The Japan Soci ety of Mechanical Engineers

390

Suitable Daemon Function for Building
Knowledge Base in Mechanical Design Field*

Yasumi NAGASAKA**, Happy WIBISONO**,
Hideyuki OHTAKI** and Yoshio ISHIKAWA**

To build an expert system, especially in the mechanical design field, a knowledge
base which contains a wealth of knowledge is an important issue for improving the
efficiency of the design process. However, it is very difficult to build a knowledge base
in mechanical design because there is a great deal of complicated knowledge in this
field. In this work we derive an approach to build large knowledge bases in mechanical
design by using an extended daemon function. Using this method, we believe it
becomes possible to realize the characteristics of data base systems (DBS) in knowl-
edge base systems (KBS). As a result, KBS will be suitable for managing and
representing knowledge, and it will become easier to build a knowledge base in the

mechanical design field.

Key Words :

Design, Artificial Intelligence, Knowledge Base, CAD, Expert System,

Frame Representation, Daemon Function

1. Introduction

Recently, the application of expert systems to
engineering has drawn much attention. Introduction of
knowledge engineering to CAD systems may expand
computer application to wider domains in engineering
design beyond the current state of numerical computa-
tion and drawing.

To build an expert system, especially in mechani-
cal design, a knowledge base which contains a wealth
of knowledge and experience of experts, is an impor-
tant issue for improving the efficiency of the design
process. However, there is a vast amount of compli-
cated knowledge in mechanical design, so it is very
difficult to build a knowledge base in this field. Takiz-
awa et al. have attempted to build a large knowl-
edge base effectively by connecting data base systems
(DBS) and knowledge base systems (KBS) systemat-
ically. However in their work most DBS were only

* Received 8th December, 1992. Paper No. 91-1385

** Department of Mechanical Engineering, Saitama
University, 255 Shimo Okubo, Urawa, Saitama 338,
Japan

Series C, Vol. 37, No. 2, 1994

used as a memory because DBS are suitable for stor-
ing much data, not for representating knowledge. If
the characteristics of DBS can be realized in KBS, we
believe a great deal of knowledge (data and formu-
lae) of mechanical design may be efficiently knowl-
edge-based.

In our investigation, we have built a management
system® of a knowledge base for engineering design
based on frame representation®. The system has a
data structure (basic building blocks to build up the
knowledge base) which is similar to that in KEE®,
ie, “UNITS-SLOTS-FACETS-VALUES”. Here, we
have introduced the “ATTRIBUTION” concept® in
place of “FACET”. The principle of ATTRIBUTION
is the incorporated frame of knowledge representa-
tion based on attributes of the objects. In other words,
in the current data structure, the frame of FACETS
(attributes) inside the SLOTS is fixed ; however, in
ATTRIBUTIONS, attributes in the SLOTS can be
defined and changed freely, similar to the relation of
“SLOT-FACET” in STROBE®,

Initially, we defined the basic building blocks of
knowledge base in SLOTS as (slot-name slot-type
slot-value). Then, the default values and daemon

JSME International Journal

NI | -El ectronic Library Service

The Japan Soci ety of Mechanical Engineers

functions can be defined freely if needed. Daemon
functions are an attached-procedure which can work
automatically when we are referring and editing slot-
values. Consequently, because the daemon function
to manage slot-values can be defined and executed
before the slot-values are evaluated, the variables
described in the slot-value can be defined automati-
cally. As a result, the complex formulae used in
mechanical design, and also logical expressions, can
be described in slot-value. For that reason, it is pos-
sible to realize the characteristics of DBS in KBS.

We derive the extension of the daemon function
for building a knowledge base in the mechanical
design field, and generation of the functions to realize
the characteristics of DBS in KBS, based on the above
concept.

2. Suitable Daemon Function for Building
Knowledge Base in Mechanical Design Field

2.1 Daemon Function and extended function
Currently, typical daemon functions are “if-need-
ed”, “if-added” and “if-removed”, for example. These
daemon functions do not provide ability to directly
manage slot-value. Therefore, we have tried to make
an extension of the following functions so that they
will be able to manage slot-value directly.

