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Peak loops untying the degeneracy of the neutrino parameters
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Systematic analysis of the determination of the value of leptonic CP-violating angle δ and the
neutrino mass hierarchy sgn δm2

31 by long baseline neutrino oscillation experiments is presented.
We note the difficulty to distinguish a pair of oscillation probability spectra that are peaked at
the same energy and have the same probability at that energy. We thereby set forth the peak-
matching condition as a criterion of the presence of degeneracy, and visualize it by intersections
of the trajectories drawn by a peak of an oscillation spectrum while the value of δ is varied from
0 to 2π. We numerically calculate the pairs of the trajectories for both hierarchies and show
that the pair becomes disjoint as the baseline gets longer than a critical length, indicating the
matter effect resolving the degeneracy on the hierarchy. We formulate the trajectories into analytic
expressions and evaluate the critical length. We provide prospects of the following four approaches
of resolving the hierarchy: making the baseline longer than the critical length, using both neutrinos
and anti-neutrinos, combining experiments with different baseline lengths, and observing two or
more oscillation peaks.

PACS numbers: 14.60.Pq, 11.30.Er, 13.15.+g, 14.60.Lm

I. INTRODUCTION

The knowledge of the flavor structure of the lepton sector has been vastly improved through the accumulation of
experimental studies on the neutrino oscillation [1], yet it is still incomplete; in the parametrization of reference [2],
the values of a mixing angle θ13, the mass hierarchy sgn δm2

31, and the CP-violating angle δ are still poorly known. No
lower bound of θ13 is given at present and the values of sgn δm2

31 and δ are not known at all. The leptonic CP-violation
search is one of the most exciting goal the neutrino experiments can offer. It is done by observing the appearance
channel such as νµ → νe, which is suppressed by a small factor of sin2 2θ13. On this account, we expect the two-staged
strategy in the search for CP violation: the first stage is the search for θ13 using nuclear reactors [3] and accelerators
[4], which currently targets the sensitivity of sin2 2θ13 ∼ O(10−2); the second stage is the search for the sign of δm2

31

and for the CP violation, for which the next generations of long baseline neutrino oscillation experiments will offer
promising opportunities [4].

We focus upon the second stage, expecting the discovery of sufficiently large value of θ13 in the first stage. We
consider the search for the CP-violating angle through long baseline neutrino oscillation experiments using a conven-
tional beam of muon neutrinos. The search for δ and sgn δm2

31 are mutually entangled and the values of these two
are not necessarily determined uniquely by a single experiment with a fixed baseline length, leaving a degeneracy of
parameter values. The parameter degeneracy obstructs the search for the parameter values and should be avoided
[5, 6, 7, 8, 9]. We introduce an intuitive illustration on the determination of the parameters from the oscillation spec-
trum, and offer a view on the emergence of degeneracy and its resolution. We note that two oscillation spectra are
difficult to distinguish and likely to cause the degeneracy when they are peaked at the same energy and the oscillation
probabilities at the peak coincide. We trace the oscillation peak varying the values of δ and sgn δm2

31 to show how the
search for them is entangled and the degeneracy is invited. We change the baseline length as well and illustrate from
our point of view how the degeneracy disappears when the baseline gets long. We organize these analyses by deriving
analytic expressions of the oscillation probability at the peaks and offer an outlook of the presence of degeneracy and
possible ways to avoid it.

The outline of this paper is as follows. In Sec. II, we present the peak-matching condition as a criterion for the
presence of degeneracy and show an organized view of the emergence of the degeneracy. In Sec. III, we derive an
analytic expression for the νµ → νe appearance probability at their peaks to show how the loops move and change
the shape in varying the baseline length. In Sec. IV, we apply the peak loops to the evaluation of four methods to
avoid the degeneracy. Section V presents the conclusion and discussions.
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FIG. 1: The νµ → νe appearance probabilities and the trajectories of their first peaks for the baseline length of 700 km. The
oscillation parameters in Eq. (1) are adopted. The top figure (a) is for the normal hierarchy and the middle (b) for the inverted,
and each includes the probability spectra for δ = 0, π/2, π and 3π/2. The bottom figure (c) reproduces the trajectories in (a)
and (b) overlaid, along with two oscillation spectra peaked at the crossed intersection of these trajectories.

