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Recognition of Plain Objects Using Local Region Matching
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SUMMARY Conventional interest point based matching requires com-
putationally expensive patch preprocessing and is not appropriate for recog-
nition of plain objects with negligible detail. This paper presents a method
for extracting distinctive interest regions from images that can be used
to perform reliable matching between different views of plain objects or
scene. We formulate the correspondence problem in a Naive Bayesian
classification framework and a simple correlation based matching, which
makes our system fast, simple, efficient, and robust. To facilitate the match-
ing using a very small number of interest regions, we also propose a method
to reduce the search area inside a test scene. Using this method, it is possi-
ble to robustly identify objects among clutter and occlusion while achieving
near real-time performance. Our system performs remarkably well on plain
objects where some state-of-the art methods fail. Since our system is par-
ticularly suitable for the recognition of plain object, we refer to it as Simple
Plane Object Recognizer (SPOR).
key words: object recognition, interest point, interest region, region match-
ing

1. Introduction

Interest point detection across images is essential in many
computer vision problems. The potential similarities be-
tween two images can be achieved using the local region
matching technique, where the regions are centered on the
detected interest points. In the context of object and scene
recognition, local region matching has many advantages
over global matching because it is more efficient for occlu-
sions and viewpoint changes. Local region matching has
been used for a variety of applications. Typical applications
include image registration, and object detection [1], [3], [4].

Recognition of specific objects is one of the important
applications of local region matching. SIFT [1] is one of the
most successful methods being used for such applications.
However, due to high computational overhead, SIFT is not
suitable for real-time applications. Moreover, performance
of SIFT greatly depends on the object type. For example,
SIFT finds only a single match between the images shown
in Fig. 1 even though many keypoints were found in both im-
ages. The cause of failure of SIFT on this object is that the
approach used for SIFT is not robust enough to extract stable
keypoints from plain objects with negligible texture/pattern
content as shown here. In this paper, these types of objects
are called ‘plain objects’. Plain objects usually do not have
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Fig. 1 Failure of SIFT to recognize a plain object.

much detail. Matching techniques based on popular inter-
est point detectors such as [5]–[7] perform poorly on plain
objects.

In this paper we propose a method to extract interest
points from plain objects. Our approach to localize the key-
points is similar to [3]. However, the approach used in [3]
for assigning orientation to the keypoints is not suitable for
plain objects. We propose a different way of assigning ori-
entations to keypoints that is applicable to plain objects. In
addition to the orientations, we also assign region lengths to
the interest regions which is very effective in region match-
ing. We call our system Simple Plain Object Recognizer
(SPOR).

For region matching, our approach relies on an offline
training phase. In [3], multiple views of the keypoints to
be matched are used to train randomized trees to recognize
them based on a few pairwise intensity comparisons. How-
ever, in SPOR we used simple intensity features to train a
simple Naive Bayesian classifier. As in [3], we train our
classifier by synthesizing many views of the keypoints ex-
tracted from a training image to deal with scale and affine
changes. As the regions found in a plain object is quite sim-
ilar, we also use a correlation based region matching tech-
nique in parallel to the Naive Bayesian classifier.

As the interest regions found in a plain object are very
plain and texture-free, many false matching happens with
the interest regions found in the background. If we could
roughly estimate the location of the object, then the number
of false matches would significantly reduce. We have devel-
oped a technique for representing a multicolor object using
only a single color which is included in SPOR to roughly
segment a plain object from the background and narrow
down the search area.

It has been shown that SPOR is fast and works well on
plain objects. SPOR yields both real-time performance and
robustness to viewpoint and lighting changes. This makes
SPOR effective for real-time object detection.
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We might think that a plain object recognition is easy
compared to that for complex objects. However, this may
not be necessarily true, since the number of available fea-
tures is small as mentioned before. Any single object recog-
nition method might not work for all objects. Therefore,
we have proposed an object recognition method in which
we classify object recognition cases depending on the object
complexity and other attributes and recognition task, and use
an appropriate object recognition method for each case [9].
The method proposed in this paper can be used for a case
in this framework to recognize plain objects in the task to
detect specific objects seen before.

Definition of plain object is given in Sect. 2. We de-
scribe the interest region detection technique in Sect. 3. In
Sect. 4, we discuss the region matching. Training procedure
of the Naive Bayesian classifier is discussed in Sect. 5. In
Sect. 6 we present the ways to improve the recognition. We
show the results in Sect. 7 and finally we conclude our work
in Sect. 8.