2.1.1 Handling numerical and empirical formula
as a slot-value Regarding mechanical design,
there are many numerical and empirical formulae, so
if these formulae can be described in term of slot-
value, it will be very useful when building a knowledge
base. In connection with the above matter, we have
realized a function to evaluate the variables which are
used in such formulae and append it to the daemon
function.

2.1.2 Realizing characteristics of DBS in KBS
There are some problems in connection with the
capacity of the memory if data in the recording units
of DBS are stored directly in terms of frame-based
representation units. For that reason, it is important
to create a function in a slot of frame representation,

System Siot User Slot

.............. -

Slot

Attribution

Attribution

Value Value

Fig. 1 Data structure of knowledge base

JSME International Journal

391

which plays the role of a record in DBS. To realize

such a function, first the relationship between the

record and field in slot-value is described. Then, by

using this relationship we simply incorporate the

evaluation function when we are referring to the data.
2.2 Extension of daemon function

Figure 1 shows the data structure of the knowl-
edge base. Slots consist of system slots and user slots.
System slots, as described above, have “SLOT-
NAME, SLOT-TYPE, SLOT-VALUE” as their
attributes which manage independence between units.
In user slots, in addition to these attributes, the user
can define any other attributes if needed.

Figure 2 shows the concept of the daemon “if-
varied” function which is adopted to realize the func-
tion described in subsection 2. 1. This daemon function
is described as

((variable-1 attached-procedure-1)

(variable-2 attached-procedure-2)).

Here, variable-1 is the name of a variable which
is described in slot-value. The result of evaluation of
attached-procedure-1 is substituted to this variable-1.
Then, if attached-procedure-1 is omitted, variable-1
signifies a slot-name in class frames in frame repre-
sentation.

If the slot-value is referred by message-passing
(Fig.2 (1)), the system determines whether this
daemon function “if-varied” is already defined or not
(Fig.2.(2)). In the present case, it has already been
defined, and hence the daemon function “if-varied”
will first evaluate attached-procedure-1 (Fig.2(3)),
then the result of evaluation is substituted to variable-
1 (Fig.2(4)). After all the variables in the list are
evaluated (Fig.2(5)), they, in turn, will evaluate
slot-value. Then the result is returned to function
which is defined by the user (Fig.2(6)).

In the current daemon function, the formula is
defined in the attached-procedure function, so it is
very difficult to understand the details of the formula
and to modify the slot-value used in the formula. In
comparison, by using the daemon function “if-varied”
suggested here, because of the reasoning route shown
in Fig. 2, formula can be treated as slot-value because
the variable used in the formulae is described in the
form of ((variable-1 attached-procedure-1) ..).
Hence, if the slot-name is described in variable-1, it is
easy to understand and to modify the slot-value in
that formula. With this extension function, as will be
described in subsection 2. 4, formula can be described
in a slot directly, because variables in this formula
will be evaluated by the daemon function “if-varied”.
For that reason, it will be easier to build and to
modify the knowledge base.

Series C, Vol. 37, No. 2, 1994

NI | -El ectronic Library Service

The Japan Soci ety of Mechani cal

Engi neers
392
Frame — representation
Un i t
S 1ot -1
\ S 1 ot -2
(1) nessage-passing
| S1 ot /\(2) reference
Slot-Name Slot-Type Slot-Value | -+ if-varied if-added
attribution | attribution |attribution attribution attribution
<—(6)return\~/(5)evaluation 7 "_ (attached-procedure-5)
e \ !
f‘ e BN !
,/'/" N |
el ; i
- N I
P N
= !
((variable-1 atltached—procedure—l) (variable-2 ...) ...) :
|
|
(3)evaluation :
(4)bind |
Attached-Procedure Functions |
B |
~>(defun attached-procedure-1 () :
|
&’%— (return *xx)) /
(defun attached-procedure-5 ()< ~|— — —~
Fig. 2 Concept of If-varied daemon function
2.3 Extension of system slot Fig.3(b) is stored in a list. This list of unit names is

Figure 3 shows the concept of the system slot
“Cluster-Units” which is extended for realizing a
function in KBS as well as DBS. Cluster-Units man-
age the relationship between fields in a record in DBS.
If the constructions of slots in a unit are identical, all
similar units will be represented as a single unit. The
figure shows an example for choosing the “basic
dimension of metric coarse screw threads”. Figure
3(a) is a sample of the record representation of the
data base, Fig. 3(b) shows a sample of frame repre-
sentation and Fig.3(c) shows a sample of frame
representation of the knowledge base, using extended
system slot “Cluster-Units”. The thick full line in this
figure shows the representation of the “M 8 Screw”.