II. PEAK-MATCHING CONDITION AND PRESENCE OF DEGENERACY

We assume that the number of neutrino generations is three and use the standard definitions of the quadratic mass
differences δm2

ij ({i, j} ⊂ {1, 2, 3}), the mixing angles θij , and the CP-violating angle δ [2]. We consider a search for

the value of δ and the mass hierarchy sgn δm2
31 by observing νµ → νe appearance probability in long baseline neutrino

oscillation experiments. Let us illustrate with an example that νµ → νe appearance probability enables us to pursue
the sign of δm2

31 and the value of δ. We show in Fig. 1 the νµ → νe appearance probabilities for baseline length
L = 700 km. The value of δ and the sign of δm2

31 are varied while other parameters are fixed to the following set of
example values allowed by the experimental limits [2]:

δm2
21 = 8.2 × 10−5 eV2 ,

∣

∣δm2
31

∣

∣ = 2.5 × 10−3 eV2 ,

sin2 2θ12 = 0.84 , sin2 2θ23 = 1.0 , sin2 2θ13 = 0.06 .
(1a)

The matter density ρ on the baseline is assumed to be constant and take a reference value of

ρ = 2.6 g/cm3, (1b)

which is related to the electron number density on the matter ne as ne = NAYeρ with the Avogadro constant NA and
the proton-to-nucleon ratio Ye on the baseline. We take the values of Eq. (1) with Ye = 0.5 in our following numerical
calculations unless otherwise noticed. Figure 1 shows the energy spectra of appearance probability (a) for δm2

31 > 0
(normal hierarchy) and (b) for δm2

31 < 0 (inverted hierarchy). Figure 1 (c) shows the probability for the parameter
values given in the figure. We can clearly see in (a) and (b) the dependence of appearance probability upon sgn δm2

31

and δ enables the search for these parameters through νe appearance experiments.
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FIG. 2: Trajectories of the first oscillation peak for the baseline lengths between 300 km and 1500 km. The oscillation
parameters in Eq. (1) are adopted. The solid line is for the normal hierarchy and the dotted one for the inverted.

In spite of this dependence, experiments may allow parameter values in more than one regions of parameter space
and leave them with degeneracy, which should be resolved [5, 6, 7, 8, 9]. The insight to the presence of degeneracy is
enlightening for this purpose, yet is difficult to gain due to complicated dependence of experimental results on many
oscillation parameters and controllable setups. Searching for a succinct criterion of its presence, we focus on the peak
of the oscillation probability spectrum. The two spectra in Fig. 1 (c), having the position of oscillation peaks in the
E-P plane in common at the cross, show a notable similarity of the shapes over the energy range above about 1 GeV,
and are expected to be difficult to distinguish by experiments with the typical visible energy E > (0.5 – 1.0)GeV of
neutrinos. This expectation can be confirmed by the χ2 goodness-of-fit analyses [10]. We put the above observation
into the following statement of the peak-matching condition as a criterion of the presence of the degeneracy [9]. Let
us denote the peaks of the appearance probability spectrum by (En, Pn) (n = 0, 1, 2, · · · ) with E0 > E1 > E2 > · · · ,
and suppose that the visible energy includes only one of them. The two sets of parameter values, collectively denoted
by {ϑi} and {ϑ′

i}, are expected to be degenerate degenerate when the peak-matching condition

En

(

{ϑi}
)

= En

(

{ϑ′
i}

)

, (2a)

Pn

(

{ϑi}
)

= Pn

(

{ϑ′
i}

)

