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We investigate ten-dimensional gauge theories whose extra six-dimensional space is a compact coset

space, S=R, and whose gauge group is a direct product of two Lie groups. We list candidates of the gauge

group and embeddings of R into them. After dimensional reduction of the coset space, we find fermion

and scalar representations of GGUT � Uð1Þ with GGUT ¼ SUð5Þ, SOð10Þ and E6, which accommodate all

of the standard model particles. We also discuss possibilities to generate distinct Yukawa couplings among

the generations using representations with different dimensions for GGUT ¼ SOð10Þ and E6 models.
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I. INTRODUCTION

The standard model (SM) has been successful in de-
scribing the phenomenology of elementary particle physics
up to the energy of order TeV. Not only does it explain
experimental results, but it also gives us deeper insight into
the fact that gauge symmetry governs the interactions
among the particles and its spontaneous breaking increases
particle masses. Despite its success, the SM is not a sat-
isfactory model because of the choice of gauge groups and
because the particle content is the input of the model, and
the parameters in the Higgs and Yukawa sectors, which are
responsible for the masses, are not predictable. Grand
unification addresses the former points by unifying the
gauge symmetries into a single gauge group and the fer-
mions into larger representations. But new scalars are
required to break the grand unification symmetry in the
same manner as the SM, resulting in the introduction of
more free parameters than those in the SM. Therefore, a
plausible framework for physics beyond the SM will be a
unification of the Higgs and the gauge bosons.

The coset space dimensional reduction (CSDR) scheme
is one of the attractive approaches in this regard [1–6]. This
scheme introduces a compact extra-dimensional space
which has the structure of a coset of Lie groups, S=R.
The Higgs field and the gauge field of the SM are merged
into a gauge field of a gauge group G in the higher-
dimensional spacetime. The SM fermions are unified into
a representation of this gauge group. The particle content
surviving in four-dimensional theory is determined by the
identification of the gauge transformation as a rotation
within the extra-dimensional space. The four-dimensional
gauge symmetries are determined by embedding R into G.
Since the Higgs originates from extra-dimensional compo-

nents of the gauge field, the Higgs and Yukawa sectors in
the four-dimensional Lagrangian are uniquely determined.
Furthermore, as shown in Refs. [7–10], it is possible to
obtain chiral fermions when the total dimension D of the
spacetime is even. The chiral fermions can be obtained
even from (pseudo)real representations in D ¼ 8nþ 2
(D ¼ 8nþ 6) [7,10].
The case D ¼ 10 is the most interesting because the

superstring theory, which is a candidate of a unified theory
including gravity, suggests that this world exists in ten-
dimensional spacetime. Thus, CSDR models of D ¼ 10
can bridge the superstring theory and the SM. In this spirit,
many works have been done in ten dimension, but no
realistic model has emerged yet [3,11–18]. A major ob-
stacle to building realistic models is the difficulty to obtain
all the SM fermions. One of the critical reasons for this
difficulty is the smallness of the SOð6Þ spinor representa-
tion. Another reason is the small degree of freedom in
embedding R into G. These facts strongly restrict the
fermion representations surviving in four dimensions.
In this paper, we introduce a new freedom to the embed-

ding of R intoG by allowingG to be a direct product of two
Lie groups in order to overcome the latter difficulty. We
have more candidates for G and the embeddings of R into
them, providing more possibilities to obtain the SM fermi-
ons. Furthermore, one of the gauge groups can be respon-
sible for the four-dimensional gauge symmetry, while the
other can be identified with a family symmetry [19–22],
which generates a flavor structure in the Yukawa couplings.
Thus, it is worthwhile to study the CSDR scheme with
direct product gauge groups in ten dimensions. We exhaus-
tively search for fermion content in the SM and in the grand
unified theories (GUTs) with SU(5), SO(10), and E6, limit-
ing the dimension of a fermion representation to less than
1025.
This paper is organized as follows. In Sec. II, we briefly

recapitulate the scheme of CSDR for the case with a gauge
group of ten-dimensional gauge theory which has direct
product structure, and the construction of the four-
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dimensional theory by the scheme. In Sec. III, we obtain
the combinations of the coset space S=R and the gauge
group G of the ten-dimensional theory. We first obtain the
phenomenologically plausible coset space S=R, and then
we restrict the possible gauge group G for each S=R. In
Sec. IV, we exhaustively list the viable models in four
dimensions. Section V is devoted to a summary and
discussions.

II. CSDR SCHEME WITH A DIRECT PRODUCT
GAUGE GROUP

In this section, we briefly recapitulate the scheme of
coset space dimensional reduction in ten dimensions with a
direct product gauge group [3].

We begin with a gauge theory defined in ten-
dimensional spacetimeM10 with a gauge group G ¼ G1 �
G2, where G1 and G2 are simple Lie groups. HereM10 is a
direct product of a four-dimensional spacetime M4 and a
compact coset space S=R, where S is a compact Lie group
and R is a Lie subgroup of S. The dimension of the coset
space S=R is thus 6 � 10� 4, implying dimS� dimR ¼
6. This structure of extra-dimensional space requires the
group R to be embedded into the group SO(6), which is a
subgroup of the Lorentz group SO(1,9). Let us denote the
coordinates ofM10 by XM ¼ ðx�; y�Þ, where x� and y� are
coordinates of M4 and S=R, respectively. The spacetime
index M runs over � 2 f0; 1; 2; 3g and � 2 f4; 5; � � � ; 9g.
We introduce, in this theory, a gauge field AMðx; yÞ ¼
ðA�ðx; yÞ; A�ðx; yÞÞ, which belongs to the adjoint represen-

tation of the gauge group G, and fermions c ðx; yÞ, which
lie in a representation F of G.