Figures 3(a) and 3(b) are current representa-
tions, whereas Fig.3(c) is the new representation
suggested here. This approach is a combination of the
characteristics which are provided in the current
representations (Figs.3(a), (b)).

For example, a slot in frame representation
(thick full line in Fig.3(c)) expresses a record in
DBS; the conditions for obtaining the field in this
record are defined in slot-value of the same unit, as
shown within the dotted line in Fig.3(c). In the
system slot “Cluster-Units”, the unit name shown in

Series C, Vol. 37, No. 2, 1994.

automatically recorded in a global variable
(*Cunits*) in the system. Now, the search route
(message-passing) with reference to a slot-value, by
using this knowledge representation, is described as
follows. First, to obtain the “pitch of M 8 metric-
coarse-screw-threads”, Message-1 is sent as (MGR-
GET-VALUE ‘M 8’ Pitch). More explanation about
this function MGR-GET-VALUE will be described
later in subsection 3. 1.

During this message-passing, first, unit “M 8” is
searched. If the object unit is absent, the search will be
done in the global variable (*Cunits*) to check
whether the unit is recorded in the form of Cluster-
Units or not. If it is recorded in the form of Cluster-
Units, it will be treated as a function of system slot,
and the following search will be done.

As the first step, the function will select a present
unit from the global variable (*Record*), and then
Message~2 is done, so that the information which is
stored in a record of DBS will be substituted to the
global variable (*Record#). Subsequently, Message-
3 is done, and finally, the value 1.25 is returned as the
result.

Message-2 : (MGR-GET-VALUE 'M-COARSE-
SCREW-THREADS "M 8)

JSME International Journal

NI | -El ectronic Library Service

The Japan Soci ety of Mechani cal

Engi neers

Screw Pitch Outside-

Name Diameter

(c/10) (F/4) (F/4)
T T T T
M8 (- L25, 80;--
M10 T 150! 100" --
L | | ||
field

record

(a) Record representation
of DBS

Cunits < ((M-Coarse-Screw-Threads ..

.

Coarse-Screw-Threads

393

Coarse-Screw-Threads

TE;IU
M8
Parent: Coarse-Screw-Threads

Pitch (float):1.25
Outside-Diameter(fioat): 8.0

(b) Frame representation
of KBS

M8 M10 ..)

I

Message -3

(MGR - GET - VALUE #*

M-Coarse-Screw-Threads
Parents (units) : Coarse-Screw-Threads
"""""""""" (Slist) : (. M8 MI0..)

' Pitch (float) : (car *Records)
| Outside-Diameter (float) : (second *Record) |

M8 (list) : (1.25 8.0 7.19 6.65 1) |
MIO (fist) © (1.5 10.0 9.03 8.38 1)
(c) Frame representation using

extended system slot

Fig. 3 Concept of system slot “Cluster-Units”

>M_

"Cluster—-Units”

COARSE-SCREW-THREADS ’Pitch)

Hence, by applying the extension of the daemon
function described in subsection 2. 2 and the extension
of system slot, it is possible to create a KBS which has
functions to express a great deal of knowledge, as
well as the DBS. Furthermore, by using the current
message-passing, it is also possible to determine the
slot-value.

2.4 Description of formula

Figure 4 shows the difference in the description of
formulae between current frame representation and
ones which use the extended daemon function.

Here, a formula related to “the effective sectional
area of a screw” is used as an example. Referring to
ISO 898/1, the formula is obtained as

As=0.7854 % (d —0.938 2 % P)?

JSME International Journal

As (mm?) : Effective sectional area of screw

d (mm) : Outside diameter of male screw

P (mm) : Pitch of screw.

Figure 4(a) shows that the above formula is
described in a slot-value by using the extended dae-
mon function (dotted line (1)). In addition, in this
formula not only arithmetic operations, but also
multinominal differential and integral calculus, can be
described. Even if there are operators which are not in
this system, since the operators can be recorded in the
library, it will be able to treat such formulae which
are used in the mechanical design field. In particular,
the formulae which are developed in attached-proce-
dures languages such as C-language or FORTRAN,
can also be treated in slot-value.

