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Abstract 

Honeycomb structures filled with linearly arranged inclusions were analyzed with a 

finite element method (FEM) to study how the arrangement of rigid inclusions affects 

the in-plane impact behavior of honeycomb structures. Each model was divided into 

several cell regions by inclusion lines. The analysis revealed the effect of inclusion lines 

on the mean stress of the cell region, maximum displacement of the cell region, and the 

order of deformed cell regions. Maximum displacement of the cell region was 

proportional to the width of the cell region, and mean stress of the cell region decreased 

as the width of the cell region increased. Approximate equations for the maximum 

displacement and mean stress of the cell region were derived. The approximations 

accounted for the deformation process of the honeycomb models with inclusion lines 

and revealed the dependence of the order of the deformed cell region on the mean stress 

of the regions. The validity of the approximate equations was confirmed by comparing 

them with experimental results. It was found that the approximate equations enabled us 

to design the in-plane impact behavior of honeycomb structures filled with linearly 

arranged inclusions. 

Key words: Honeycomb structure; Energy absorption; Finite element method; In-plane 

impact behavior; Inclusions 
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1. Introduction 

The honeycomb is a typical cellular structure. Honeycomb structures composed 

of metals, polymers, ceramics, and paper are commonly used as energy absorbing 

materials for various engineering applications such as packaging and protective 

materials, core materials of sandwich panels, and building materials. Deformations of 

honeycombs have been analyzed by assuming that the honeycombs are composed of an 

infinite repetition of identical unit cells [1-10].  

Recently, honeycomb structures having geometrical irregularities such as 

non-periodic cells, imperfect cells and locally strengthened cells have been investigated. 

Non-periodic honeycomb models are often created by using Voronoi tessellations [11]. 

The elastic constants of Voronoi honeycombs were found to vary by several percent 

compared with regular ones [12]. Zhu et al. [13] developed Voronoi models using 

periodic boundary conditions. Zheng et al. [14] studied the deformation mode of 

Voronoi models undergoing dynamic crushing. Gan et al. [15] analyzed 

three-dimensional Voronoi models. Recently, Hwang et al. [16] suggested a laminate 

model to analyze foam materials having non-uniform cell sizes due to the 

manufacturing process. Imperfect cells in honeycomb structures were found to decrease 

the stiffness and strength of a honeycomb [17, 18]. Silva and Gibson [19] showed the 
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effect of imperfect cells on Voronoi honeycombs. Local strengthening of honeycomb 

structures was analyzed by using a honeycomb structure filling some cells with stiff 

inclusions [23]. Various structural irregularities such as irregular shapes, non-uniform 

cell wall thicknesses [20], wavy cell walls, non-uniform wall thickness, missing cell 

walls, non-periodic cells [21], clustered inclusions, and holes [22] were analyzed.  

In our previous study [24], the in-plane impact behavior of honeycomb 

structures randomly filled with rigid inclusions was analyzed by using a finite element 

method (FEM) to clarify effect of inclusions on the deformation process and energy 

absorption. It was found that inclusions disturbed the deformation process. Collapsed 

cells were shielded and pinned by inclusions. Percolation of inclusions was observed; 

the deformation of the honeycomb ceased when inclusions connected the impact side 

and fixed side of the model. Mean stress increased and densification strain, namely, the 

maximum deformation of the honeycomb model decreased as the volume fraction of 

inclusions increased. The results indicated the possibility of improving and designing 

the energy absorption characteristics of honeycomb structures through proper 

arrangement of inclusions. 

 In this study, to explore the possibility of designing the in-plane impact 

behavior of honeycomb structures, we clarified the effect of linearly arranged inclusions 
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filling honeycomb structures by using FEM and obtained useful equations for designing 

the energy absorption characteristics of such structures. The validity of the equations 

derived from FE analysis was confirmed by comparing them with the experimental 

results. The effect of linearly arranged inclusions on the in-plane impact behavior of the 

honeycomb structures was elucidated.  