The extra-dimensional space S=R admits S as an iso-
metric transformation group. We impose on AMðXÞ and
c ðXÞ the following symmetry under this transformation in
order to carry out the dimensional reduction [2,23–27].
Consider a coordinate transformation which acts trivially
on x and gives rise to an S transformation on y as ðx; yÞ !
ðx; syÞ, where s 2 S. We require that the transformation of
AMðXÞ and c ðXÞ under this coordinate transformation
should be compensated by a gauge transformation. This
symmetry makes the ten-dimensional Lagrangian invariant
under the S transformation and therefore independent of
the coordinate y of S=R. The dimensional reduction is then
carried out by integrating over the coordinate y to obtain
the four-dimensional Lagrangian. The four-dimensional
theory consists of the gauge fields A�, fermions c , and,

in addition, the scalar fields originating from A�. The
gauge group reduces to a subgroupH of the original gauge
group G.

The gauge symmetry and particle content of the four-
dimensional theory are substantially constrained by the
CSDR scheme. We provide below the prescriptions to
identify the four-dimensional gauge group H and its rep-
resentations for the particle content.

First, the gauge group of the four-dimensional theory H
is easily identified as

H ¼ CGðRÞ; (1)

where CGðRÞ denotes the centralizer of R in G ¼ G1 �G2

[2]. Thus the four-dimensional gauge group H is deter-
mined by embedding R into G. We then assume that R also
has direct product structure R ¼ R1 � R2 which can be
embedded into G1 and G2. Here, R1 and R2 are not neces-
sarily simple. We also assume that the four-dimensional
gauge groupH is obtained only fromG1 up to U(1) factors.
This assumption ensures the coupling unification ifH is the
gauge group of the SM. These conditions imply

G ¼ G1 �G2; (2)

R ¼ R1 � R2; (3)

G1 � H� R1; (4)

G2 � R2; (5)

up to U(1) factors.
Second, the representations of H for the scalar fields are

specified by the following prescription. Let us decompose
the adjoint representation of S according to the embedding
S � R1 � R2 as

adj S ¼ ðadjR1; 1Þ þ ð1; adjR2Þ þ
X
s

ðr1s; r2sÞ; (6)

where r1s and r2s are representations of R1 and R2, respec-
tively. We then decompose the adjoint representations of
G1 andG2 according to the embeddingsG1 � H � R1 and
G2 � R2, respectively;

adjG1 ¼ ðadjH; 1Þ þ ð1; adjR1Þ þ
X
g

ðhg; r1gÞ; (7)

adjG2 ¼ adjR2 þ
X
g

r2g; (8)

where r1g and r2g denote representations of R1 and R2, and

hg denotes representations of H. The decomposition of

adjG thus becomes

adjG ¼ ðadjG1; 1Þ þ ð1; adjG2Þ
¼ ðadjH; 1; 1Þ þ ð1; adjR1; 1Þ þ ð1; 1; adjR2Þ

þX
g

ðhg; r1g; 1Þ þ
X
g

ð1; 1; r2gÞ: (9)

The representation of the scalar fields is hg, whose corre-

sponding ðr1g; 1Þ in the decomposition, Eq. (9), are con-

tained also in the set fðr1s; r2sÞg in Eq. (6). Note that the
trivial representations 1 also remain in four dimensions if
the corresponding ð1; r2gÞ of Eq. (9) are also contained in

the set fðr1s; r2sÞg in Eq. (6).
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Third, the representation of H for the fermion fields is
determined as follows [28]. Let the group R be embedded
into the Lorentz group SO(6) in such a way that the vector
representation 6 of SO(6) is decomposed as 6 ¼P

sðr1s; r2sÞ, where r1s and r2s are the representations ob-
tained in the decomposition, Eq. (6). This embedding
specifies a decomposition of the Weyl spinor representa-
tions 4ð�4Þ of SO(6) under SOð6Þ � R1 � R2 as

4 ¼ X
i

ð�1i; �2iÞ
�
�4 ¼ X

i

ð ��1i; ��2iÞ
�
; (10)

where�1ið ��1iÞ and�2ið ��2iÞ are irreducible representations
of R1 and R2. We then decompose the SO(1,9) Weyl spinor
16 according to ðSUð2Þ � SUð2ÞÞð� SOð1; 3ÞÞ � SOð6Þ as

16 ¼ ð2; 1; 4Þ þ ð1; 2; �4Þ; (11)

where the ð2; 1Þ and ð1; 2Þ representations of SUð2Þ �
SUð2Þ correspond to left- and right-handed spinors, respec-
tively. We now decompose a representation F of the gauge
group G. We take F1 and F2 to be representations of G1

and G2 for the fermions in ten-dimensional spacetime.
Decompositions of F1 and F2 are

F1 ¼
X
f

ðhf; r1fÞ; (12)

F2 ¼
X
f

r2f; (13)

under G1 � H � R1 and G2 � R2. Therefore, the decom-
position of F becomes

F ¼ X
f

ðhf; r1f; r2fÞ: (14)

The representations for the left-handed (right-handed) fer-
mions are the hf whose corresponding ðr1f; r2fÞ are found
in fð�1i; �2iÞgðfð ��1i; ��2iÞgÞ which are obtained in Eq. (10).
Note that a phenomenologically acceptable model needs
chiral fermions in four dimensions as the SM does. The
chiral fermions are obtained most straightforwardly when
we introduce a complex representation of G as F [7–10].
More interesting is the possibility of obtaining them if F is
a real representation, provided rank S ¼ rankR [29]. A
pair of Weyl fermions appears in the same representation
in this case, and one of the pair is eliminated by imposing
the Majorana condition on the Weyl fermions [7,10]. We
thus apply the CSDR scheme to complex or real represen-
tations of gauge group G for fermions.

