[SU(2)×SU(2)]2×U(1), G = SO(20), and F = 512
We embed R in the subgroup SU(2) × SU(2) × SU(2) × SU(2) × U(1) of G =

SO(20) according to the decomposition

SO(20) ⊃ SO(10) × SO(10)
⊃ SO(10) × SU(4) × SU(2) × SU(2)
⊃ SO(10) × SU(2)′ × SU(2)′

×SU(2) × SU(2) × U(1). (25)

(i) S/R (10) = Sp(4) × Sp(4)/[SU(2) × U(1)]max × [SU(2) × SU(2)], G = SO(18),
and F = 256

We embed R in the subgroup SU(2) × SU(2) × SU(2) × U(1) of G = SO(18)
according to the decomposition

SO(18) ⊃ SO(10) × SO(8)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × SU(2)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × U(1). (26)

(j) S/R (11) = Sp(4)×Sp(4)/[SU(2)×U(1)]non-max× [SU(2)×SU(2)], G = SO(18)
and F = 256

We embed R in the subgroup SU(2) × SU(2) × SU(2) × U(1)of G = SO(18)
according to the decomposition

SO(18) ⊃ SO(10) × SO(8)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × SU(2)
⊃ SO(10) × SU(2) × SU(2) × SU(2) × U(1). (27)

We find ten candidates of (S/R,G, F ) which give at least one fermion with
representation 16 and scalar with 10 in four dimensions. Other combinations of
(S/R,G, F ) are excluded since they do not provide both a representation 16 for
fermions and a representation 10 for scalars.
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In many cases we obtain several 16s for fermions. Particularly interesting candi-
dates among them are (G = SO(20), S/R (4), F = 512) and (G = SO(20), S/R (6),
F = 512). They give three 16s corresponding to three generations of fermions. In
such cases the extra U(1) symmetry can be interpreted as a family symmetry.

We obtain the scalar field in the 10 representation of SO(10) in all cases. This
scalar field contains the SM Higgs. Note, however, that no scalar content belongs to
16,45,126, · · · , which are necessary to break SO(10) to the SM gauge group. This
is inevitable for H = SO(10)(×U(1)). The gauge group G for H = SO(10)(×U(1))
is SO(N), and SO(10) appears in the decomposition

SO(N) ⊃ SO(10) × SO(N − 10) ⊃ · · · . (28)

Only 1 or 10 representations of SO(10) are obtained from the adjoint representa-
tion of SO(N) under the above decomposition. Thus no scalar can break SO(10) to
the SM gauge group. Fortunately, we can construct a phenomenologically accept-
able model without these scalar contents by employing the topological symmetry
breaking mechanism, known as Hosotani mechanism or Wilson flux breaking mech-
anism.29),30),47)–53) This mechanism requires extra-dimensional spaces to be non-
simply connected. Hence we have to consider the non-simply connected coset spaces
such as (S/R)/T instead of the simply connected ones, where T is a suitable discrete
symmetry group.

3.2. H = SU(5) × U(1)

Secondly, we search for viable SU(5)×U(1) models in four dimensions. We list
below the combinations of S/R, G and F which provides H = SU(5) × U(1) and
representations which contain field contents of the SM for the scalars and the fermi-
ons. The embedding of R into G is shown for each candidate since this embedding
uniquely determines all the representations of the scalars and fermions in the four-
dimensional theory. In Table VI, we show all the field contents in four dimensions
for each combination of (S/R,G, F ).

(a) S/R(15) = G2/SU(2) × U(1), G = Sp(12) and F = 208
We embed R in the subgroup SU(2) × U(1) of G = Sp(12) according to the

decomposition

Sp(12) ⊃ Sp(10) × Sp(2)

Table VI. The field contents in four dimensions with H = SU(5) × U(1) for each combination of

(S/R, G, F ). Coset spaces are indicated by the number assigned in Table I.