(2b)

is satisfied by this visible peak.
We visualize this condition by introducing a trajectory made by an oscillation peak as the value of δ varied from 0

to 2π while other parameters kept fixed. The position of a peak for the normal (inverted) hierarchy moves clockwise
(counterclockwise) as the value of δ increases. A trajectory of a peak forms a closed loop as presented in Fig. 1 (a)
and (b) for the first peak (n = 0) of respective hierarchies, and intersects with the loop for the other hierarchy as seen
in Fig. 1 (c), where one of them are marked by a cross. The parameter values corresponding to the intersections are
the ones that satisfy the peak-matching condition. In the example of Fig. 1 (c), the pairs of the values of (sgn δm2

31, δ)
that give the intersections are

{

(+, 0.63π) , (−, 1.98π)
}

,
{

(+, 0.12π) , (−, 1.34π)
}

. (3)

If the true set of parameter values is one of the above along with Eq. (1a), the experiments would leave the degeneracy
with the other of the peak-matching pair. The parameter values corresponding to the paralleling sides of the loops
would be also degenerate, especially when these sides are indistinguishable due to the limited experimental resolution.

Equipped by the peak loops, we apply them to examine how the degeneracy emerges and disappears as we vary
the baseline length of the neutrino oscillation experiments. We present in Fig. 2 peak loops for baseline length
from 300 km to 1500 km. For a relatively short baseline (L ∼ 300km for our example), the loop for the normal
hierarchy (“normal loop”) and for the inverted hierarchy (“inverted loop”) have similar shape and lie significantly
overlapped with each other. As a baseline gets longer, the normal loop and the inverted loop move right-upward and
left-downward, respectively, and diverge due to the matter effect. The normal loop is expanded in the E- and the
P -direction, while the inverted loop is appreciably stretched in the E-direction and flattened in the P -direction. The
pair of loops becomes disjoint at a critical length Lcrit, which is in between 1100 – 1300 km in this example as seen in
Fig. 2.
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The study so far leads us to the following outlooks upon determining the CP-violating angle and the mass hierarchy.
In a short baseline length, the pair of loops overlaps considerably and consequently the hierarchy is difficult to
determine by experiments. The search for δ in this case is entangled with that for the hierarchy, and its value is
also difficult to determine. Another obstacle is invited by the limitation on the energy resolution which may not be
enough to distinguish the paralleling sides of the narrow loops. As the baseline gets longer, the pair of loops becomes
separated and the determination of the hierarchy is made easier. The search for the CP-violating angle becomes
disentangled from the hierarchy search at the same time. The flattened shape of the inverted loops for a long baseline
gives rise to the requirement on precise and accurate measurements of the oscillation probability to avoid introducing
an extra degeneracy.

III. ANALYTIC STUDY OF THE PEAK LOOPS

In this section, we derive an analytic expression of the oscillation probability to formulate properties of the peak
loops [9]. We thereby show how a pair of peak loops for δm2

31 ≷ 0 distort and are separated as the baseline length
increases.

We derive a formula of the oscillation probability by treating ∆21 ≡ δm2
21L/2E and ∆m ≡

√
2GFneL =√

2GFNAYeρL as perturbation parameters, where GF is the Fermi constant, and expand the S-matrix systemati-
cally [11]. We calculate the νµ → νe appearance probability to the second order to investigate the distortion of the
peak loops in varying the baseline length. The result turns out to be lengthy, and we apply an additional approxi-
mation considering the smallness of θ13 and the relation ∆m > ∆21, which holds for the cases we are interested in:
we drop O(sin2 θ13)-terms in the coefficients of ∆2

21 and ∆m∆21 as well as O(sin3 θ13)-terms in that of ∆2
m. We then

obtain

P (νµ → νe, E) = 4l(A sin2 Θ + B) , (4a)

where

A = 1 + 2
∆m

∆31

(1 − 2s2
13) − ∆21

j

l
sin δ + 3

∆2
m

∆2
31

−∆21

∆m

∆31

j

l

(

sin δ +
∆31

2
cos δ

)

+
∆2

21

2

j

l

[

j

l
cos δ + (1 − 2s2

12)

]

cos δ , (4b)