Coset space S=R of our interest should satisfy rank S ¼
rankR to generate chiral fermions in four dimensions [29].
This condition limits the possible S=R to the coset spaces
collected in Table I [3]. The R of coset (i) in Table I with
the subscript ‘‘max’’ indicates that this is the maximal
regular subgroup of the S. There, the correspondence
between the subgroup of R and the subgroup of S is
clarified by the brackets in R. For example, the coset space

(iv) suggests a direct product of Spð4Þ=SUð2Þ � SUð2Þ and
SU(2)/U(1).
Here we mention the effect of gravity. When we include

the effect of gravity and consider dynamics of an extra
space, we would find it difficult to obtain stable extra
space. This is the common difficulty of extra-dimensional
models, and some works have been done on this point. For
example, it is discussed in terms of radion fields, which are
the scalar fields originating from higher-dimensional com-
ponents of the metric after compactification [30,31]. The
effect of gravity on the CSDR scheme is also discussed in
[4,32]. Although we agree that the effect of gravity is
important, we do not discuss the effect of gravity here
since it is beyond the scope of this paper.

III. CANDIDATES OF THE COSET SPACE S=R AND
THE GAUGE GROUP G

In this section we obtain the combinations of the coset
space S=R and the gauge group G of the ten-dimensional
theory. We first obtain the coset space S=R, and then we
restrict the possible gauge group G for each S=R.
We select the coset space S=R from the ones listed in

Table I by the following two criteria. First, R should be a
direct product of subgroups R1 and R2 for us to have new
freedom to embed R into G. This criterion excludes the
candidates of S=R, (v) and (vi) in Table I.
Second, the four-dimensional gauge group obtained by

Eq. (1) should be that of the SM or a GUTwith at most one
extra U(1) gauge group, i.e. the SM-like gauge group
GSMð�Uð1ÞÞ, where GSM � SUð3Þ � SUð2Þ � Uð1Þ, or a
GUT-like gauge groupGGUTð�Uð1ÞÞ, whereGGUT is either
SU(5), SO(10), or E6. This criterion excludes the candi-
dates (vii)–(ix) in Table I for the following reasons.
(1) We note that the U(1)’s in R are also part of its

centralizer, i.e. part of H. We thus exclude the
candidate (ix) since we consider the H’s which
have at most two U(1) factors.

TABLE I. A complete list of six-dimensional coset spaces S=R
with rank S ¼ rankR [3]. The brackets in R clarify the corre-
spondence between the subgroup of R and the subgroup of S.
The factor of R with the subscript ‘‘max’’ indicates that this
factor is a maximal regular subgroup of S.

Number S=R

(i) Spð4Þ=½SUð2Þ � Uð1Þ�max

(ii) Spð4Þ=½SUð2Þ � Uð1Þ�non-max

(iii) SUð4Þ=SUð3Þ � Uð1Þ
(iv) Spð4Þ � SUð2Þ=½SUð2Þ � SUð2Þ� � Uð1Þ
(v) G2=SUð3Þ
(vi) SOð7Þ=SOð6Þ
(vii) SUð3Þ=Uð1Þ � Uð1Þ
(viii) SUð3Þ � SUð2Þ=½SUð2Þ � Uð1Þ� � Uð1Þ
(ix) ðSUð2Þ=Uð1ÞÞ3
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(2) Similarly, as long as we consider the GUT-like and
GSM gauge groups, we do not need to consider the
candidates (vii) and (viii).

(3) The candidates (vii) and (viii) do not allow H ¼
GSM � Uð1Þ either, because the hypercharge of the
SM should be reproduced by a certain linear combi-

nation of two U(1)’s in R, which should be matched
to the spinor representation of SO(6). The dimen-
sion of the SO(6) spinor representation is four, and
thus no more than four different values of U(1)
charges are available. On the other hand, the fer-
mion content of the SM has five different values of
U(1) charges. Hence, this case never reproduces the
hypercharges of the SM fermions.

(4) Because of the above three reasons the candidates
(i)–(iv) allow neither GSM nor GGUT as H.

To summarize, the possible model requires the coset space
S=R listed in (i)–(iv) of Table I, with either H ¼ GSM �
Uð1Þ or H ¼ GGUT � Uð1Þ. In Table II we show the em-
bedding of R in SO(6) for these coset spaces. The repre-
sentations of rs in Eq. (6) and�i in Eq. (10) are listed in the
columns ‘‘Branches of 6’’ and ‘‘Branches of 4,’’ respec-
tively. The embedding of R into the higher-dimensional
gauge groupG ¼ G1 �G2 is listed in Tables III, IV, and V.
These embeddings are straightforwardly obtained by de-
composing gauge group G into its regular subgroup which
contains an R subgroup of G. A detailed discussion about
the embeddings is summarized in [6]. For each embedding
ofR, the candidates ofG are summarized in Tables VI, VII,

TABLE II. The decompositions of the vector representation 6 and the spinor representation 4
of SO(6) under R, which are listed as (i)–(iv) in Table I. The representations of rs in Eq. (6) and
�i in Eq. (10) are listed in the columns ‘‘Branches of 6’’ and ‘‘Branches of 4,’’ respectively.

S=R Branches of 6 Branches of 4

(i) SUð2ÞðUð1ÞÞ 3ð2Þ, 3ð�2Þ 1ð3Þ, 3ð�1Þ
(ii) SUð2ÞðUð1ÞÞ 1ð2Þ, 1ð�2Þ, 2ð1Þ, 2ð�1Þ 2ð1Þ, 1ð0Þ, 1ð�2Þ
(iii) SUð3ÞðUð1ÞÞ 3ð�4Þ, �3ð4Þ 1ð�6Þ, 3ð2Þ
(iv) ðSUð2Þ;SUð2ÞÞðUð1ÞÞ ð2; 2Þð0Þ, ð1; 1Þð2Þ, ð1; 1Þð�2Þ ð2; 1Þð1Þ, ð1; 2Þð�1Þ

TABLE III. The embedding of R into G ¼ G1 �G2 for the coset spaces (i) and (ii).

