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Analysis of Negative Poisson’s Ratios of Re-Entrant
Honeycombs®

Hideyuki OHTAKI**, Guoming HU**, Yasumi NAGASAKA™* and Sinya KOTOSAKA**

Materials or structures that contract in the transverse direction under uniaxial compres-
sion, or expand laterally when stretched are said to have negative Poisson’s ratios. A theo-
retical approach to the prediction of negative Poisson’s ratios of re-entrant honeycombs has
been developed which is based on the large deflection model. The equations of the deflection
curves of the inclined member of the re-entrant cell, strains and Poisson’s ratios of re-entrant
honeycombs in two orthogonal directions have been derived. The deformed shapes of the
inclined members of the re-entrant cell are calculated. The negative Poisson’s ratios of re-
entrant honeycombs are no longer a constant at large deformation. They vary significantly
with the strain. The effect of the geometric parameters of the cell on the Poisson’s ratios is

analyzed.
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1. Introduction

A negative Poisson’s ratio has been treated as an ab-

normal elasticity for a long time. However, negative Pois--

son’s ratios are theoretically permissible. For an isotropic
material, the allowable range of Poisson’s ratio is from
-1.0 to 0.5, based on the thermodynamic consideration
of strain energy in the theory of elasticity. Materials with
naturally elaborated structures construction, like cancel-
lous bone and rock with micro cracks, also have negative
Poisson’s ratios.

Fabrication of man-made materials and structures,
which exhibit negative Poisson’s ratios, has been success-
fully realized. Some examples are composite laminates,
micro porous polymers, two-dimensional honeycombs
and three-dimensional foams. Particularly, Lakes)-®
had described a class of foams that constitute perhaps the
only known isotropic materials with negative Poisson’s ra-
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tios. Rothenburg et al.®® proposed a general class of mi-
crostructure of isotropic materials that leads to negative
Poisson’s ratios.

All negative Poisson’s ratio materials and structures
are classified by Evans et al.® as auxetics or auxetic mate-
rials. Auxetic materials and their negative Poisson’s ratios
have not been well understood. Materials of this sort are
expected to have interesting mechanical properties, such
as high energy absorption, fracture toughness, indentation
resistance and enhanced shear moduli, which may be use-
ful in some applications. Here one can cite the works of
Overaker et al.® and Wang and Cuitifioc®. They stud-
ied the application of auxetic material to medical anchors
and cushions. Therefore recently, the design and fabrica-
tion of auxetic materials and the analysis of their negative
Poisson’s ratios have simulated great interesting in the re-
search community.

Saiki et al.”” and Ohno et al.®) applied the homoge-
nization theory for periodic micro structures and realized
mathematical consistency in characterizing macroscopic
physical properties of heterogeneous media. Almgren®,
Wojciechowski and Branka!?-() investigated theoreti-
cally by Monte Carlo method. Warren and cowork-
ers!2:(3 made an approach for analytically calculating
the effective elastic properties of polymeric foams. Weil¥
presented a theoretical model for evaluating the effec-
tive Poisson’s ratio of polymeric networks. Gibson and
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Ashby!® developed a model that successfully predicts
Poisson’s ratio for macroscopic honeycombs, assuming
small deformation by flexure. Evans!®> 7 used a molec-
ular mechanics program which incorporates a standard va-
lence force field to model the deformation of network mi-
crostructure and thus to calculate Poisson’s ratio. Warren
and Byskov(!® studied the relationship of three fold sym-
metry and mechanical isotropy of two-dimensional mate-
rials based on a linear elastic micropolar model. The ef-
fects of structural geometric parameters on negative Pois-
son’s ratio were investigated by Yang et al.1? using a fi-
nite element method.

Sigmund®® @D reported that arbitrary materials can
be obtained by modeling the base cell as a truss struc-
ture based on an inverse problem. Masters and Evans??
showed that all materials exhibit negative Poisson’s ra-
tios as a result of their microstructures or geometric units.
Honeycombs are considered as a basic structure of these
microstructures or geometric units. An open cell in which
the inclined members of the cell protrude inwards was de-
~ scribed by Lakes®® as a re-entrant cell. Making the cell of
a conventional hexagonal honeycomb re-entrant produces
a negative Poisson’s ratio. This kind of honeycomb is de-
scribed as auxetic honeycomb here. When honeycomb are
to be used as load bearing or energy absorption structures,
large deformation often occurs, and non linear behavior
becomes important. This suggests that a large deformation
model should be more appropriate. The in-plane buckling
and non linear compression of conventional honeycombs
had been analyzed by Zhang and Ashby®#, and Zhu and
Mills® but these approaches either avoid the calculation
of large deflection itself, or divide the deformed member
into segments and calculate the large deflection by itera-
tion. In this study, we limited our analysis to the nega-
tive Poisson’s ratios of auxetic honeycombs, based on the
large deflection model, and calculated the large deflection
directly by incomplete elliptic integrals.