Θ =
∆31

2
− ∆m

2
(1 − 2s2

13) +
∆21

2

( j

l
cos δ − s2

12

)

−∆21

2

∆m

∆31

j

l

(

cos δ +
∆31

2
sin δ

)

+
∆2

21

2

j

l

[

j

l
cos δ +

1

2
(1 − 2s2

12)

]

sin δ , (4c)

and

B =
∆2

21

4

j2

l2
sin2 δ , (4d)

with l = c2
13s

2
13s

2
23, j = c2

13s13c23s23c12s12, ∆ij = δm2
ijL/2E, sij = sin θij , and cij = cos θij . The approximation

employed is suitable especially for a short baseline, typically for L < O(103 km), and is valid at least marginally for
our purpose.

We calculate the maximum of the oscillation probability of Eq. (4) and obtain the energy at the peak as

En =
|δm2

31|L
2Π

{

[

1 ∓ ∆m

1

Π

(

1 − 4

Π2

)

(

1 − 2s2
13

)

∓ Rs2
12

+∆2
m

1

Π2

(

1 − 12

Π2
+

48

Π4

)

− R2 1

2

(

1 − 4

Π2

) j2

l2

]

+ R

[

±1 − ∆m

1

Π

(

1 − 8

Π2

)

− 2R(1 − 2s2
12)

]

j

l
cos δ

+ R
2

Π

[

1 ∓ ∆m

Π

4

(

1 +
8

Π2
− 64

Π4

)

± R
Π2

4
(1 − 2s2

12)

]

j

l
sin δ

− R2 3

2

(

1 +
4

3

1

Π2

) j2

l2
cos 2δ ± R2 Π

2

j2

l2
sin 2δ

}

, (5)
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where n = 0, 1, 2, · · · is the peak index, Π ≡ (2n + 1)π, R ≡ δm2
21/|δm2

31|, and the top of the double sign is for
δm2

31 > 0 and the bottom for δm2
31 < 0. The oscillation probability at the peak is then given by

Pn = 4l

{

[

1 ± ∆m

2

Π

(

1 − 2s2
13

)

+ R2 3

8
Π2

(

1 +
4

3

1

Π2

)j2

l2
+ ∆2

m

1

Π2

(

1 +
4

Π2

)

]

− R
Π2

2

[

∆m

1

Π

(

1 − 4

Π2

)

− R(1 − 2s2
12)

]

j

l
cos δ

− RΠ

[

1 ± ∆m

2

Π

(

1 − 2

Π2

)

± Rs2
12

]

j

l
sin δ

+ R2 Π2

8

(

1 − 4

Π2

)j2

l2
cos 2δ ± R2 Π

2

j2

l2
sin 2δ

}

. (6)

The peak loops for n = 0 is obtained by keeping track of (En, Pn) as the value of δ is varied over a cycle from 0 to 2π
while other parameters are fixed.

Taking another step ahead, we use these expressions to formulate properties of the peak loop and their dependence
on the oscillation parameters and the baseline length. We define the central position of the peak loop by the average
values of En and Pn over a cycle of δ. It is obtained by picking the terms independent of δ in Eqs. (5) and (6), and
is given up to the first order by

(

En, Pn

)

=
( |δm2

31|L
2Π

[

1 ∓ ∆m

Π

(

1 − 4

Π2

)

(1 − 2s2
13) ∓ Rs2

12

]

, 4l
[

1 ± 2∆m

Π
(1 − 2s2

13)
]

)

, (7)

where the double sign should be understood as in Eqs. (5) and (6). The overall factor of En is proportional to the
baseline length and consequently drives the loop to the rightward in the E-P plane as the baseline gets longer. The
subleading matter-effect term is also proportional to the baseline length, shifting the normal loop left-upward and the
inverted one right-downward. These features are indeed seen in Fig. 2.