(i) Spð4Þ=½SUð2Þ � Uð1Þ�max and (ii) Spð4Þ=½SUð2Þ � Uð1Þ�non-max

(a) G1 � ðGSM or GGUTÞ � SUð2Þ, G2 � Uð1Þ
(b) G1 � ðGSM or GGUTÞ � Uð1Þ, G2 � SUð2Þ

TABLE IV. The embedding of R into G ¼ G1 �G2 for the
coset space (iii).

(iii) SUð4Þ=SUð3Þ � Uð1Þ
(a) G1 � ðGSM or GGUTÞ � SUð3Þ, G2 � Uð1Þ
(b) G1 � ðGSM or GGUTÞ � Uð1Þ, G2 � SUð3Þ

TABLE V. The embedding of R into G ¼ G1 �G2 for the
coset space (iv).

(iv) Spð4Þ � SUð2Þ=½SUð2Þ � SUð2Þ� � Uð1Þ
(a) G1 � ðGSM or GGUTÞ � SUð2Þ, G2 � SUð2Þ � Uð1Þ
(b) G1 � ðGSM or GGUTÞ � SUð2Þ � SUð2Þ, G2 � Uð1Þ
(c) G1 � ðGSM or GGUTÞ � Uð1Þ, G2 � SUð2Þ � SUð2Þ
(d) G1 � ðGSM or GGUTÞ � SUð2Þ � Uð1Þ, G2 � SUð2Þ

TABLE VI. The candidates of the gauge groups G1 and G2 for each of the coset spaces (i) and (ii) in Table I. The top row indicates
the assigned number of S=R in Table I and the embedding of R assigned in Table III. The leftmost column indicates H.

(i)-(a) and (ii)-(a) (i)-(b) and (ii)-(b)

SUð3Þ � SUð2Þ � Uð1Þ � Uð1Þ G1 ¼ SOð10Þ, SO(11), Sp(10) G1 ¼ SUð6Þ, SO(10), SO(11), Sp(10)
G2 ¼ SUð2Þ, U(1) G2 ¼ SUð2Þ

SUð5Þ � Uð1Þ G1 ¼ No candidate G1 ¼ SUð6Þ, SO(10), SO(11), Sp(10)
G2 ¼ SUð2Þ, U(1) G2 ¼ SUð2Þ

SOð10Þ � Uð1Þ G1 ¼ SOð13Þ G1 ¼ SOð12Þ, SO(13), E6

G2 ¼ SUð2Þ, U(1) G2 ¼ SUð2Þ
E6 � Uð1Þ G1 ¼ No candidate G1 ¼ E7

G2 ¼ SUð2Þ, U(1) G2 ¼ SUð2Þ
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VIII, and IX. Note that all the candidates ofG in Tables VI,
VII, VIII, and IX are subgroups of SO(32) or E8 � E8

which are required by superstring theory.
The representation F1 of G1 for the fermions should be

either complex or real but not pseudoreal, since the fermi-
ons of pseudoreal representations do not allow the
Majorana condition whenD ¼ 10 and they induce doubled
fermion content after the dimensional reduction [7].
Table X lists the candidate groups G1 and their complex
and real representations whose dimensions are no more
than 1024. The representations in this table are the candi-
dates of F1. The groups SU(7) and SO(13) are not listed
here since they do not lead to the four-dimensional gauge

group of our interest for any S=R or embedding of R in
Tables III, IV, and V.
The representation F2 of G2 has to be real as does F1 to

impose the Majorana condition. Without this condition, F2

can be any representation. We limited ourselves to the case
dimF ¼ dimF1 � dimF2 < 1025 since larger representa-
tions yield numerous higher-dimensional representations
of the fermions under GSM � Uð1Þ and GGUT � Uð1Þ.

IV. RESULTS

Now we are ready to investigate the representations for
fermions and scalars in four dimensions. We first note that

TABLE VII. The allowed candidates of the gauge groups G1 and G2 for the coset space (iii) in
Table I. The top row indicates the assigned number of S=R in Table I and the embedding of R
assigned in Table IV. The leftmost column indicates H.

(iii)-(a) (iii)-(b)

SUð3Þ � SUð2Þ � Uð1Þ � Uð1Þ G1 ¼ E6 G1 ¼ SUð6Þ, SO(10), SO(11), Sp(10)
G2 ¼ SUð2Þ, U(1) G2 ¼ G2, SU(3)

SUð5Þ � Uð1Þ G1 ¼ No candidate G1 ¼ SUð6Þ, SO(10), SO(11), Sp(10)
G2 ¼ SUð2Þ, U(1) G2 ¼ G2, SU(3)

SOð10Þ � Uð1Þ G1 ¼ No candidate G1 ¼ SOð12Þ, SO(13), E6

G2 ¼ SUð2Þ, U(1) G2 ¼ G2, SU(3)

E6 � Uð1Þ G1 ¼ E8 G1 ¼ E7

G2 ¼ SUð2Þ, U(1) G2 ¼ G2, SU(3)

TABLE VIII. The allowed candidates of the gauge groupsG1 andG2 for the coset space (iv) in
Table I. The top row indicates the assigned number of S=R in Table I and the embedding of R
assigned in Table V. The leftmost column indicates H.