2. Analysis 

2.1 Analytical model 

2.1.1 Unit cell 

Analytical models were two-dimensional honeycomb structures composed of 

equilateral hexagonal cells, as shown in Fig. 1 (a), in which every side length of the unit 

cell was l and the depth was the unit length. Because actual honeycomb structures are 

manufactured by expanding a stack of partially bonded thin plates [7], the thickness of 

cell walls in the Y-direction was 2h, while that of the other walls was h, as shown in Fig. 

1 (b). 

2.1.2 Analytical models  

The model was composed of M rows (the number of unit cells in the 

Y-direction) and N columns (the number of unit cells in the X-direction). The horizontal 

and vertical lengths of the model were W ( 2)31( N+= ) and L ( lM3= ), respectively. 
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The rigid inclusions were all parallel to the Y-direction; namely, they were linearly 

arranged.  

 Each model was divided into several cell regions by the inclusion lines. The 

width of the cell region between inclusion lines, namely, the interval of the lines was 

defined as the number of cells between inclusions, n in Fig. 1 (b). Honeycomb models 

with geometries as listed in Table 1 were analyzed to consider the effect of these 

inclusions on the model’s deformation behavior.  

2.2 Analytical conditions  

The honeycomb models of the finite element analysis are compressed with a 

low-velocity impact. Every honeycomb model was fixed on the right side, and a rigid 

impactor having a mass of 5.0 kg collided with the left side of the model with an impact 

velocity of 1 m/s, as shown in Fig. 2. The impact loading was only due to the collision 

with the rigid impactor. The width of the impactor was much larger than those of the 

honeycomb models. The apparent cross-sectional area of models were the same as W.  

This problem was analyzed as a plane-stress problem by using an FEM with an 

explicit time integration (RADIOSS, version 4.4q). Each cell wall was discretized by 

three two-dimensional Euler beam elements without transverse shearing deformation, 

and the material was assumed to be elasto-perfectly plastic. The inclusions were 
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approximated as rigid bodies. The friction constant was assumed to be zero. Contact 

deformation between the honeycomb model and the rigid impactor was analyzed using 

the penalty method.  

Compressive stress, σ , was defined as the reaction force of the impactor 

divided by the apparent cross-sectional area of the undeformed honeycomb model, W. 

The displacement of the honeycomb model on the impact side, u, was evaluated from 

the displacement of the impactor after collision.  

3. Numerical results 

To clarify the effect of inclusion lines on the in-plane impact behavior of the 

honeycombs, models with the material properties and geometries listed in Table 2 were 

analyzed.  

3.1 Deformation process 

Fig. 3 shows the deformation process of the model without inclusions, L0(20). 

First, cells collapsed in oblique directions; namely, shear bands occurred and grew from 

the corners of the impact side of the honeycomb (Fig. 3 (b)). More shear bands occurred 

(Fig. 3 (c)), and the model became completely densified (Fig. 3 (d)).  

Figs. 4 and 5 show the deformation processes of models with inclusion lines, 

L2(6) and L6(2). At first, the cell region between the impact side and inclusion line 
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became densificated as shown in Figs. 4 (b) and 5 (b). After that, cell regions between 

inclusion lines deformed (Figs. 4 (c) and 5 (c)); the regions deformed from one neighbor 

to another on the impact side. Each cell region crushed individually, because of the 

shielding effect of the inclusion lines. Finally, region between fixed side and inclusion 

line deformed (Figs. 4 (d) and 5 (d)). The honeycomb models completely densified 

when the impact side and fixed side became connected by inclusions; namely, 

percolation of inclusions occurred.  

3.2 Stress-displacement curve 

Fig. 6 shows the compressive stress-displacement curves of models L2(6) and 

L6(2). The results for the model without inclusions, L0(20), is plotted as a reference. 