The width ∆En and the height ∆Pn of a loop are estimated by taking the difference of the maximum and minimum
values of En and Pn, and are obtained up to the second order as

∆En = |δm2
31|LR

1

Π

√

1 +
4

Π2

j

l

[

1 ∓ ∆m

2

Π

1 − 32/Π4

1 + 4/Π2
∓ R

1 − 2s2
12

1 + 4/Π2

]

, (8a)

∆Pn = 8RΠj

[

1 ± ∆m

2

Π

(

1 − 2

Π2

)

± Rs2
12

]

. (8b)

The overall factor of ∆En widens the loop due to its proportionality to the baseline length, and the matter effect
offsets the widening for the normal hierarchy and enhances it for the inverted. The dependence of ∆Pn is supplied by
the matter-effect term, which heightens the normal loop and flattens the inverted one. These behaviors of the loops
are also observed in Fig. 2.

The critical baseline length can also be analyzed by the peak loops. It is defined as the maximum length that keeps
the intersection of the normal and the inverted loops, and is calculated in the first-order approximation as

Lcrit =
1√

2GFne

R
Π

1 − 12Π−2 + 64Π−4

c23c12s12

s13s23

1

1 − 2s2
13

×
[

√

1 − 12

Π2
+

64

Π4
− 4

Π2

(s13s23s12

c23c12

)2

−
(

1 − 8

Π2

)s13s23s12

c23c12

]

. (9)

The critical length is inversely proportional to sin θ13 owing to the factor c23c12s12/s13s23, with the small correction
of O(θ13). This length can be indefinitely long since the lower bound on the value of sin θ13 is still unknown. Figure 3
shows the critical length as a function of sin2 2θ13 for the first peak, where other parameters are fixed to the example
values of Eq. (1). This graph reads Lcrit = 1150 km for sin2 2θ13 = 0.06. These results are qualitatively consistent
with the result presented in the reference [8].

IV. PROSPECTS OF RESOLVING THE DEGENERACY THROUGH THE PEAK LOOPS

We consider possible methods to escape from the hierarchy degeneracy in the long baseline experiments [9].
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FIG. 4: Trajectories of the first peak of (a) νµ → νe probability and (b) ν̄µ → ν̄e probability for the baseline length of 700 km.
The solid and dotted lines are for the normal and inverted hierarchy, respectively. The cross and the plus sign in (a) are on the
intersections of the peak loops, and the corresponding values of parameters are also shown. The signs in (b) mark the points
corresponding to these parameter values.

An experiment with baseline length longer than the critical length is a promising for this purpose, being free from
the hierarchy degeneracy. Nonetheless the very long baseline also brings on the challenge such as small flux of the
neutrino beam and possible large ambiguity of matter effects.

Experiments with shorter baseline are more feasible, but leaves the possibility of degeneracy. Combining the
observations of two or more peaks in the search avails against this problem. We consider the following three approaches
and examine them in order1: (2) observing ν̄µ → ν̄e appearance events in addition to νµ → νe events; (3) doing two or
more experiments with different baseline lengths; and (4) doing an experiment that can observe two or more oscillation
peaks.

The second approach employs both neutrinos and anti-neutrinos. We present in Fig. 4 two pairs of peak loops,
one (a) for neutrinos and the other (b) for anti-neutrinos, with the parameter values of Eq. (1) and L = 700 km.
Marked by a cross and a plus sign in Fig. 4 (a) are the two intersections of the normal and inverted loops. Each
intersection corresponds to the hierarchy degeneracy through two sets of (sgn δm2

31, δ). Turning to the loop for anti-
neutrinos, these sets of parameters no longer correspond to intersections but to two distinct points on the peak loops
of anti-neutrinos, as shown in Fig. 4 (b) with the corresponding marks. The combined analysis of νµ → νe events and

1 Enumeration starts from (2), reserving (1) for the approach employing the baseline longer than the critical length described above.
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FIG. 6: Trajectories of the first and the second oscillation peak for L = 1100 km. The oscillation parameters in Eq. (1)
are adopted. The solid (dotted) loop is for the normal (inverted) hierarchy. Crosses and plus signs correspond to the sets of
parameter values that bring the first peak at the intersection of its trajectories. The points for these values are also on the
second peak loops and marked by the corresponding sign. Oscillation spectra for the parameter values are overlaid.