(iv)-(a) (iv)-(b)

SUð3Þ � SUð2Þ � Uð1Þ � Uð1Þ G1 ¼ SOð10Þ, SO(11), Sp(10) G1 ¼ SOð13Þ, Sp(12)
G2 ¼ SUð3Þ, Sp(4), G2 G2 ¼ SUð2Þ, U(1)

SUð5Þ � Uð1Þ G1 ¼ No candidate G1 ¼ No candidate

G2 ¼ SUð3Þ, Sp(4), G2 G2 ¼ SUð2Þ, U(1)
SOð10Þ � Uð1Þ G1 ¼ SOð13Þ G1 ¼ SOð14Þ, SO(15)

G2 ¼ SUð3Þ, Sp(4), G2 G2 ¼ SUð2Þ, U(1)
E6 � Uð1Þ G1 ¼ No candidate G1 ¼ No candidate

G2 ¼ SUð3Þ, Sp(4), G2 G2 ¼ SUð2Þ, U(1)

TABLE IX. The allowed candidates of the gauge groups G1 and G2 for the coset space (iv) in Table I. The top row indicates the
assigned number of S=R in Table I and the embedding of R assigned in Table V. The leftmost column indicates H.

(iv)-(c) (iv)-(d)

SUð3Þ � SUð2Þ � Uð1Þ � Uð1Þ G1 ¼ SUð6Þ, SO(10), SO(11), Sp(10) G1 ¼ SUð7Þ, SO(12), SO(13), Sp(12), E6

G2 ¼ G2, Sp(4) G2 ¼ SUð2Þ
SUð5Þ � Uð1Þ G1 ¼ SUð6Þ, SO(10), SO(11), Sp(10) G1 ¼ SUð7Þ, SO(13), Sp(12), E6

G2 ¼ G2, Sp(4) G2 ¼ SUð2Þ
SOð10Þ � Uð1Þ G1 ¼ SOð12Þ, SO(13), E6 G1 ¼ SOð14Þ, SO(15), E7

G2 ¼ G2, Sp(4) G2 ¼ SUð2Þ
E6 � Uð1Þ G1 ¼ E7 G1 ¼ E8

G2 ¼ G2, Sp(4) G2 ¼ SUð2Þ
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we need an R2 singlet in the SO(6) vector to obtain the
Higgs candidate hg [cf. Eq. (9) and the discussion below].

We can thus exclude the candidates (i) and (iii) of S=R in
Table I (cf. Table II). In Tables XI, XII, and XIII, we list the
possible candidates of G1, G2, ðF1; F2Þ, and the corre-
sponding representations of four-dimensional scalars and
fermions for each H, which are either GSM � Uð1Þ,
SUð5Þ � Uð1Þ, SOð10Þ � Uð1Þ, or E6 � Uð1Þ. The repre-
sentations of four-dimensional fermions are classified into
A, B, and C. The representations of class A are the stan-
dard representations: �5 and 10 for SU(5), 16 for SO(10),
and 27 for E6, which lead to the SM fermions after GUT
breaking. The representations of class B lead to both the
SM fermions and non-SM fermions after GUT breaking.

The representations of class C lead only to non-SM fermi-
ons after GUT breaking.

A. H ¼ GSM � Uð1Þ
We investigate all combinations of S=R, G1, and G2 in

Tables VI, VII, VIII, and IX, which provide H ¼ GSM �
Uð1Þ in four dimensions. We obtain a representation which
is identified as the SM Higgs doublet in four dimensions
from the following cases.
(1) R embedded as (ii)-(b), G1 ¼ SUð6Þ and G2 ¼

SUð2Þ.
(2) R embedded as (ii)-(b), G1 ¼ SOð11Þ and G2 ¼

SUð2Þ.
(3) R embedded as (iv)-(c), G1 ¼ SUð6Þ and G2 ¼ G2.

TABLE X. The complex and real representations of the possible gauge groups [33]. The groups SU(7) and SO(13) are not listed here
since they do not lead to the four-dimensional gauge group of our interest for any of S=R and for embedding of R in Table III, IV, and V

Group Complex representations Real representations

SU(6) 6, 15, 21, 56, 70, 84, 105, 1050, 120,
126, 210, 2100, 252, 280, 315, 336, 384,
420, 462, 490, 504, 560, 700, 720, 792,

840, 8400, 84000, 896, � � �

35, 175, 189, 405, � � �

SO(11) 11, 55, 65, 165, 275, 320, 330, 429, 462, 935, � � �
SO(12) 12, 66, 77, 220, 352, 462, 495, 560, 792, � � �
SO(14) 64, 832, � � � 14, 91, 104, 364, 546, 896, � � �
SO(15) 15, 105, 119, 128, 455, 665, � � �
F4 26, 52, 273, 324, � � �
E6 27, 351, 3510 � � � 78, 650, � � �
E7 133 � � �
E8 248, � � �

TABLE XI. The models for H ¼ SUð5Þ � Uð1Þ which include the SM Higgs doublet and one generation of the SM fermions in four
dimensions. The fermions in four dimensions are classified as A, B, and C. Class A contains only the SM fermions; class B contains
both the SM fermions and extra fermions; class C contains only extra fermions.