2. Definition of Plain Object

It is quite difficult to draw a boundary line between plain
and non-plain objects. However, an object with the follow-
ing characteristics may be defined as a plain object: (1) neg-
ligible texture content (2) location of keypoints (SIFT, Har-
ris and similar) changes with the change of viewpoint and
lighting conditions (3) negligible sharp corners (therefore
popular corner detectors do not work). Plain objects usu-
ally do not contain labels with text. Some examples of plain
and non-plain objects have been shown in Fig. 2 and Fig. 3
respectively.

To show the weakness of SIFT for plain object match-
ing, we perform an experiment and show the result in Fig. 4.
In both of the images we found many SIFT keypoints. How-
ever, not a single match have been found. In contrast, SIFT
performs excellently in detection of textured objects shown
in Fig. 3.

3. Interest Region Detection

In our approach, we need a method to detect interesting re-
gions in a plain object. Conventional interest point extrac-
tion methods such as Harris corner detector and SIFT per-
form poorly on such objects. We choose the keypoint de-
tector of [3] to extract such regions for its speed, simplicity
and stability. Such regions are identified by one or more so
called keypoints.

The basic idea of [3] is to consider the intensities along
a circle centered on each candidate keypoint on an interest
region. Here intensities of two diametrically opposed pixels
on this circle are compared with that of the candidate key-
point at the center to test whether the point is a keypoint or
not.

Keypoints found at lower scales are useful for non-
plain objects because their locations are stable in these ob-
jects. However, in a plain object, locations of keypoints

Fig. 2 Plain object examples: (a) cloth made toy (b) mobile telephone
(c) ball pen (d) portable drive.

Fig. 3 Two non-plain or textured objects.

Fig. 4 SIFT keypoints found on the different images of a pen.

at lower scales are quite unstable and usually they are not
placed on the interest regions found in a plain object. As
we are interested in extracting the interest regions from the
plain objects, we discard the lower scale keypoints and re-
tain only the higher scale keypoints. To reduce the process-
ing time, we extract keypoints only at two different scales.
As a result we can extract interest regions at real-time. In-
terest regions found on a cloth made toy at different scales
are shown Fig. 6 (a) and Fig. 6 (b).

The framework used in [3] to attribute the orientation
to the keypoints is not suitable in our application. A plain
object does not have corner like regions and the locations of
keypoints resulting from a plain object are not very stable.
We need to assign orientations to the keypoints such that
the orientations are invariant to slight changes in location.
In [3] a keypoint is assigned the orientation αm (see Fig. 5)
such that:

αm = argmax
α∈[0;2π]

|I(m) − I(m + dRα)| (1)
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Fig. 5 Orientation assignment to a keypoint in [3].

Fig. 6 (a) Interest points found at lower scales are not located on the
interest regions (b) Interest points found at higher scales are usually located
on the interest regions (c) Computation of orientation and region length.

Here, I is the smoothed image, m is the location of
the keypoint, dRα = (R cosα; R sinα) and R is the radius.
If the location of the keypoint slightly changes (which is
very common in a plain object), the orientation also changes
(Fig. 5).

To compute a more stable orientation, eight lines are
drawn passing through a keypoint at angles from 0◦ to 360◦
degree at intervals of 45◦ degree (see Fig. 6 (c)). Then we
calculate the length of the portion of a line lθi containing

pixels of approximately the same intensities. An interest
region is assigned the orientation θ such that:

θ = argmax
θi∈[0;2π]

lθi (2)

Sometimes a keypoint is located near to the center of a
circular interest regions. In this case, lθ is almost equal in all
directions and no orientation is assigned to that interest re-
gion. The length of the line, lθ, is also assigned to a keypoint
as the region length. This helps to classify interest regions
correctly.

4. Region Matching

After the feature points have been extracted from the im-
ages, two main approaches can be used to achieve a match-
ing. In the first, computation of local descriptors invariant
to changes such as perspective and lighting [1], [8] is done.
The second approach uses statistical learning based tech-
niques to model the set of possible appearances of a patch.
The approach used in [4] uses PCA and Gaussian Mixture
Models but does not account for perspective distortion. This
has been considered in [3] using Randomized Trees.

In [3] the set of possible patches around an image fea-
ture under changing perspective and lightning conditions
has been considered as a class. This approach is fast and ef-
fective to achieve a real-time performance. In region match-
ing, a true matching between all patches is not required; it
is enough to recognize some patches successfully. A robust
estimator such as RANSAC can be used to detect the object.