14D model 4D model

S/R G F Scalars Fermions

(11) Sp(16) 544 15(2), 15(−2), 5(1), 5(−1), {24(0)}2, 10(2), 10(−2), 5(1),

1(0) 5(−1), {1(0)}4

(14) Sp(14) 350 15(−2), 15(2), 5(−1), 5(1) 45(1), 45(−1), 24(0), 10(3),

10(−2), 5(1), 5(1), 5(−1)

(15) Sp(12) 208 15(2), 15(−2), 5(1), 5(−1) 45(1), 45(−1), 24(0), 10(−3),

10(3), 10(2), 10(−2), 5(1), 5(−1)
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⊃ SU(5) × SU(2) × U(1). (29)

(b) S/R(14) = Sp(6)/Sp(4) × U(1), G = Sp(14), and F = 350
We embed R in the subgroup Sp(4) × U(1) of G = Sp(14) according to the

decomposition

Sp(14) ⊃ Sp(10) × Sp(4)
⊃ SU(5) × Sp(4) × U(1). (30)

(c) S/R(11) = Sp(4)×Sp(4)/[SU(2)×U(1)]non-max× [SU(2)×SU(2)], G = Sp(16),
and F = 544

We embed R in the subgroup SU(2)′ × SU(2)′ × SU(2) × U(1) of G = Sp(16)
according to the decomposition

Sp(16) ⊃ Sp(10) × Sp(6)
⊃ Sp(10) × Sp(4) × SU(2)
⊃ Sp(10) × SU(2)′ × SU(2)′ × SU(2)
⊃ SU(5) × SU(2)′ × SU(2)′ × SU(2) × U(1). (31)

We find three candidates of (S/R,G, F ) that give at least one pair of fermions
with representation 10 and 5̄, and a scalar with 5 representation in four dimensions.
Other combinations of (S/R,G, F ) are excluded since they do not provide these
representations for fermions and scalars.

We obtain the scalar field in 5 representation of SU(5) for all cases. This scalar
field contains the SM Higgs. Note, however, that no scalar contents belongs to
24, · · · , which are necessary to break SU(5) to the SM gauge group. The lack of
such scalars is a general feature for H = SU(5)×U(1). The gauge groups G for H =
SU(5) × U(1) are SU(N), SO(N), and Sp(N). These groups are decomposed into
subgroups including SU(5)×U(1), and their adjoint representations are decomposed
accordingly as well:

SU(N) ⊃ SU(5) × SU(N − 5) × U(1) ⊃ · · ·
adjSU(5) = (24,1)(0) + (1, adjSU(N − 1))(0) + (1, 1)(0)

+(5, N − 5)(a) + (5, N − 5)(−a)
= · · · (32)

SO(N) ⊃ SO(10) × SO(N − 10)
⊃ SU(5) × SO(N − 10) × U(1) ⊃ · · ·

adjSO(N) = (45,1) + (1, adjSO(N − 10))
+(10,1) + (1, N − 10)

= (24,1)(0) + (1, adjSO(N − 10))(0) + (1,1)(0)
+(10,1)(4) + (10,1)(−4) + (5,1)(2) + (5,1)(−2) + (1, N − 10)(0)

= · · · (33)
Sp(2N) ⊃ Sp(10) × Sp(2N − 10)
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⊃ SU(5) × Sp(2N − 1) × U(1)
⊃ · · ·

adjSp(2N) = (55,1) + (1, adjSp(2N − 10))
+(10,1) + (1, 2N − 10)

= (24,1)(0) + (1, adjSp(2N − 10))(0) + (1,1)(0)
+(15,1)(2) + (15,1)(−2) + (5,1)(1) + (5̄,1)(−1) + (1, N)(0)

= · · · . (34)

Only 1, 5, 10, or 15 representation of SU(5) is obtained from the adjoint represen-
tations of SU(N), SO(N), and Sp(N) under the above decompositions. Then, no
scalar can break SU(5) to the SM gauge group. Therefore we should employ the
flux breaking mechanism to break SU(5) to the SM gauge group.