In comparison, Fig. 4(b) shows an example of a
formula which is described by current frame represen-

Series C, Vol. 37, No. 2, 1994

NI | -El ectronic Library Service

The Japan Soci ety of Mechani cal

Engi neers

394

Machine Element

Machine Element

<«—|[SA-relation

Screw
Parents : (Machine Element)
Cluster-Units : nil

Effective Section-Area : (1)

Screw
Parents :

Effective-Section-Area :

(Machine-Element)

Section-Area
AY
\

....................................

(if—varned (Outsnde Diameter) (Pltch))

T

N

AY
Attached-Procedure Functions \ ()]
M 1

(defun Section-Area (&aux pf od)
(setq pt (MGR-GET-VALUE *UnitName* 'Pitch))
(setq od (MGR-GET-VALUE *UnitName* 'QOutside-Diameter))
(* 0.7854 (x* (- od (* 0.9382 pt)) 2))
)

Coarse-Screw-Threads
Parents : (Screw)
Cluster-Units : nil

Inside-Diameter :

Coarse-Screw-Threads
Parents :

Tensile-Strength

(Screw)

: 38.0

(- Outside-Diameter (* 1.0825 Pitch))
(if-varied (Outside-Diameter) (Pitch))

¥

1\ [Mo
M-Coarse-Screw-Threads M8
Parents . (Coarse-Screw-Threads) Parents : (Coarse-Screw-Threads)
Cluster-Units © (.. M8 MI1D..) Children : nil
Pitch : (car *Record*) :
Outside-Diameter . (second *Recordx) Pitch © 1,25
Qutside-Diameter : 8.0
MB (list): (1.25 8.00 7.19 6.65 1) Effective-Diameter : 7.19
MIO (list): (1.5 10.0 9.03 8.38 1) 6. 65 L

Inside-Diameter

(a) Example using extended daemon function "if-varied”

(b) Example using current Frame-representation

Fig. 4 The differnce in description of formulae

tation. In this representation, the formula is described
by the function’s name in the slot-value as an attached-
procedure, or described directly by using the lambda-
format. To do so, one must create a complicated
program, and consequently, it becomes more difficult
to build a knowledge base using this representation.

Another example of the description of the logical
operators is shown within the dotted line (2) in Fig.
4. This is an example of the search screw which suits
the following conditions : “pitch > = 1.25 and outside-
diameter <=9.0". As we know from this example,
functions similar to DBS’s search functions can easily
be described in slot-value.

3. Realizing Extended Daemon Function
and Its Evaluation

3.1 Method for realizing daemon function

Figure 5 shows the listing of the MGR-GET-
VALUE function which refers to slot-value. These
functions are encoded in KYOTO COMMON LISP
(KCL), and because KCL is developed based on C-
Language, the functions can easily be connected to C-
Language. They can also be connected to FORTRAN
and other programming languages easily. As a result,
formulae defined in slot~value described in subsection

Series C, Vol. 37, No. 2, 1994

2.2 can be used.

The MGR-function group (functions which start
with “MGR-") in the figure, can be modified freely by
the user, while COR-function group (functions which
start with “COR-”) is managed by the system.
From the list within the dotted line, the MGR-function
group is described by using the COR-function group
and the defined MGR-function. This means, since the
user can define the MGR-function group freely, that if
necessary, the user can modify the data structure in
the slot and its functions. For example, the dotted line
(1) in the figure shows the extended part of the
system slot. This part (by using the MGR-CHK-
CUNITS function) is to determine whether the object
unit is registered in Cluster-Units (*Cunits*) or
not ; subsequently the function we described in subsec-
tion 2. 3 will be realized. Furthermore, the dotted line
(2) in the figure shows the extended part of the
daemon function.

Figure 6 shows a simple flowchart of the main
part of the MGR-GET-VALUE#* function which
refers to slot-value in Fig. 5. This function consists of
two parts. The first part obtains a slot and the second
part evaluates it when the slot is present. The former
is executed by the COR-GET-SLOT function, while

JSME International Journal

NI | -El ectronic Library Service

The Japan Soci ety of Mechani cal

Engi neers

the latter is executed in the steps below.