The curve of L0(20) had a stress plateau caused by shear band growth after the elastic 

range with an initial sharp peak. At the end of the plateau (the shear band could not 

grow), the stress peaked because compressive deformation of cells began in triangle 

regions near the fixed side of the honeycomb. Finally, the model became densified at u 

= 148.0 mm. The curves of the models with inclusion lines fluctuated with several stress 

peaks caused by densification of each cell region, and mean stresses were higher than 

the one for the model without inclusions. The mean stress increased as the width of the 

cell region became narrower (decreasing n). The curve of model L2(6) had two peaks at 
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u = 33.9 mm and 67.4 mm until the densification of the whole honeycomb. The curve 

for model L6(2) had six peaks, at u = 8.39, 16.7, 29.1, 41.3, 53.1 and 63.1 mm. The 

mean stress due to the deformations between the peaks depended on the width of the 

cell region and were larger than the one of the model without inclusions.  

4. Discussion 

4.1 Maximum displacement 

Let us consider the maximum displacement, maxu , for each cell region, i.e., the 

displacement, at a local densification within a cell region. maxu  can be normalized by 

dividing it by the side length of the unit cell, l. Fig. 7 shows the relationship between 

normalized maximum displacement, lumax , and the width of the region, n. The 

maximum displacements of the cell regions between impact boundary and the inclusion 

line, between the inclusion lines, and between the inclusion line and the fixed boundary 

were distinctly plotted by considering the effect of boundary conditions; the impacted 

boundary where cells can freely deform in the Y-direction, the boundary on the line 

inclusions and the fixed boundary where deformation of cells in Y-direction is restricted. 

The boundary conditions of the cell regions are abbreviated as follows; between impact 

side and inclusion line (IL), between inclusion lines (LL), and between the inclusion 

line and fixed side (LF). The maximum displacements depended on the boundary 
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conditions of the cell regions. LF had the largest maximum displacement, and LL had 

the lowest. lumax  was proportional to n in all cases and could expressed by the 

following approximate equations fitted by the least-squares method: 








=

(LF).46.1
(LL)39.1
(IL)29.1

max

n
n
n

l
u

  (1) 

4.2 Mean stress 

Next, let us consider the mean stress in each cell region, Mσ . Mσ  can be 

normalized by dividing it by the plastic collapse stress of a honeycomb made of 

elasto-plastic materials, plσ  [24], as given by [25]: 

             yspl l
h σσ

2

3
2







= . (2) 

Fig. 8 shows the relationship between normalized mean stress of the cell region, 

plM σσ , and the width of the region, n, of cells in IL, LL, and LF. The mean stresses 

depended on the boundary conditions of the cell regions. The mean stress of cells in LF 

was the highest and lowest in IL. plM σσ  decreased as n increased and can be 

approximated by the following power laws:  









=
−

−

−

(LF).65.1
(LL)69.1
(IL)41.1

22.0

42.0

37.0

n
n
n

pl

M

σ
σ

  (3) 

4.3 Order of cell region deformation 
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Now let us discuss the order of cell region deformation of models with 

inclusion lines. Compression of the equal-interval model deforms the cell region from 

the impact side to the fixed side. The order of cell region deformation is in ascending 

order of mean stress as shown in Fig. 8.  

5. Comparison with experimental results 

5.1 Procedure 

We confirmed the validity of the mean stress-displacement response of a 

honeycomb structure with several inclusion lines by using the mean stress and 

maximum displacement of cell regions gotten from the unit cell geometry and material 

properties (Eqs. (1) and (3)). In the experiment, models L0(18), L2(8/6/4) and 

L3(7/4/3/2) where chosen as honeycomb specimens. The specimens were composed of 

0.076 mm thick aluminum alloy sheets (A3003H19). The geometry and material 

properties listed in Table 3; model L2(8/6/4) had 2 inclusions lines and 3 cell regions of 

n = 8, 6, 4. Model L3(7/4/3/2) had 3 inclusions lines and 4 cell regions of n = 7, 4, 3, 2. 

Acrylic resin (Struers, Versocit) was filled into some cells of the specimens to act as 

inclusions. 