S=R ¼ Spð4Þ=½SUð2Þ � Uð1Þ�, G1 � SUð5Þ � Uð1Þ, G2 � SUð2Þ
G1 G2 ðF1; F2Þ Scalars A B C

SU(6) SU(2) (56, 2) 5(6), �5ð�6Þ 15ð�3Þ 35ð�3Þ
(70, 2) 5(6), �5ð�6Þ 10ð�3Þ 15ð�3Þ, 40ð�3Þ
(280, 1) 5(6), �5ð�6Þ �5ð�6Þ 70ð�6Þ 24(0), 45ð�6Þ, 126(0), 24(0), 126(0)
(405, 1) 5(6), �5ð�6Þ �5ð�6Þ 70ð�6Þ 1(0), 24(0), 200(0)

5(6), 70(6), 1(0), 24(0), 200(0)

(840, 1) 5(6), �5ð�6Þ 45ð6Þ 2800ð6Þ, 126(0), 224(0), 105ð6Þ, 126(0), 224(0)
SO(11) SU(2) (11, 1) 5(2), �5ð�2Þ �5ð�2Þ 1(0)

(55, 1) 5(2), �5ð�2Þ �5ð�2Þ 1(0), 24(0)

(65, 1) 5(2), �5ð�2Þ �5ð�2Þ 1(0), 24(0)

(165, 1) 5(2), �5ð�2Þ �5ð�2Þ 45ð�2Þ 1(0), 24(0)

(275, 1) 5(2), �5ð�2Þ �5ð�2Þ 70ð�2Þ 1(0), 24(0)

(320, 2) 5(2), �5ð�2Þ 10ð�1Þ, 10ð�1Þ 15ð�1Þ, 40ð�1Þ
(330, 1) 5(2), �5ð�2Þ �5ð�2Þ 45ð�2Þ 1(0), 24(0), 75(0)

(429, 1) 5(2), �5ð�2Þ �5ð�2Þ, �5ð�2Þ 45ð�2Þ, 70ð�2Þ 1(0), 24(0), 24(0)

(462, 1) 5(2), �5ð�2Þ �5ð�2Þ 45ð�2Þ, 50ð�2Þ 1(0), 24(0), 75(0)

(935, 1) 5(2), �5ð�2Þ �5ð�2Þ 70ð�2Þ 1(0), 24(0), 200(0)
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(4) R embedded as (iv)-(c), G1 ¼ SUð6Þ and G2 ¼
Spð4Þ.

(5) R embedded as (iv)-(c),G1 ¼ SOð11Þ andG2 ¼ G2.
(6) R embedded as (iv)-(c), G1 ¼ SOð11Þ and G2 ¼

Spð4Þ.
(7) R embedded as (iv)-(d), G1 ¼ Spð12Þ and G2 ¼

SUð2Þ.
(8) R embedded as (iv)-(d), G1 ¼ E6 and G2 ¼ SUð2Þ.

None of these cases reproduces a whole generation of
SM fermions. Therefore, we cannot obtain the SM in

four dimensions. The difficulty in obtaining the SM is
ultimately due to the smallness of the dimension of the
SO(6) spinor representation.

B. H ¼ SUð5Þ � Uð1Þ
We investigate the case of H ¼ SUð5Þ � Uð1Þ and sum-

marize the results in Table XI. We obtain the representation
5, which corresponds to the Higgs scalar in the following
cases.

TABLE XII. The models for H ¼ SOð10Þ � Uð1Þ which include the SM Higgs and one generation of the SM fermions in four
dimensions. The fermions in four dimensions are classified as A, B, and C, where fermions in class A are 16 representations of SO(10);
class B contains both the SM fermions and extra fermions; class C contains only extra fermions. We can obtain two types of results for
fermions from one combination of ðG1; G2; FÞ since we have the freedom to change the overall sign of the U(1) charges that appear in
the R decomposition of the SO(6) vector and spinor.

S=R ¼ Spð4Þ=½SUð2Þ � Uð1Þ�, G1 � SOð10Þ � Uð1Þ, G2 � SUð2Þ
G1 G2 ðF1; F2Þ Scalars A B C

SO(12) SU(2) (12, 1) 10(2), 10ð�2Þ 10(0) 1(2)

10(0) 1ð�2Þ
(66, 1) 10(2), 10ð�2Þ 10(2), 45(0) 1(0)

10ð�2Þ, 45(0) 1(0)

(77, 1) 10(2), 10ð�2Þ 10(2), 54(0) 1(0)

10ð�2Þ, 54(0) 1(0)

(220, 1) 10(2), 10ð�2Þ 45(2), 10(0), 120(0)

45ð�2Þ, 10(0), 120(0)
(352, 1) 10(2), 10ð�2Þ 54(2), 10(0), 2100ð0Þ

54ð�2Þ, 1ð�2Þ, 10(0), 2100ð0Þ
(462, 1) 10(2), 10ð�2Þ 126(2), 210(0)

126ð�2Þ, 210(0)
(495, 1) 10(2), 10ð�2Þ 120(2), 45(0), 210(0)

120ð�2Þ, 45(0), 210(0)
(560, 1) 10(2), 10ð�2Þ 54(2), 45(2), 10(0), 10(0), 320(0) 1(2)

54ð�2Þ, 45ð�2Þ, 10(0), 10(0), 320(0) 1ð�2Þ
(792, 1) 10(2), 10ð�2Þ 210(2), 120(0), 126(0), 126ð0Þ

210ð�2Þ, 120(0), 126(0), 126ð0Þ
E6 SU(2) (78, 1) 16ð�3Þ, 16ð3Þ 16ð�3Þ 45(0) 1(0)

45(0) 1(0) 16ð3Þ
(650, 1) 16ð�3Þ, 16ð3Þ 16(3) 144ð3Þ, 45(0), 54(0), 210(0) 1(0)

144ð�3Þ, 45(0), 54(0), 210(0) 1(0) 16ð�3Þ

S=R ¼ Spð4Þ � SUð2Þ=½SUð2Þ � SUð2Þ� � Uð1Þ, G1 � SOð10Þ � SUð2Þ � SUð2Þ, G2 � Uð1Þ
G1 G2 ðF1; F2Þ Scalars A B C

SO(14) SU(2) (64, 2) 10(0) 16(1), 16(1) 16ð�1Þ, 16ð�1Þ
U(1) 64(1) 10(0) 16(1), 16ð�1Þ