First, if there is an attached-procedure which
expresses the “if-needed” daemon function in the slot,
COR-EVL-FUNCTION is executed to evaluate the
attached-procedure. Then, if the list formation which
expresses an extended “if-varied” daemon function is
present, the function described in subsection 2.2 will
be executed (see dotted line (2) in Fig.5). At this
point, all of the attached-procedures in this format
are evaluated, and the evaluation results will be con-
nected with the variables. If only a variable (without
attached-procedure) is present, the variable is inter-
preted as a slot-name, and function MGR-GET-VAL-
UE is executed recursively; then, the result is sub-
stituted to the variable.

Finally, in the case when the slot-value is a for-
mula, the above variables will be used to evaluate it,
and then the above variables will be returned as an
evaluation result of the function MGR-GET-VALUE.

In this method, the extension of the daemon func
tion and system slot is realized by modifying the MGR-
function. The interdependence of the MGR-function
group is managed by the system, which keeps the data
structure in the knowledge base and the function of
system slot consistent.

3.2 Evaluation of building knowledge base using
extended daemon function

Figure 7 shows the comparison of the memory
that is used when building the knowledge base “ISO
metric screw threads - Basic dimensions (ISO-724)”

(starr)

395

; Message function
(defun MGR-GET-VALUE (UnitName SlotName)
(cond ((COR-GET-UNIT UnitName)

(setq *StotName* SlotName)

((MGR-CHK-CUNITS UnitName)

(setq *SlotName* SlotName)

; Message function
(defun MGR-GET-VALUE* (UnitName SlotName

(setq Slist (capy-tree (COR-GET-SLOT (UnitName SlotName))))
(when Slist

(setq Rdata (nth 2 Slist))

; if-needed daemon function

(when (assoc 'if-needed (nthcdr 3 Slist))

;_if-varied daemon function (2)

\ (when (assoc "if-varied (nthedr 3 Stist)) :

; evaluation
(unless (and (member (nth 1 Slist) ' (list Ulist Stist))

Rdata)

; Check function for extended Cluster-Units
(defun MGR-CHK-CUNITS (UnitName &aux Ulist (Uname nil))
(do ((Ulist *Cunits* (cdr Ulist))
((null Ulist) nil)
(when (member UnitName Ulist)

(setq *UnitName* UnitName)

(setq *Record* nil)

(MGR-GET-VALUE* UnitName StotName))

(setq *UnitName* (MGR-CHK-CUNITS UnitName))

(MGR-GET-VALUE#* *UnitNamex UnitName))
*UnitNamex SlotName))))

(setq *Record*

gaux Slist Vlist Elist Edata (Rdata nil))

(COR-EVL-FUNCTION (cdr (assoc 'if-needed
(nthedr 3 Slist)))))

(do ((Vlist (cdr (assoc 'if-varied (nthedr 3 Slist)))) :
(cdr Vlist)) :
((null Vlist) nil)
(setq Elist (copy-tree (car Vlist)))
(if (second Elist) H
(setq Edata (copy-tree
(COR-EVL-FUNCTION (nthcdr 1 Elist))) '
(setq Edata (copy-tree '
(eval (list 'MGR-GET-VALUE
UnitName (car Elist))))))
(eval (list 'setq (car Elist) Edata)))))

(listp Rdata))
(setq Rdata (copy-tree (eval Rdata))))

(setq Uname (copy-tree (car Ulist)))))

Uname)
. Fig. 5 List of MGR-GET-VALUE function
Slot-Body is
bound by
"COR-GET-SLOT”
Take
Slot-Value Attached-Procedure
function is evaluated
by "COR-EVL-FUNCTION"
Body of function Slot-Body " if-needed”
"MGR-GET-VALUE*" ||| exists 21(daemon Attached-Procedure
exists ? function is
evaluated by
"COR-EVL-FUNCTION"
"if-varied” ¥hile A function <i
daemon daemon area is defined ?
exists ? exists Slot-Value
is taken by
"MGR-GET-VALUE"
Evaluate Slot-Value Evaluated-Value
Slot-Yalue ? is evaluated is bound to
return by "eval” a value
Slot-Value
END