We manufactured an experimental apparatus for applying an axial impact to a 

specimen and measuring the impact force and deformation of the specimen as shown in 
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Fig. 9. The apparatus was a falling drop weight testing machine. Fig. 9 (a) shows the 

impactor (10.5 kg), which was made of a steel bar 1000 mm long and 48 mm in 

diameter. The impactor was freely dropped on a cross-head on a specimen. The impact 

velocity measured in a preliminary experiment was ninety percent of the theoretical 

value, gH2 , where H and g are the drop height of the impactor and the gravity 

acceleration. The drop height was constant (about 150 mm); namely, impact speed was 

about 1.5 m/s. A rubber plate was set on the cross-head to prevent repeated impacts due 

to rebounding of the impactor. Sandpaper was set under the specimen to keep it in place. 

The deformation process was recorded by using a high-speed video camera (Shimadzu, 

HPV-1). The displacement of the steel cross-head was measured as the deformation of a 

specimen, u, by using an optical displacement transducer (Zimmer, 100B). The impact 

force history, P, was also measured using a load cell made of steel. The details of the 

load cell are shown in Fig. 9 (b). The lowest natural frequency of this load cell was 7 

kHz, as determined in a preliminary experiment [26]. From the axial deformation 

histories of the top end of a specimen and impact force P, the absorbed energy, abE , 

defined as the external work of the impactor, was calculated as follows; 

( )∫= .duuPEab  (4) 

5.2 Experimental results and discussion 
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5.2.1 Results for model L2(10/6/2) 

Table 4 shows mean stress, maximum deformation, and the order of 

deformation of each cell region in model L2(10/6/2) derived from the prediction 

equation. In the Table, deformation of the cell regions was predicted to occur in order of 

lower mean stress given by Eq. (3). The predicted order of the deformed cell region 

matched the experimental result in Fig. 10.  

Fig. 11 shows the stress-displacement curves of model L2 (10/6/2) measured in 

the experiment and the predicted mean stress-displacement curve given by Eqs (2) and 

(3). The predicted curve was drawn by using maxu  and Mσ  for each cell region listed 

in Table 4. The stress-displacement curve of model L0(18) measured in the experiment 

is plotted as a reference. The experimental stress-displacement curve initially showed 

compressive stress due to collapse of cell region IL having n = 10. After that, 

compressive stress increased through collapse of cell region LL having n = 6, and the 

model eventually completely densified. The experimental result was in good agreement 

with the predicted mean stress-displcement curve. Additionally, the experiment 

confirmed that the plateau stress in the curves of model L2(10/6/2) was higher than that 

of model L0(18).  

Fig. 12 shows the relationship between absorbed energy per unit volume of the 
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honeycomb structures, abE , and displacement for model L2(10/6/2). The absorbed 

energy of the experimental results was calculated with Eq. (4) and the predicted 

energies were calculated by dividing the area below the mean stress-displacement curve 

in Fig. 11 by L. The predictions result agreed with the experimental results. The 

absorbed energy of model L2(10/6/2) was confirmed to be higher than the that of model 

L0(18). 

5.2.1 Results for model L3(7/4/3/2) 

Table 5 shows mean stress, maximum deformation and the order of 

deformation of each cell region in model L3 (7/4/3/2) derived from Eqs. (2) and (3).  

Fig. 13 shows the experimental stress-displacement curve of model L3(7/4/3/2) 

and the predicted mean stress-displacement curve. The predicted curve was drawn by 

using maxu  and Mσ  of each cell region listed in Table 5. The experimental 

stress-displacement curve initially showed compressive stress due to collapse of cell 

region IL having n = 7. After that, compressive stress increased through collapse of cell 

regions LL having n = 4 and 3, and the model eventually completely densified. The 

experimental results matched with the predicted mean stress-displcement curve. Fig. 14 

shows the relationship between the absorbed energy per unit volume, abE , and 

displacement for model L3 (7/4/3/2). The predicted result, which agreed with the 
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experimental result was larger than the that of model L0(18).  