3.3. H = SU(3) × SU(2) × U(1)

We find no viable candidate for H = SU(3) × SU(2) × U(1). We exclude the
coset spaces (16) – (35) in Table I. They have two or more factors of U(1) in R,
and these U(1) become the part of H = CG(R) = SU(3) × SU(2) × U(1), which
has only one U(1). The single U(1) factor in R becomes U(1)Y of the SM gauge
group, hence the decomposition of the spinor representation 16 of SO(10) to R need
to have U(1) charges whose ratio is 1 : 2 : (−3) : (−4) : 6. Referring to Table II,
we find that the coset spaces (4) – (15) do not have such U(1) charge and thus are
excluded. The explicit analysis of the remaining coset spaces (1) – (3) shows that
they do not induce the SM either.

3.4. H = SU(3) × SU(2) × U(1) × U(1)

Finally, we search for viable SU(3) × SU(2) × U(1) × U(1) models in four
dimensions. We list below the combinations of S/R, G, and F which provide
H = SU(3) × SU(2) × U(1) × U(1) and representations of the SM scalars and
fermions. Embedding of R in G is also shown for each candidate. Note that we can
take a linear combination of the two U(1). The U(1) charges in the decomposition
are first chosen to facilitate the decomposition of the group G, then combined to
embed R into G, and subsequently organized again to reproduce the hypercharge of
the SM. We explicitly show these linear recombinations of U(1) for each candidates.
In Table VIII, we show all the field contents in four dimensions for each combination
of (S/R,G, F ).

(a) S/R (15a) = G2/SU(2) × U(1), G = Sp(12), and F = 364
We decompose Sp(12) as

Sp(12) ⊃ Sp(6) × Sp(6)
⊃ Sp(6) × Sp(4) × SU(2)′

⊃ SU(3) × Sp(4) × SU(2)′ × U(1)a
⊃ SU(3) × SU(2) × SU(2) × SU(2)′ × U(1)a
⊃ SU(3) × SU(2) × SU(2)′ × U(1)a × U(1)b. (35)



Model Building by Coset Space Dimensional Reduction Scheme 1057

Table VII. The field contents in four dimensions with H = SU(3) × SU(2) × U(1)R × U(1)A.

Coset spaces are indicated by the number assigned in Table I. Numbers in a superscript of the

representations denote its multiplicity.

14D model 4D model

S/R G F Scalars Fermions

(15a) Sp(12) 364 (1, 2)(−2, 3), (1, 2)(2, −3), (15, 1)(−1, 4), (15, 1)(1, −4), (10, 1)(−3, −12),

(3, 1)(−1, −4), (3̄, 1)(1, 4), (10, 1)(3, 12), (3, 1)(−1, −4), {(3̄, 1)(1, 4)}3,

(6, 1)(−2, −8), (6̄, 1)(2, 8) (1, 3)(0, 0), (1, 1)(−4, 6), {(1, 1)(0, 0)}2,

(1, 2)(−2, 3), (1, 2)(2, −3), (3, 3)(−1, −4),
(3̄, 3)(1, 4), (3̄, 1)(5, −2), (3, 1)(−1, −4),

(3, 1)(3, −10), (3̄, 1)(−3, 10), (3, 2)(−3, −1),
(3̄, 2)(3, 1), (3, 2)(1, −7), (3̄, 2)(−1, 7),

(8, 1)(0, 0), (6, 1)(2, −8), (6̄, 1)(−2, 8)

(9) Sp(16) 544 (1, 2)(1, 0), (1, 2)(−1, 0) (1, 1)(−2, 0), (1, 2)(1, 0), {(1, 1)(0, 0)}2,

(3̄, 1)(2, −1), (3, 1)(2, 1), (3̄, 2)(−1, −1),

(3, 2)(−1, 1), {(3, 1)(0, 1)}3, {(3̄, 1)(0, −1)}3,

(8, 1)(0, 0), (6, 1)(0, −1), (6̄, 1)(0, 1)

(15a) SO(13) 768 (1, 2)(3, 3), (1, 2)(−3, −3), (3, 3)(−2, −4), (3̄, 3)(2, 4), (1, 3)(0, −6), (1, 3)(0, 6),

(3, 1)(−2, −6), (3̄, 1)(2, 6) (3, 2)(1, 3), (3̄, 1)(−4, −6), (3, 1)(−2, 0), (3̄, 1)(2, 0),
(3, 2)(1, 3), (3̄, 2)(−1, −3), (3̄, 2)(5, 3), (1, 1)(0, −6),