Fig. 6 Flowchart of MGR-GET-VALUE* function in Fig. 5

JSME International Journal

Series C, Vol. 37, No. 2, 1994

NI | -El ectronic Library Service

The Japan Soci ety of Mechanical Engineers

396

between two systems: (a) by using the extended
daemon function represented in Fig.5(a), and (b)
one which uses the current frame representation. In
the case of Fig. 7(b), the formula cannot be described
in slot, so it must be described as the function name of

The abscissa in the figure shows the number of
specifics (facts) of “abstract-specific” relations in the
frame theorem. In case of ISO-724, the number of
specifics corresponds to the number of parts in the
standard. If there are none, the number will be zero. In

other words, the memory under this condition shows
Class-frames of “COARSE-SCREW-THREADS” in
Fig. 4, and memory in (a) becomes bigger because
the formulae of the effective sectional area and inside
diameter of the screw are stored.

Moreover, the memory increment factor depends

the attached-procedure.

(a) :Example using extended
10.0 daemon function " if—varied” (b)

(b) :Example using current
Frame representation

i;n: (a) on the amount of slot and (b) on the amount of
L unit. In a unit there is information to manage frame
o representation, e.g., inheritance-relationship. The
A . . .

-~ difference in these formulae (see below) is expressed
> as the difference in the straight angle (slope).

5 memory (a)=A1 % parts+A?2

g (a) memory (b)=B1 * parts+B2

=

Here, A1 (bytes) is the memory of a slot. A2
(bytes) is the memory which contains formulae using
extended daemon functions. B1 (bytes) is the mem-
ory of information using frame representation. B 2
(bytes) is the memory of the current representation.

For example, these variables can be quantified by
counting backwards in Fig.7. It is considered that

10 20 30 40
Parts

Fig. 7 Comparison of memory

£2) Welcome to ZES World.
Py - —
X p_wntt
push here. if you want to clear
drauingname unit m-metric-coarse-screu-threads (]
drauingtype uclass instance
drawingparent ulist (metric-coarse-screw-threads)
drawingchild ulist n1l
drauingtext string *undefw
craeted-by list (1991 9 20 15 49 54)
cluster-units slist (1 a1-1 m1-2 ni-4 w1-6 #1-8 w2 n2-2 w2-5 w3 u3-5 w4 #4-5 a5 u6 a7 a8 9 il =
standard-id string “1S0 724"
pitch float (car ®recordx)
outside-diameter float (second %record»)
call-of-screw integer (third #recordw)
ol list (0.251.0 1)
nl-1 11st (0.25 1.1 2)
00 e - (Hh 251 2 1)

unit_editor

Main Menu 1::0 UNIT editor (Print) #¢f <
n UED> Input old unit name (unit) ? m-metric-coarse-screw-threads
slot_editor ——— End of ({orint>> -—-

c re 8 X herarchy

cop] lispprocl«} miniature-screu-threads s~miniature-screw-threads(#]

de 14 parallel-pipe-threads g-parallel-pipe-threads{«)

cla taper-pipe-threads r~taper-pipe-threads{»]

ins rigid-aetal-screw-threads ctc-rigid-metal-screw-threads[*]

hie_" metric-coarse-screw-threads m-metric-coarse-screu-threads{«]

bri unified-coarse-screu-threads unc-unified-coarse-screw-threads(«]

gziz screw m-metric-fine-screw-threads(»]

qui metric-fine-screw-threads m-metric-fine-screw-threadsi(«]
n-metric-fine-screw-threads2(«]
m-metric-fine-screw-threads3(»]

unified-fina—acram=-th d if-unified-fina-screu-threadsfx]l

=

Fig. 8 A sample of a part of knowledge base discussed in subsection 3. 2

Series C, Vol. 37, No. 2, 1994 JSME International Journal

NI | -El ectronic Library Service

The Japan Soci ety of Mechanical Engineers

397

Welcome to ZES World.

i3
won woer,_namt Sass
X p_antt [
push here. 1if you went to clear
drauingname unit metric-cosrse-screw-threads
drauingtype uclass class
drawingparent ulist (screw)
drawingchild ulist (m-metric-coarse-screw-threads)
drawingtext string *undef»
craeted-by list (1931 9 20 15 41 5)
cluster-units slist nil
pitch float nil
outside—diameter float nil

call-of-screw integer nil
effective-section-area float

search-condition clist (end (= pitch 1.25) (= outside-diameter 9.0))
(1f-varied (outside-diameter) (pitch))
inside-dismeter float (- outside-dismeter (x 1.0825 pitch))