The predicted effect of linearly arranged inclusions derived from FEM analysis 

was confirmed by comparing it with experimental results. The method using Eqs. (1) 

and (3) and the order of deformed cell regions in terms of Mσ  is an efficient way to 

predict the compressive stress-displacement curve and energy absorption process of a 

honeycomb structure having linearly arranged inclusions. A honeycomb structure 

having a particular energy absorption process；deformation process, compressive stress 

in the plateau region and absorbed energy, can be designed by using Eqs. (1) and (3) by 

arranging line inclusions at certain intervals.  

6. Conclusion 

The in-plane impact behavior of honeycomb structures with linearly arranged 

inclusions was analyzed by using FEM. On the basis of the FEM results, approximate 

equations of the mean stress and maximum displacement of the cell region and a 

method of determining the order of the deformed cell region were devised. The 

arrangement of line inclusions was discussed as it relates to the design of the 

deformation process, compressive stress, and absorbed energy of honeycomb structures. 

It was found that the maximum displacements of the cell region depended on 

the boundary conditions of the cell regions; the maximum displacement of the cell 
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region between the inclusion line and the fixed side was the highest, and the one 

between the impact side and the inclusion line was the lowest. Each maximum 

displacement was proportional to the width of the cell region and could be 

approximated by Eq. (1). The mean stresses of the cell region also depended on the 

boundary conditions of the cell regions; the mean stress of the cell region between the 

inclusion line and fixed side was the highest, and the one between the impact side and 

inclusion line was the lowest. Each mean stress decreased as the width of the cell region 

increased and could be approximated by Eq. (3). The order of deformation of the cell 

regions could be determined by comparing the regions’ mean stresses. 

The validity of the approximate equations was confirmed by comparing them 

with experimental results. The results indicated that it is possible to design an arbitrary 

deformation process, compressive stress in the plateau region, and absorbed energy of 

honeycomb structures by using the approximate equation to arrange line inclusions at 

certain intervals.  
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Captions of tables and figures 

Table 1 Geometries of honeycomb models 

Table 2 Material properties and geometry of unit cell 

Table 3 Material properties and geometry of specimens  

Table 4 Mean stress, maximum deformation and order of deformed cell region for each 

cell region of model L2(10/6/2) derived from prediction equation 

Table 5 Mean stress, maximum deformation and order of deformed cell region for each 

cell region of model L3(7/4/3/2) derived from prediction equation 

Fig. 1 Analytical model: (a) hexagonal unit cell and (b) honeycomb model with 

linearly arranged inclusions. 

Fig. 2 Analysis conditions. 

Fig. 3 Deformation process in model without inclusions, L0(20). 

Fig. 4 Deformation process in model L2(6). 
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Fig. 5 Deformation process in model L6(2). 

Fig. 6 Stress-displacement curves of equal-interval models: (a) model L2(6) and (b) 

model L6(2). 

Fig. 7 Relationship between normalized maximum displacement and width of cell 

region. 

Fig. 8 Relationship between normalized mean stress and width of cell region. 

Fig. 9 Experimental equipment: (a) experimental apparatus and (b) load cell (unit 

mm). 

Fig. 10 Deformation process of model L2(10/6/2) (experimental result). 

Fig. 11 Stress-displacement curves of model L2(10/6/2). 

Fig. 12 Absorbed energy per unit volume displacement of model L2(10/6/2). 

Fig. 13 Stress-displacement curves of model L3(7/4/2). 

Fig. 14 Absorbed energy per unit volume displacement of model L3(7/4/2). 
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Table 1 Geometries of honeycomb models 

Model ID 
Number of 

inclusion lines 
Width of cell regions 

n (cells) 
Number of cells  

M (cells) N (cells) 
L0(20) 0 20 20 21 
L1(9) 1 9/9 20 21 
L2(6) 2 6/6/6 20 21 
L2(16) 2 16/16/16 50 21 
L3(4) 3 4/4/4 20 21 
L4(3) 4 3/3/3/3 20 21 
L6(2) 6 2/2/2/2/2/2 20 21 
L9(1) 9 1/1/1/1/1/1/1/1/1 20 21 