We follow the statistical learning based technique for
region matching. However, in a plain object, number of
interest regions is very small and these regions are not
very distinctive. Sometimes, number of correct matchings
found from a single classifier is not enough to detect the
object. To overcome this difficulty we apply a correlation
based method in parallel to increase the number of correct
matches.

4.1 Local Region Matching Using Naive Bayesian Classi-
fier

In our representation, a class represents the set of all pos-
sible appearances of an interest region surrounding a key-
point. Our aim is to classify the interest regions found in a
test image into the most likely class. Let C = {c1, c2, . . . , ck}
be the set of K possible classes and x = {x1, x2, . . . , xd} is
the set of continuous features extracted from a patch. Given
a feature vector {x1, x2, . . . , xd}, our task is to estimate the
most probable class such that

ĉi = argmax
ci

P (C = ci|x1, x2, . . . , xd) (3)

Using Bayes’ theorem, we write

P (C = ci|x1, .., xd) =
p (x1, .., xd|C = ci) P (C = ci)

p (x1, . . . , xd)
(4)
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If the prior P(C) is uniform, our problem is to find

ĉi = argmax
ci

p (x1, x2, . . . , xd |C = ci) (5)

For a patch of size 20×20 pixels the length of a feature
vector d is 400. Therefore, evaluation of joint probability in
Eq. (5) is not feasible. Under the “naive” conditional inde-
pendence assumption, the conditional distribution over the
class variable C can be expressed as:

p (x1, x2, .., xd |C = ci) =
d∏

j=1

p (xi|C = ci) (6)

However, in the real world, the independence assump-
tion may not be true. In order to meet the independence as-
sumption, we do PCA before applying the data to the Naive
Bayes classifier. By decorrelating the features, PCA makes
them statistically independent. PCA also reduces the di-
mension of the feature vectors by removing the irrelevant
features.

4.2 Local Region Matching Using Correlation

Correlation is a simple way to find the putative matching
between interest regions. This may be done by looking for
regions that are maximally correlated with each other within
windows surrounding each keypoint. Only the points those
correlate most strongly with each other are kept.

At first, from both the training and test images, images
smoothed with an averaging filter are subtracted. This com-
pensates for brightness differences in each image. Then a
correlation matrix is constructed which holds the correlation
strength of every point relative to every other point. Let p1
and p2 are the arrays of x, y locations of the detected key-
points in the training and test images respectively. We find
the putative matches between the interest regions centered
at the locations stored in p1 and p2 that are maximally cor-
related with each other. Only the points those correlate most
strongly with each other in both directions are retained.

5. Training of Naive Bayes Classifier

In our application, the number of classes K is small. As a
result, we can easily estimate the class prior p (C = ci) by
treating C as a multinomial random variable:

p (C = ci) = πc (7)

where π is a vector containing class probabilities. The Max-
imum Likelihood Estimation (MLE) is done as:

πMLE
c =

Nc

N
(8)

Here Nc is the number of training examples with class
label c and N is the total number of training examples.
As there is no zero counts in any class, Dirichlet prior is
not required. To evaluate the class conditional densities,

p (x1, x2, . . . , xd|C = ci), we assume that the parameters of
each distribution is independent. We also assume that the
features are normally distributed. Now, due to Naive Bayes
assumption, we evaluate the class conditional densities as

p (x1, x2, .., xd |C = ci, θc) =
d∏

j=1

N
(
xi|μ jc, σ jc

)
(9)

K × d separate Gaussian parameters μ jc, σ jc have been
estimated from the training data. To generate the feature
vectors, we cropped regions ranging from 10×10 to 20×20
pixels. Then we resized these patches to 10 × 10. This re-
sults in a feature vector of length 100. Extracting patches of
variable size enable us to deal with scale invariance. Using
PCA, feature vector dimension is reduced to 40. The patch
size and PCA dimension has been chosen empirically for
speed and performance. To build an object model, we use
a single image of the object and generate many new views
of the object using affine deformations, and crop training
patches surrounding each keypoint.

6. Improving Correspondence

Recognition of a plain object in a cluttered scene is highly
challenging using region correspondence alone as only very
few interest regions are available in such an object. As an
example, we get around 5 interest regions on the experi-
mental object shown in Fig. 6 (a). During recognition, many
false matching occurs with the interest regions found from
the background. To solve this problem, we propose a novel
way to reduce the candidate area of a test scene. We also
use affine solution to eliminate the outliers and to estimate
the object pose.