(1, 1)(0, 6), (1, 2)(3, −3), (1, 2)(−3, 3),
(1, 2)(−3, −9), (1, 2)(3, 9), (3, 2)(1, 3),

(3̄, 2)(−1, −3), (3, 1)(−2, 0), (3̄, 1)(2, 0),
(1, 1)(0, 6), (1, 1)(0, −6), (1, 2)(3, −3), (1, 2)(−3, 3),

(3, 1)(−2, 0), (3̄, 1)(2, 0), (3, 2)(1, 3), (3̄, 2)(−1,−3),
(3̄, 1)(−4, 6), (3, 2)(1, −9), (3̄, 2)(−1, 9), (6, 1)(2, 0),

(6̄, 1)(−2, 0), (6, 2)(−1, −3), (6̄, 2)(1, 3), (8, 1)(2, 0),
(8, 1)(−2, 0), (8, 2)(−1, −3), (8, 2)(1, 3),

(3, 1)(−2, 0), (3̄, 1)(2, 0), (3, 2)(1, 3), (3̄, 2)(−1,−3),

(1, 1)(0, −6), (1, 1)(0, 6), (1, 2)(3, −3), (1, 2)(−3, 3)

(14) Sp(14) 350 (1, 2)(−1, −9/2), (6, 1)(3, −1), (8, 1)(0, 0), (1, 1)(−2, −9),

(1, 2)(1, 9/2), {(1, 1)(0, 0)}2, (3, 1)(−1, 10), (3̄, 1)(1, −10),

(3, 2)(−2, 11/2), {(3̄, 1)(3, −1)}2, {(1, 2)(−1, −9/2)}2,

(3̄, 2)(2, −11/2), {(1, 2)(1, 9/2)}3, (3, 2)(−2, 11/2), (1, 3)(0, 0),
(1, 3)(−2, −9), (1, 3)(2, 9) (3̄, 3)(3, −1)

Accordingly the adjoint representation of Sp(12) is decomposed as45),46)

78 = (8,1,1)(0, 0) + (1,3,1)(0, 0) + (1,1,3)(0, 0) + (1,1,1)(0, 0)
+(1,1,1)(0, 0) + (6,1,1)(2, 0) + (6̄,1,1)(−2, 0) + (3,1,2)(1, 0)
+(3̄,1,2)(−1, 0) + (3,2,1)(1, 0) + (3̄,2, 1)(−1, 0) + (3,1,1)(1, 1)
+(3̄,1,1)(−1,−1) + (3,1,1)(1,−1) + (3̄,1,1)(−1, 1) + (1,2,1)(0, 1)
+(1,2,1)(0,−1) + (1,1,2)(0, 1) + (1,1,2)(0,−1) + (1,1,1)(0, 2)
+(1,1,1)(0,−2) + (1,2,2)(0, 0)
(SU(3), SU(2), SU(2)′)(U(1)a, U(1)b). (36)

We take a linear combination of U(1)a and U(1)b, respecting the orthogonality of
the two, to obtain U(1) charges listed in Table II, at the row (15a) and the columns
“Branch of 10” and “Branch of 16”. We define

QR ≡ −xQa − yQb, (37a)
QA ≡ −2yQa + 3xQb, (37b)

where Qi (i ∈ {a, b, R, A}) denotes the charge of U(1)i. Embedding R in SU(2) ×
U(1)R, we obtain the decomposition of the adjoint representation,

78 = (8̄,1,1)(0, 0) + (1̄,3,1)(0, 0) + (1̄,1,3)(0, 0)
+(1̄,1,1)(0, 0) + (1̄,1,1)(0, 0)
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Table VIII. The field contents in four dimensions with H = SU(3) × SU(2) × U(1)Y × U(1)α.

Coset spaces are indicated by the number assigned in Table I. Numbers in a superscript of the

representations denote its multiplicity. The U(1) charges are rearranged from those of Table VII

so that the charge of U(1)Y is proportional to the hypercharge of the Standard Model.