(if-varied (outside-dinmeter) (nitch))

(% 0.7853 (#» (- outside-diameter (# 0.9382 pitch)) 2))
(if-varied (outside-diameter) (pitch))

WX wnir_edivor

unit_editor

Main Menu
slot_editor
create_unit
copy_unit

#22 UNIT editor (Print) ###

-— End of <Kprint>> -—-
##2 UNIT editor (Print) ###

--- End_of <Kprint)> -—

UED> Input old unit name (unit) ? m-metric-coarse-screw-threads

UED> Input old unit name (unit) ? metric—coarse-screw-threads

(3 K_hierarchy 2
lispprocl«] miniature-screw-threads s~miniature-screu-threads(#]
parallel-pipe-threads g-parallel-pipe-threads(«]
taper—pipe-threads r-taper—-pipe-threads(#]
rigid-metal-screw—threads ctc-rigid-metal-screw-threads(#]
metric-coarse-screw-threads m-metric-coarse-screw-threads(»]
unified-coarse-screw-threads unc-unified-coarse-screw-threads[*]
eccau m—matric—fi :au=thraadalxl
@ - <

Fig. 9 A sample of a part of knowledge base discussed in subsection 2. 4

there are many kinds of screws for an element in
machine parts. Assume that to store 10 000 kinds of
screws in a knowledge base, using the formula above,
about 2.3 (Mbytes) in the current frame representa-
tion are needed. However, it takes only 0.3 (Mbytes)
in the representation using the extended daemon func-
tion. In this comparison, we see that it is possible to
build a knowledge base by using the extended daemon
function.

As described above, this extended daemon func-
tion may be an effective function for building a knowl-
edge base because it uses less memory and conse-
quently, the searching time can also be reduced.

Furthermore, Fig. 8 shows a sample of a part of a
knowledge base (ISO 724) discussed in section 3. 2.
The upper window shows the internal part of the
frame representation, and the lower window shows
the structure of hierarchy in the knowledge base.
Figure 9 shows a sample of the formulae in frame
representation, as discussed in section 2. 4.

4. Conclusions

In this paper we described an extension for the
daemon function “if-varied” and an extension for the
system slot “Cluster-Units” which involves it, to build

JSME' International Journal

a knowledge base containing a great deal of compli-
cated mechanical design knowledge including numeri-
cal formulae. With the extension function suggested
here, we expect a standard, such as ISO or any other
fixed standard, to be built as a wealthy knowledge
base and to become more effective. We also explained
how numerical equations can be described easily and
effectively.

The following conclusions are drawn from the
present study.

(1) By extending the daemon function, a formula
can be described directly in slot-value. Because of
this, we believe that it will be an effective function for
building and describing knowledge bases.

(2) By extending the system slot, it is possible to
reduce the memory of the knowledge base and to
express the reduced knowledge base concisely.

(3) Through the extension of the two points
mentioned above, it is possible to create in KBS, a
system which has functions comparable to DBS.

References

(1) Takizawa, M., Itoh, H. and Moriya, K., Logic
Interface System on CODASYL Database System,
Proc. of The Logic Programming Conf. (1986),

Series C, Vol. 37, No. 2, 1994

NI | -El ectronic Library Service

The Japan Soci ety of Mechani cal

398

(2)

(2)

Engi neers

p. 111.

Nagasaka, Y., Ohtaki, H. and Ishikawa, Y.,
Management System of Knowledge Base for
Mechanical Eng. based on Frame Representation,
Jpn. Soc. Mech. Eng., (in Japanese), No. 58-547, C
(91-1151 A), (1992), p. 301.

Minsky, M., A Framework for Representating

(4)

(5)

Knowledge, J. Mind. Design, MIT, (1981), p. 95.
Kehler, T.P and Clemenson, G.D., KEE, Knowl-
edge Engineering Environment for Industry,
Artificial Intelligence, (1986), p. 573.

Smith, R.G.,, STROBE, Support for Structured
Object Knowledge Representation, IJCAI, (1983),
p. 855.

Series C, Vol. 37, No. 2, 1994

JSME International Journal

NI | -El ectronic Library Service