6.1 Segmentation

We use color information of the object of interest to search
on the scene for a putative match. However, for a multicolor
object, it is difficult to do so. If we could represent a mul-
ticolor object using only a single color, it becomes easier.
To find the base color of a multicolor object we calculate
the convex hulls of color regions and select the color with
largest area inside the convex hull as the base color. We il-
lustrate the process in Fig. 7. Here a glass shaped container
of ‘ramen snack’ is considered. There are two dominant col-
ors in this object: red and yellow. We extracted both colors
and computed the number of pixels in each color. In the
‘Red’ area there are 6712 pixels and in the ‘Yellow’ area
there are 6661 pixels; both colors cover almost equal areas.
Then, the convex hull is computed and filled for ‘Red’ as
shown in Fig. 7 (f) and for ‘Yellow’ as shown in Fig. 7 (i).
In this case, as the ‘Red’ area is larger, ‘Red’ is considered
as the base color of the object and will be used to describe
it. We use a non-plain object in this example to show the
effectiveness of our method. For a plain object it is much
easier.

In Fig. 8, we demonstrate the segmentation process.
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Fig. 7 Base-part color detection (a) ramen snack (b) red area (c) yellow
area (d) point set of red area (e) convex hull (f) area of red region (g) point
set of yellow area (h) convex hull (i) area of yellow region.

Fig. 8 (a) A test scene with interest regions found both in the target and
the background (b) Segmentation by base color to reduce the search area
(c) Convex hull is filled to include the different color regions within the
object contour.

Our task is to roughly locate the object of interest and to
eliminate the interest regions coming from the background.

In the first step of segmentation, we convert the test
image from RGB to L*a*b* color space. Then we classify
the colors in a*b* space using K-means clustering. Then
we label every pixel in the image using the results from K-
means. Using pixel labels, we separate the color regions and
retain that region which is the most similar to the base color
of the model object. Then the segmented regions are filled
by computing convex hull. Now we have to search only
these areas for a putative match. Sometimes, in multicolor
objects, convex hulls corresponding to each color regions do
not include the other color regions. In this case, more than
one color information is required for segmenting the object.

6.2 Outlier Elimination and Pose Estimation

Sometimes the interest regions found on a plain object are

almost similar. As a result, false matching occurs fre-
quently. Usually, an interest point on the model object may
be matched with two or more regions on the test object.
Moreover, as the number of interest regions may be very few
(e.g. 3), it is required to recognize the object with very few
matches. We like to perform recognition with as few as 3
feature matches. The affine solution provides a satisfactory
way to eliminate false matching and to estimate the object
pose. For the 3D objects used in this paper, an affine solu-
tion works well within a limited 2D and 3D rotation. Using
a similar approach in [1], we write the affine transformation
of a model point

[
x y
]T to an image point [u v]T as:[

u
v

]
=

[
m1 m2

m3 m4

] [
x
y

]
+

[
tx

ty

]
(10)

where
[
tx ty
]T

is the model translation and the mi pa-
rameters represent affine rotation, scale, and stretch. To
solve for the transformation parameters, we rewrite Eq. (10)
as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x y 0 0 1 0
0 0 x y 0 1

. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1

m2

m3

m4

tx

ty

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u
v
.
.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

This equation is written for a single match, and we need
at least 3 matches to provide a solution. It can be written as:

Ax = b (12)

The least-squares solution for x can be determined by
solving:

x = [ATA]−1ATb (13)

Outliers are eliminated by checking for agreement be-
tween each interest regions of the test object and the object
model. If fewer than 3 points remain after discarding out-
liers, then the match is rejected. After outliers are removed,
the least-squares solution is re-solved with the remaining
points and this process is repeated. The final decision of
acceptance of a model hypothesis is found using the proba-
bilistic model given in [2].

7. Results

We compare our system with SIFT [1] and [3], which are
state-of-the-art techniques used for the recognition of spe-
cific objects. We show that SPOR yields much better per-
formance than SIFT and [3] on plain objects in spite of its
simplicity. Failure of SIFT is frequent on such objects. At
first we compare recognition performance and then compare
the processing times.