14D model 4D model

Scalars Fermions
S/R G F SM fields Extra fields SM fields Extra fields

(15a) Sp(12) 364 (1, 2)(3, −32), (3, 1)(−2, −27), (3, 2)(1, −59), (15, 1)(34/11,−11),

(1, 2)(−3, 32) (3̄, 1)(2, 27), (3̄, 1)(2, 27) (15, 1)(−34/11, 11),

(6, 1)(−4, −54), (3̄, 1)(−4, 91) (10, 1)(−6, −81), (10, 1)(6, 81),

(6̄, 1)(4, 54) (1, 2)(−3, 32) {(3, 1)(−2, −27)}2, (1, 3)(0, 0),

(1, 1)(6, −64) {(1, 1)(0, 0)}2, (1, 2)(3, −32),
(3, 3)(−2, −27), (3̄, 3)(2, 27),

(3, 1)(−8, 37), (3̄, 1)(8, −37),
(3̄, 2)(−1, 59), (3, 2)(−5, 5),

(3̄, 2)(5, −5), (8, 1)(0, 0),

{(3̄, 1)(2, 27)}2,

(6, 1)(−68/11, 22),

(6̄, 1)(68/11, −22)

(9) Sp(16) 544 (1, 2)(3, −2), (1, 1)(6, −4), {(1, 1)(0, 0)}2, (3, 1)(−8, 1),

(1, 2)(−3, 2) (1, 2)(−3, 2), {(3, 1)(−2, −3)}3, {(3̄, 1)(2, 3)}2,
(3̄, 1)(−4, 7), (3̄, 2)(5, 1), (8, 1)(0, 0),

(3̄, 1)(2, 3), (6, 1)(2, 3), (6̄, 1)(−2, −3)
(3, 2)(1, −5)

(15a) SO(13) 768 (1, 2)(−3, 66), (3, 2)(1, 34), (1, 1)(−6, −36), (1, 2)(−9, 30), (1, 2)(9, −30),

(1, 2)(3, −66) (3̄, 1)(2, 100), (1, 2)(−9, 30), (3, 1)(4, −32), (3̄, 2)(−1, −34),
(3̄, 1)(−4, 32), (1, 2)(9, −30), (3, 2)(−11, 38), (3̄, 2)(11,−38),

(1, 2)(−3, −102), (1, 2)(3, 102), (6, 1)(−4, 32), (6̄, 1)(4, −32),
(1, 1)(6, 36), (3̄, 2)(−1, −34), (6, 2)(−1, −34), (6̄, 2)(1, 34),

(3, 3)(0, 8), (3, 1)(4, −32), (8, 1)(−4, 32), (8, 1)(4, −32),

(3̄, 3)(0, −8), (1, 1)(−6, −36) (8, 2)(−1, −34), (8, 2)(1, 34),
(1, 3)(−6, −36), (3, 1)(4, −32), (3̄, 2)(−1, −34),

(1, 3)(6, 36), (1, 1)(−6, −36), (1, 2)(−9, 30),
(3, 1)(4, −32), (1, 2)(9, −30), (3̄, 1)(2, 100),

(3̄, 2)(−1, −34), {(3, 2)(1, 34)}5,

(3̄, 2)(−7, 98) {(3̄, 1)(−4, 32)}2, {(1, 1)(6, 36)}2

(14) Sp(14) 350 (1, 2)(3, −2), (1, 1)(6, −4), {(1, 1)(0, 0)}2, (3, 1)(−8, 1),

(1, 2)(−3, 2) (1, 2)(−3, 2), {(3, 1)(−2, −3)}3, {(3̄, 1)(2, 3)}2,

(3̄, 1)(−4, 7), (3̄, 2)(5, 1), (8, 1)(0, 0),
(3̄, 1)(2, 3), (6, 1)(2, 3), (6̄, 1)(−2, −3)

(3, 2)(1, −5)