ν̄µ → ν̄e events therefore helps resolve the hierarchy degeneracy. The two plus signs for anti-neutrinos are close to
each other on the E-P plane in our present example, and the resolution needs to be high enough to distinguish the
two points in order to make full use of the anti-neutrino channel in resolving the degeneracy.

The third approach makes use of two or more different baseline lengths [6]. We reproduce in Fig. 5 a series of peak
loops shown in Fig. 2. On top of them, we mark the points correspond to the parameter values for the intersections
of the loops for L = 700 km as we did in Fig. 4. We see that the crosses and the plus signs flows away from the
intersections as the baseline length deviates away from 700 km. The degeneracy can be thus resolved by an additional
experiment with two different baseline length, where the difference of the two baseline lengths should be preferably
large.

The fourth approach makes use of the second peak of appearance probability in addition to the first one [12]. The
energy of the second peak is approximately only one third of that of the first peak, and we need sufficiently long
baseline to make the second peak observable. We show pairs of loops for the first and the second peaks in Fig. 6 for
L = 1100 km, where we find that the loops for the second peak are more stretched in the P -direction and overlap
more significantly than the first-peak loops owing to the factor Π ≡ (2n + 1)π appearing in Eqs. (7) and (8). Crosses
and plus signs correspond to values at the two intersections of the loops for the first peak. The points of same sign
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are separated from each other on the second peak loops and the hierarchy degeneracy will be thus removed by using
two peaks.

V. CONCLUSION AND DISCUSSIONS

We studied the search for the leptonic CP-violating angle δ and the neutrino mass hierarchy sgn δm2
31 by an ob-

servation of the νµ → νe oscillation with long baseline experiments. The energy spectrum of νµ → νe appearance
probability gives clues to the values of these parameters, but may lead to degeneracy when the two spectra corre-
sponding to the two different parameter values are indistinguishable. We implement the presence of degeneracy using
the following criterion: the oscillation probabilities for the two parameter values are peaked at the same energy and
have the same peak probability. From the viewpoint of this peak-matching condition, we examined systematically the
presence of the degeneracy varying the value of δ, the sign of δm2

31, and the baseline length. We have also studied
how the degeneracy is resolved by a single experiment and a combination of experiments.

We have shown that the loops traced by the peak position offer intuitive view on the parameter degeneracy. A pair
of disjoint loops indicate the absence of degeneracy while intersecting loops do the presence, and each of intersections
corresponds to two sets of parameter values that are degenerate. Deriving analytic expressions of the loop, we
systematically studied their dependence on the mass parameters, the mixing parameters, and the baseline length. We
have seen that a pair of loops with different hierarchies are completely separated when the baseline is longer than
the critical length, which is typically about 1000 km or longer and inversely proportional to sin θ13. We cited four
approaches for resolving the degeneracy by long baseline experiments: taking the baseline longer than the critical
length, employing anti-neutrinos as well as neutrinos, using two or more different baseline lengths, and carrying
out experiments covering more than one oscillation peaks. We went into each idea in terms of the peak loops and
mentioned that the second approach using anti-neutrinos may require a high resolution to take advantage of using
both neutrinos and anti-neutrinos.

The peak loops we employed have an equal significance to the trajectories in the bi-channel plots introduced in
the reference [7], but simultaneously have differences from them: our plot employs only a single channel and thus
can be applied to single-channel experiments to explore possibilities their possibilities; we make essential use of the
oscillation peak as a representative of the spectrum over a finite energy range, while the bi-channel plot is drawn for
an arbitrary fixed energy or for integrated values over an energy range at one’s convenience.

We have kept the values of parameters fixed except for δ and sgn δm2
31, assuming that these values would be settled

in advance of experiments. Their ambiguities may, however, persist at the time of experiments and hinder the searches
[5, 6, 7, 8, 10]. We can apply the peak loop to a comprehensive understanding of effects of these ambiguities also. We
leave them for future works.
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