7.1 Comparison of Matching Performance

To test the SPOR we choose several household objects and
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Fig. 9 Matching results of SPOR.

the most of them are plain. The matching results have been
presented in Fig. 9. The test scenes cover translation, ro-
tation, scale change, affine transformation, and illumina-
tion changes. The size of the training and test images are
320 × 240. Successful matchings have been found in exper-
iments shown in Figs. 9 (a) to 9 (l). In Figs. 9 (m) and 9 (n),

SPOR could not get correct matching. The object shown in
Fig. 9 (m) is not plain (textured) and the keypoints at lower
scales (discarded in SPOR) are important for correct match-
ing. Object shown in Fig. 9 (n) is too plain to get enough
interest regions and SPOR could not match correctly.

In Figs. 9 (a) to 9 (d), we used color segmentation to
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Table 1 Comparison of matching performance.

object and test scene SIFT [3] SPOR
pair (see Figure 9)

a fail fail success
b fail fail success
c fail fail success
d success fail success
e fail fail success
f fail fail success
g fail fail success
h success fail success
i fail fail success
j success fail success
k success fail success
l success fail success
m success success fail
n fail fail fail

eliminate some false matchings as the interest regions are
not very distinctive. We did not use color information of the
objects at all in the next ten experiments. However, we get
successful matching using SPOR in the eight cases.

To compare SPOR with SIFT and [3], we used the same
training and test scene pairs as shown in Fig. 9. Comparison
results are given in Table 1.

To produce the results using SIFT, we used the code
provided by David Lowe on his website [10], which com-
putes the Laplacian at several levels for each octave. We did
not tune any parameters of SIFT and default values were
used. Code of [3] has been collected from the author’s web-
site [11]. To test SPOR, we used the keypoint detector of
[3] only at two scales. To compute the orientation and in-
terest region length of the keypoints, we used the method
proposed in Sect. 3. Although our method is much simpler,
it performs surprisingly well as we see in the results.

One of the strength of SPOR is that it can find correct
matching within two regions even if the keypoints moves
slightly from the corresponding positions in the test scene.
This can be noticed in Figs. 9 (a), 9 (f), 9 (g), 9 (i) and 9 (k).
However, this type of matching is not found in SIFT and [3].
Moreover SIFT is not suitable to find the interest regions
on plain objects. For example, SIFT finds large number of
keypoints on the object shown in Fig. 9 (a). However, these
keypoints are not found on the corresponding locations of
the same object in the test scene. On the other hand, SPOR
tries to locate keypoints on the informative regions of an
object. Another advantage of SPOR is that it also works on
textured objects if interest regions are found at higher scales.

7.2 Comparison of Speed

As the comparison of speed between two algorithms de-
pends on the codes, we tried to be fair as much as possible.
To compare SPOR against SIFT we used the hybrid codes
written in C++ and MATLAB as the SIFT code available to
us is hybrid. The size of the input images are 320 × 240 in
both cases. In Table 2, comparison results have been shown.
In terms of speed, SPOR performs similarly as [3]. SPOR
does not yield real-time performance in MATLAB environ-

Table 2 Comparison of speed between SPOR and SIFT.

Platform SIFT SPOR
C++ and MATLAB Feature extraction 3.55 sec 0.13
MATLAB Feature matching 4.48 sec 0.24 sec
MATLAB Training N/A 1.22 sec

ment. However, in C++ we achieved real-time performance
from SPOR. In this comparison, we used a Intel Pentium 4,
2.8 GHz, 512 MB RAM machine with Windows XP.

8. Conclusions

We proposed a method named SPOR which is very effec-
tive for the recognition of specific plain objects where many
state-of-the art methods fail. The extraction of interest re-
gions described in this paper is particularly useful in match-
ing plain objects, which enables the correct match between
a test image and the model image. This distinctiveness is
achieved by assigning orientation and region length to a lo-
cal region of the image. Computation of these interest re-
gions is efficient, yielding a real-time performance on stan-
dard PC hardware. This representation is found effective
in occlusion, affine distortion, scale change, and change in
illumination. Usually the interest regions found in a plain
object are very plain, texture-free, and vulnerable to false
matching. We proposed a technique for representing a mul-
ticolor object using only a single color which is useful to
segment a plain object from the background. This reduces
false matching considerably. SPOR uses two parallel meth-
ods for the classification of interest regions. One is naive
Bayesian classifier and the other one is correlation based
matching. Future research directions include locating inter-
est regions accurately and effectively. The feature we used
in this paper is only the grayscale intensity. Further dis-
tinctiveness could be achieved using illumination-invariant
color descriptors. Moreover, extensive testing is required
using full 3D viewpoint and illumination changes using rich
dataset of plain objects.
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