832(1) 10(0) 16(1), 16ð�1Þ 144(1), 144ð�1Þ
SO(15) SU(2) (128, 2) 10(0), 1(0) 16(1), 16ð�1Þ 16ð1Þ, 16ð�1Þ

U(1) 128(1) 10(0), 1(0) 16(1) 16ð1Þ

S=R ¼ Spð4Þ � SUð2Þ=½SUð2Þ � SUð2Þ� � Uð1Þ, G1 � SOð10Þ � SUð2Þ � Uð1Þ, G2 � SUð2Þ
G1 G2 ðF1; F2Þ Scalars A B C

SO(15) SU(2) (128, 1) 10(2), 10ð�2Þ 16(1) 16ð1Þ
E7 SU(2) (133, 1) 10(2), 10ð�2Þ 16(1)
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(1) R embedded as (ii)-(b), G1 ¼ SUð6Þ and G2 ¼
SUð2Þ.

(2) R embedded as (ii)-(b), G1 ¼ SOð11Þ and G2 ¼
SUð2Þ.

(3) R embedded as (iv)-(c), G1 ¼ SUð6Þ and G2 ¼
Spð4Þ.

(4) R embedded as (iv)-(c), G1 ¼ SOð11Þ and G2 ¼
Spð4Þ.

(5) R embedded as (iv)-(d), G1 ¼ E6 and G2 ¼ SUð2Þ.

As for the fermions, we see that the standard representa-
tions of SU(5) GUT are not obtained at all for cases 3, 4,
and 5, while they are obtained by combining two repre-
sentations of F in cases 1 and 2. For the example of case 1,
we can choose ð70; 2Þ and ð280; 1Þ to obtain all the stan-
dard representations, �5 and 10, in four dimensions, along
with the extra fermions of classes B and C.

C. H ¼ SOð10Þ � Uð1Þ
We investigate all the combinations of S=R, G1, and G2

for H ¼ SOð10Þ � Uð1Þ. We obtain the representation 10,
which corresponds to the Higgs scalar in the following
cases.

(1) R embedded as (ii)-(b), G1 ¼ SOð12Þ and G2 ¼
SUð2Þ.

(2) R embedded as (ii)-(b), G1 ¼ E6 and G2 ¼ SUð2Þ.
(3) R embedded as (iv)-(b), G1 ¼ SOð14Þ and G2 ¼

SUð2Þ.
(4) R embedded as (iv)-(b), G1 ¼ SOð14Þ and G2 ¼

Uð1Þ.
(5) R embedded as (iv)-(b), G1 ¼ SOð15Þ and G2 ¼

SUð2Þ.
(6) R embedded as (iv)-(b), G1 ¼ SOð15Þ and G2 ¼

Uð1Þ.
(7) R embedded as (iv)-(c),G1 ¼ SOð12Þ andG2 ¼ G2.

(8) R embedded as (iv)-(c), G1 ¼ SOð12Þ and G2 ¼
Spð4Þ.

(9) R embedded as (iv)-(c), G1 ¼ E6 and G2 ¼ SUð2Þ.
(10) R embedded as (iv)-(c), G1 ¼ E6 and G2 ¼ G2.
(11) R embedded as (iv)-(d), G1 ¼ SOð15Þ and G2 ¼

SUð2Þ.
(12) R embedded as (iv)-(d),G1 ¼ E7 andG2 ¼ SUð2Þ.

We further obtain the standard representations of the
fermions which lead to all the SM fermions of one genera-
tion in cases 1–6, 8, 11, and 12 (see Table XII).
Case 4 with F ¼ 832ð1Þ is intriguing since we obtain

two 16’s and two 144’s, each of which leads to a complete
set of the SM fermions of one generation. We thus obtain
four generations of fermions which can accommodate the
three known generations. Furthermore, these representa-
tions can form three distinct types of Yukawa couplings:
16� 16� 10, 144� 16� 10, and 144� 144� 10.
These couplings may explain the origin of the Yukawa
couplings, distinguishing the generations and possibly in-
troducing the mixing among them.

D. H ¼ E6 � Uð1Þ
The results for H ¼ E6 � Uð1Þ are listed in Table XIII.

We obtain the representation 27, which corresponds to the
Higgs scalar in the following cases.
(1) R embedded as (ii)-(b), G1 ¼ E7 and G2 ¼ SUð2Þ.
(2) R embedded as (iv)-(c), G1 ¼ E7 and G2 ¼ G2.
(3) R embedded as (iv)-(d), G1 ¼ E8 and G2 ¼ SUð2Þ.

The standard representations of fermion 27, which provide
all the SM fermions of one generation, are obtained in
cases 1 and 3.
Case 1 with F ¼ ð133; 1Þ is interesting since the struc-

ture of the SM with three generations may be explained.

TABLE XIII. The models forH ¼ E6 � Uð1Þ which include the SM Higgs and one generation
of the SM fermions in four dimensions. The fermions in four dimensions are classified into A, B,
and C, where fermions in class A are 27 representations of E6; class B contains both the SM
fermions and extra fermions; class C contains only extra fermions. We can obtain two types of
results for fermions from one combination of ðG1; G2; FÞ since we have the freedom to change
the overall sign of the U(1) charges which appear in the R decomposition of the SO(6) vector and
spinor.