Nomenclature

E; : Young’s modulus of the solid cell member mate-
rial
H : Length of the vertical cell member
I : Second moment of inertia of the cell member and
I=b?/12
L : Length of the inclined cell member
Lyx, Lyx : Projected distances of the half inclined mem-
ber along X-axis and Y-axis, respectively, under
X-direction loading
Lxy, Lyy : Projected distances of the half inclined mem-
ber along X-axis and Y-axis, respectively, under
Y-direction loading
Mx, My : Bending moments at the end of the inclined
member due to ox and oy, respectively
Py, Py : Forces applied on the inclined member due to oy
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and oy, respectively
R : Relative density of the re-entrant honeycomb
S : Distance of a general point along the curvilinear
co-ordinates from origin O
b : Breadth of the cell member
kx, ky : Square roots of ratio of Px, Py to bending rigidity
of the inclined member, respectively
Dx, Py : Equal to sin(ax/2) and sin(ay/2), respectively
t : Thickness of the cell member
ax, ay : Bending angles at origin O between the tangent of
the inclined member and X-axis and Y-axis load-
ing direction, respectively
Bx, By : Bending angles at end B between the tangent of
the inclined member and X-axis and Y-axis load-
ing direction, respectively
v : Bending angle at free end O of a horizontal can-
tilever beam predicted by small deformation of
flexure
A : Angle between the undeformed inclined member
and X-axis
0 : Bending angle of a general point along a de-
formed member between the tangent of the shape
of the inclined member and loading direction
&x, €y Upper limits of integrals for a general point along
the half member with X-direction loading and Y-
direction loading, respectively
O, 0y : Lower limits of integrals with X-direction loading
and Y-direction loading, respectively
v : Poisson’s ratio of solid material
vx, vy : Poisson’s ratios of the re-entrant honeycomb un-
der X-direction loading and Y-direction loading,
respectively
¢ : New integral variable
& : Strain of honeycomb
Exx, Eyx : Strains of the honeycomb in X-direction and Y-
direction, respectively ,due to oy
Exy, €yy : Strains of the honeycomb in X-direction and Y-
direction, respectively, due to oy
p : Density of the re-entrant honeycomb
ps : Density of the solid cell material
ox, 0y : Remote stresses applied on the re-entrant honey-
comb in X-direction and Y-direction, respectively

2. Analysis of Negative Poisson’s Ratios of Re-
Entrant Honeycombs by Large Deflection Model

2.1 Forces and moments on the cell members

For a re-entrant honeycomb as shown in Fig. 1, as-
suming that re-entrant cells have uniform thickness, and
that ¢/L is small, the relative density giving by simple ge-

ometry is:
_P_ t/L(H/L+2) )

ps  2cosA(H/L~-sinA)

When the re-entrant honeycomb is uniaxially loaded
in the X or Y direction as shown in Fig. 2, the re-entrant
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Fig. 1 An undeformed auxetic honeycomb with re-entrant cells

2
2
2

(a) Loaded in X-direction (b) Loaded in Y-direction

Fig.2 Cell deformation by inclined cell member bending

cell members bend. The remote stress oy or oy produces
force Px or Py on inclined members of a unit cell, parallel
to the X-axis or the Y-axis. Py and Py are given by:

Py =0x(H-Lsind)b 2)

Py=o0yLcosab 3)

By equilibrium of the moment, the bending moments
at the end of the inclined member are:

My = PxLsinA/2 @)

My=PyLcos1/2 5)

2.2 Large deflection model

As can be seen from Fig. 2, there is a zero bending
moment at the midpoint of the inclined member. Thus
only the deformation shape of the half member will be an-

alyzed. The moment distribution in OB is the same as if it
were a cantilever beam, loaded at the free end by force Py
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(a) Loadedin X-direction (b) Loaded in Y-direction

Fig.3 Large deflection model of the half inclined member (The
solid line represents the deformation caused by a remote
compressive stress, while the dashed line represents the
deformation caused by a remote tensil stress)

acting in the X-direction (see Fig. 3 (a)). A curvilinear co-
ordinate S, with origin O, is used to define position in the
bending member. The exact expression for the curvature
of OB is d6/dS . Since the bending moment in OB is equal
to the flexural rigidity times the curvature, the differential
equation of the deflection curve is: .