+(6̄,1,1)(−2x,−4y) + (6̄,1,1)(2x, 4y)
+(3̄,1,2)(−x,−2y) + (3̄,1,2)(x, 2y)
+(3̄,2,1)(−x,−2y) + (3̄,2,1)(x, 2y)
+(3̄,1,1)(−x− y,−2y + 3x)
+(3̄,1,1)(x+ y, 2y − 3x)
+(3̄,1,1)(−x+ y,−2y − 3x)
+(3̄,1,1)(x− y, 2y + 3x)
+(1̄,2,1)(−y, 3x) + (1̄,2,1)(y,−3x)
+(1̄,1,2)(−y, 3x) + (1̄,1,2)(y,−3x)
+(1̄,1,1)(−2y, 6x) + (1̄,1,1)(2y, 6x)
+(1̄,2,2)(0, 0). (38)

We find that y = ±2 provides the SM Higgs doublet by comparing the U(1)R charges
in the decomposition Eq. (38) with those in Table II. Further investigation shows
that we can obtain the SM fermions as well by taking x = 1 and y = 2. The resulting
field contents are summarized in Table VII. We can explicitly obtain appropriate
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U(1)Y hypercharges of the SM particles by taking another linear combination of
U(1)R and U(1)A as

QY ≡ − 6
11
QR +

7
11
QA, (39a)

Qα ≡ 19QR + 2QA, (39b)

where QY and Qα are the charges of U(1)Y and U(1)α, respectively. We thereby
obtain SM Higgs, SM fermions and other fermions listed as in Table VIII.

(b) S/R (9) = G2 × SU(3)/SU(3) × [SU(2) × U(1)], G = Sp(16), and F = 544
We embed R in subgroup SU(3)b × SU(2) × U(1)R of Sp(16) according to the

decomposition

Sp(16) ⊃ Sp(6)a × Sp(6)b × Sp(4)
⊃ SU(3)a × Sp(6)b × Sp(4) × U(1)R

⊃ SU(3)a × SU(3)b × Sp(4)
×U(1)R × U(1)A

⊃ SU(3)a × SU(3)b × SU(2) × SU(2)
×U(1)R × U(1)A. (40)

The resulting field contents are summarized in Table VII. We explicitly obtain
appropriate U(1)Y hypercharges of the SM particles by taking a combination of
U(1)R and U(1)A as

QY ≡ 3QA − 2QR, (41a)
Qα ≡ −2QA − 3QR, (41b)

where Qi (i ∈ {R, A, Y, α}) denotes the charge of U(1)i. We thereby obtain SM
Higgs, SM fermions and other fermions listed in Table VIII.

(c) S/R (15a) = G2/SU(2) × U(1), G = SO(13), and F = 768
We decompose SO(13) as

SO(13) ⊃ SU(4) × SO(7)
⊃ SU(4) × SU(2)′′ × SU(2)′ × SU(2)
⊃ SU(3) × SU(2) × SU(2) × SU(2) × U(1)a
⊃ SU(3) × SU(2) × SU(2) × U(1)a × U(1)b, (42)

where SU(2)′′ ∼ SO(3) and SU(2)′×SU(2) ∼ SO(4). We obtain U(1) charges listed
in Table II at the row of (15a) and the column of “Branch of 10” and “Branch of
16” by taking a linear combination of U(1)a and U(1)b as

QR ≡ 3
2
Qb +

1
2
Qa, (43)

QA ≡ 3
2
Qb − 3

2
Qa, (44)
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where Qi (i ∈ {a, b, R, A}) denotes the charge of U(1)i. Embedding R in SU(2) ×
U(1)R, we obtain the field contents summarized in Table VII. We explicitly ob-
tain appropriate U(1)Y hypercharges of the SM particles by taking another linear
combination of U(1)R and U(1)A,

QY ≡ −2QR +QA, (45a)
Qα ≡ 16QR + 6QA, (45b)

where QY and Qα are the charges of U(1)Y and U(1)α, respectively. We thereby
obtain SM Higgs, SM fermions and other fermions listed in Table VIII.