S=R ¼ Spð4Þ=SUð2Þ � Uð1Þ, G1 � E6 � Uð1Þ, G2 � SUð2Þ
G1 G2 ðF1; F2Þ Scalars A B C

E7 SU(2) (133, 1) 27(2), 27ð�2Þ 27(2) 78(0) 1(0)

27ð�2Þ, 78(0) 1(0)

S=R ¼ Spð4Þ � SUð2Þ=½SUð2Þ � SUð2Þ� � Uð1Þ, G1 � E6 � SUð2Þ � Uð1Þ, G2 � SUð2Þ
G1 G2 ðF1; F2Þ Scalars A B C

E8 SU(2) Fð248; 1Þ 27ð�2Þ, 27ð2Þ 27(1)

27ð�1Þ
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The Yukawa coupling of this model needs to be in the form

27ð�2Þ � 27ð2Þ � 78ð0Þ. The fermion representation 27þ
78 of E6 contains three generations of �5þ 10 in terms of its
SU(5) subgroup, giving the origin of the three known
generations. Indeed, this fermion content is analyzed in,
for example, nonlinear sigma models, giving a family
unification [34] based on a broken E7 symmetry [35],
under which a reproduction of the observed mixing struc-
ture among the three generations of fermions has been
attempted [36].

V. SUMMARYAND DISCUSSIONS

We studied the ten-dimensional gauge theories whose
extra six-dimensional spacetime is a coset space of Lie
groups. We focused on the case where the gauge group is a
direct product of two simple Lie groups, and searched for
models which lead to phenomenologically promising four-
dimensional models after applying coset space dimen-
sional reduction.

We first limited the possible coset space S=R to four
types, listed in (i)–(iv) of Table I, by requiring that R
should be factored as R ¼ R1 � R2. All of these four types
have a U(1) factor in R, but this U(1) can never be iden-
tified as the hypercharge symmetry of the SM. We thus
needed to introduce an extra U(1) in the four-dimensional
gauge group H, and we searched for SM-like models or
GUT-like ones. The former is the case where H ¼
SUð3Þ � SUð2Þ � Uð1Þ � Uð1Þ, while the latter is where
H ¼ SUð5Þ � Uð1Þ, H ¼ SOð10Þ � Uð1Þ, and H ¼ E6 �
Uð1Þ. We also required that the induced four-dimensional
model should include the particle content appropriate for
the SM particles. We then found the candidates of the
gauge group G ¼ G1 �G2 of the ten-dimensional theory
and the representations for fermions.

For each of the candidates obtained, we made the com-
plete lists of representations of the scalars and the fermions
that constitute the corresponding four-dimensional theory.
The results are summarized as follows.

(1) No ten-dimensional model was found to induce the
promising model with H ¼ SUð3Þ � SUð2Þ �
Uð1Þ � Uð1Þ in the four-dimensional spacetime.

(2) The models which induce an SUð5Þ � Uð1Þ gauge
theory in four-dimensional spacetime were found
when S=R ¼ Spð4Þ=SUð2Þ � Uð1Þ. A possible
gauge group is either SUð6Þ � SUð2Þ or SOð11Þ �
SUð2Þ, and each case has several choices for the
representation of the ten-dimensional fermions as
listed in Table XI. Many of the fermion representa-
tions generate either �5 or 10 of the SU(5) after
dimensional reduction. None of them, however,
generates both from a single representation, and
we thus need at least two fermion representations
in the ten-dimensional model as well as in the four-
dimensional one.

(3) The models which induce an SOð10Þ � Uð1Þ gauge
theory in four dimensions were found for the three
possible choices of S=R, and each choice allows a
number of gauge groups as listed in Table XII.

(4) The models which induce an E6 � Uð1Þ gauge the-
ory in four dimensions were found when S=R ¼
Spð4Þ=SUð2Þ � Uð1Þ, G ¼ E7 � SUð2Þ and S=R ¼
Spð4Þ � SUð2Þ=½SUð2Þ � SUð2Þ� � Uð1Þ, G ¼
E8 � SUð2Þ, as listed in Table XIII.

The fermion representations in four-dimensional theories
obtained from the candidate models mentioned above are
not limited to the standard ones, i.e. �5 and 10 for H ¼
SUð5Þ � Uð1Þ, 16 for H ¼ SOð10Þ � Uð1Þ, and 27 for
H ¼ E6 � Uð1Þ. Some of these extra representations can
accommodate the SM particles as well and thus can take
part in further model building. The following two models
are found to be of particular interest.
(1) H ¼ SOð10Þ � Uð1Þ, S=R ¼ Spð4Þ �

SUð2Þ=½SUð2Þ � SUð2Þ� � Uð1Þ, G ¼ SOð14Þ �
Uð1Þ, and F ¼ 832ð1Þ (see Table XII). In this case,
the fermions in four-dimensional theory include two
16’s and two 144’s. Since both can include a com-
plete set of the SM fermions of a generation, this
case has four generations of fermions and thus can
accommodate the three known generations. Besides,
this case allows three distinct types of Yukawa
couplings: 16� 16� 10, 144� 16� 10, and
144� 144� 10. These three types of couplings
can admit different Yukawa couplings, giving rise
to the distinction of generations. Hence this model
may introduce mixing among the generations.

(2) H ¼ E6 � Uð1Þ, S=R ¼ Spð4Þ=SUð2Þ, G ¼
E6 � SUð2Þ, and F ¼ ð133; 1Þ (see Table XIII).
The Yukawa coupling of this model is necessarily

of the form 27ð�2Þ � 27ð2Þ � 78ð0Þ. The fermion
representation 27þ 78 of E6 contains three gener-
ations of �5þ 10 in terms of its SU(5) subgroup,
giving the origin of the three known generations.
Indeed, this fermion content is analyzed in, for
example, nonlinear sigma models, giving a family
unification [34] based on a broken E7 symmetry
[35], under which a reproduction of the observed
mixing structure among the three generations of
fermions has been attempted [36].

We leave further analysis, as well as building phenomeno-
logical models based on the models mentioned above, for
future studies.
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