In the model ID column, the number after L and the ones in the parenthesis denote the 

number of inclusion lines and widths of cell regions, respectively. As for the widths of 

cell regions, components of the model are expressed by the widths of the cell regions, n 

and inclusion lines (expressed as slashes).  
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Table 2 Material properties and geometry of unit cell 

Young's modulus (GPa) 70 
Poisson's ratio 0.33 

Density (kg/m3) 2700 
Yield stress, σys (MPa) 34 

Side length, l (mm) 5.00 
Wall thickness, h (mm) 0.10 
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Table 3 Material properties and geometry of specimens 

Material properties 

Young's modulus (GPa) 70 
Poisson's ratio 0.33 

Density (kg/m3) 2700 
Yield stress, σys (MPa) 230 

Unit cell 
Side length, l (mm) 4.0 

Wall thickness, h (mm) 0.076 

Honeycomb 

Model ID L0(18) L2(10/6/2) L3(7/4/3/2) 
Number of inclusion lines 0 2 3 
Width of cell regions, n 18 10/6/2 7/4/3/2 

Number of cells about 18×20 (about 351 cells) 
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Table 4 Mean stress, maximum deformation and order of deformed cell region for each 

cell region of model L2(10/6/2) derived from prediction equation 

Width of deformed 
cell region, n 

Boundary 
condition 

Mean stress, 

Mσ  (kPa) 

(Eq. (3)) 

Maximum 
deformation, 

maxu (mm) 

(Eq. (1)) 

Order of  
deformed region 

(Prediction) 

10 IL 33.0 48 1 
6 LL 43.3 33.4 2 
2 LF 78.4 11.7 3 
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Table 5 Mean stress, maximum deformation and order of deformed cell region for each 

cell region of model L3(7/4/3/2) derived from prediction equation 

Width of deformed 
cell region, n 

Boundary 
condition 

Mean stress, 

Mσ  (kPa) 

(Eq. (3)) 

Maximum 
deformation, 

maxu (mm) 

(Eq. (1)) 

Order of  
deformed region 

(Prediction) 

7 IL 38.6 33.6 1 
4 LL 51.5 22.2 2 
3 LL 58.3 16.7 3 
2 LF 78.4 11.7 4 
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(a)                                (b) 

Fig. 1 Analytical model: (a) hexagonal unit cell and (b) honeycomb model with linearly 

arranged inclusions. 
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Fig. 2 Analysis conditions. 
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(a)                   (b)                (c)            (d) 

Fig. 3 Deformation process in model without inclusions, L0(20). 

 

 

 

 

 

 

 

 

 

 

 

 

mm8.14=u mm0.148=umm0.93=umm0=u



Nakamoto H, Adachi T, Araki W, June 8, 2009,   

 

30/41 

 

(a)                    (b)                 (c)             (d) 

Fig. 4 Deformation process in model L2(6). 
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(a)                   (b)                 (c)           (d) 

Fig. 5 Deformation process in model L6(2). 
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(b) 

Fig. 6 Stress-displacement curves of equal-interval models: (a) model L2(6) and (b) 

model L6(2). 
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Fig. 7 Relationship between normalized maximum displacement and width of cell 

region. 
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Fig. 8 Relationship between normalized mean stress and width of cell region. 
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(a)                                 (b) 

Fig. 9 Experimental equipment: (a) experimental apparatus and (b) load cell (unit mm). 
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(a)                                       (b) 

 

    

 

(c)                                       (d) 

Fig. 10 Deformation process of model L2(10/6/2) (experimental result). 

Impact was applied to the top. 
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Fig. 11 Stress-displacement curve of model L2(10/6/2). 
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Fig. 12 Absorbed energy per unit volume-displacement curve of model L2(10/6/2). 
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Fig. 13 Stress-displacement curve of model L3(7/4/2). 
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Fig. 14 Absorbed energy per unit volume-displacement curve of model L3(7/4/3/2). 

 

 

 