(d) S/R (14) = Sp(6)/Sp(4) × U(1), G = Sp(14), and F = 350.
We decompose Sp(14) as

Sp(14) ⊃ Sp(10) × Sp(4)
⊃ Sp(6) × Sp(4)′ × Sp(4)
⊃ SU(3) × Sp(4)′ × Sp(4) × U(1)a
⊃ SU(3) × SU(2) × Sp(4) × U(1)a × U(1)b. (46)

We obtain U(1) charges listed in Table II at the row of (14) and the columns of
“Branch of 10” and “Branch of 16” by taking a linear combination of U(1)a and
U(1)b as

QR ≡ 1
2
(−9Qb + 2Qa), (47a)

QA ≡ −Qb − 3Qa, (47b)

where Qi (i ∈ {a, b, R, A}) denotes the charge of U(1)i. Embedding R in Sp(4) ×
U(1)R, we obtain the resulting field contents summarized in Table VII. We explicitly
obtain appropriate U(1)Y hypercharges of the SM particles by taking another linear
combination of U(1)R and U(1)A as

QY ≡ − 2
29

(5QR + 21QA), (48a)

Qα ≡ − 2
29

(14QR − 5QA), (48b)

where QY and Qα are the charges of U(1)Y and U(1)α. We thereby obtain SM Higgs,
SM fermions and other fermions listed in Table VIII.

We find four candidates of (S/R,G, F ) which give the SM Higgs doublet and at
least one generation of the SM fermions in four dimensions. These models, however,
generate numerous undesired fields that does not appear in the particle spectrum
of the SM as tabulated in Table VIII. These extra fields need to be eliminated to
construct a realistic model based on the candidates we found.

§4. Summary and discussion

We analyzed gauge-Higgs unification models in a spacetime of the dimensionality
D = 14 under the scheme of the coset space dimensional reduction and exhaustively
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searched for the phenomenologically acceptable models with the dimension of the
fermion representation less than 1024.

We first made a complete list of the fourteen-dimensional models by determining
the structure of the coset space S/R, the gauge group G, and the representations F
of G for fermions. We obtained a full list of the possible cosets S/R in Table I by
requiring dimS/R = 10 and rankS = rankR. The gauge groups G are determined
to have either complex or pseudoreal representations (see Table II), and to lead to
one of the following two types of gauge groups after the dimensional reduction to the
four-dimensional spacetime: the GUT-like gauge groups such as SO(10)(×U(1)) and
SU(5)(×U(1)), or the Standard-Model (SM)-like group which is SU(3) × SU(2) ×
U(1)(×U(1)) (see Table IV). The representation F of fermions are determined so
that the matter content of the SM emerges after the dimensional reduction.

We then analyzed the particle contents of the four-dimensional theories that are
induced from each of the sets (S/R,G, F ). We found several interesting models in
the GUT-like cases.

Among the interesting GUT-like models is the one with H = SO(10)(×U(1)),
in which one or more fermions of 16 representation, along with a number of scalars
of 10 representation, are derived in four-dimensional theory. A scalar of 10 can
be interpreted as the electroweak Higgs particle. Two or more fermions of 16 in
the models can account for the generations of the fermions known in the particle
spectra of the SM. The most interesting model in this point of view is the one
for S/R = SO(7) × SU(3)/SO(6) × [SU(2) × U(1)], G = SO(20), F = 512, and
H = SO(10) × U(1). Three fermions of 16 are obtained in this case, suggesting the
three generations of the fermions in the SM. The U(1) charges associated to them
imply a family symmetry under this suggestion.

Similarly, a number of cases of H = SU(5)×U(1) led to the models that induce
fermions of 5̄ and 10 representations with a scalar field of 5 representation. Although
the three sets of fermions are not obtained in these cases, two of them are obtained
for G = Sp(14), S/R = Sp(6)/Sp(4) × U(1), and F = 350, and can serve for the
understanding of the generations.

We also successfully constructed models for H = SU(3)×SU(2)×U(1)×U(1),
where Higgs particle and a generation of the fermions are found. Many unwanted
fermions accompany them, however, and a mechanism to eliminate them is necessary
to build a realistic model.

In contrast, some of the GUT-like cases have only the desired fermions. It is
worthwhile to analyze these models in further detail. An apparent challenge in the
GUT-like cases, however, is the absence of the Higgs particle which breaks the GUT
gauge group down to the SM gauge group. We can employ the Hosotani mechanism,
also known as the Wilson flux breaking mechanism, to circumvent this difficulty.
More detailed analyses are necessary to examine if the models we found interesting
work in the phenomenological building of the models.
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