do
Esl T —PxY ©6)
and the boundary conditions are:

do

(Es 1 E);:o =0, (@)s=0=0ax 0
de '

(Esl -—) =My, (0)s=L2=Px (®)
dS )12

Neglecting the change in length of OB due to axial
compression, differentiating Eq. (6) with respect to S, and

using the relation dY/dS =siné we obtain:
E Igz—e- =—Pyxsinfé ©)
In solving Eq. (9), we begin by multiplying both sides

by ZS'—dS and integrating, so that:

doede  , (. do
fmﬁ——kxf&ﬂg%ds

P
where kf( = E_XI Upon integrating, and using the bound-
s

(10)

ary condition at O, we obtain:

de

2
(E) =2k%(cosf—cosax) (11)

It can be seen from Fig. 3 (a) that d6/dS is always
negative, and thus solving for dS gives:
de
kx V2(cosf—cosax)
The total length of the half member, after the limits
of integration are interchanged, is: 4

- dS=- (12)

L_f"x do
2 Upx kx V2(cosf—cosay)

1 deo
- (13)
2kx gy fsin*(ax/2) - sin(6/2) '
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Using the notation py = sin(ax/2) and by introducing
a new variable ¢ in such a manner that:

sin(f/2) = px sin¢g = sin(ax/2)sin¢g (14)
it is seen from this relation that the limits of integration in
the #-coordinates 8 = @y and 6 =Sy transform into that in
the ¢-coordinates, and thus are

Plo=ay =7/2
and
Blo=py =6X=arcsin(sinﬂ7X /sin O%X) (15)
Differentiating Eq. (14) gives:
do= 2pxcospdd (16)

1/1—p§(sin2¢5

Substituting Eqgs. (14), (16) into Eq. (13), we obtain:

/2
2k T
fex 1 st1n¢

where F(ay) is an incomplete elliptic integral of the first
kind, and its value depends on the inclinations @x and SBx
of the points O and B. The force Py is related to this
elliptic integral by:
2

PX=k§E51:4—w (18)

When the re-entrant honeycomb is uniaxially loaded
in the Y-direction (see Fig. 3 (b)), Py can be obtained by
the same procedure as the solution for Py, and is expressed
as:

——F(Gx) a7

4EgIF*(ay)
L2

/2 d
Fan= [ —2—
o J1-pisin’e
In the above equation, the incomplete integral F(ay)
is related to two parameters:
py =sin(ay/2)
and

Py=K,EsI= (19)

Oy = arcsin (sin%' / sin %) 20)

For a given value of ax or ay, Px or Py can be calcu-
lated through these incomplete elliptic integrals. It should
be noted that in the re-entrant cell (see Fig. 4), the direc-
tion of the forces in the inclined members is reversed in
contrast with that in the inclined members of a conven-
tional hexagonal cell, while the forces in the vertical mem-
bers remain unchanged.

2.3 Strain and Poisson’s ratio for loading in the X-
direction

The horizontal projection dLyx of the element dS of
the half member OB is dS cos@ when the auxetic honey-
comb bears a remote tensile stress, and is dS cos8 when
the auxetic honeycomb bears a remote compressive stress.
So the horizontal projected distance Lyx(6#) of a general
point on the half member along the X-axis due to X-
direction loading is:
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Fig.4 An re-entrant cell unit formed by triangular prisms

Lix(0) = 1 +cosédo @1)
XX
2kx Jgy Vsin(ax/2) —sin*(6/2)

Writing cos8 as 1-2sin?(6/2) and using Eqgs. (14) and
(16), the above equation can be expressed in terms of ¢:

X 1-2p%sin ¢
Lxx——— —_—

b Jay NI stm¢
f \/1 pxsm 2odp— f

J1- stm ¢

(22)
where &x = arcsin(sin g /sin "’7") and By <0<ay.

The first part of the right-hand side of this equation
is an incomplete elliptic integral of the second kind, and
can be designated as E(£x), so the horizontal projected
distance is:

1
Lix(6)= i—X[ZE(f) ~F@) 23)

Letting the upper limit of the integration be /2, the
total projected length of the half member OB along the
X-axis due to X-direction loading is:

1
Lxx(ax)= i—x [2E(ax) - F(ax)] (24)

As the horizontal length of the undeformed inclining
member AB is LcosA (see Fig.4), the strain in the hori-
zontal direction due to oy is:

2Lxx(ax)—LcosA
LcosA
_ j:2[2E(a’x) - F(O’x)]/kx —LcosA
- LcosA

The vertical projected distance Lyx(6) of a general
point on the half member along the Y-axis can be calcu-
lated in a similar way, and is expressed as:

sin6do

' 1
Lyx(6)= — (26)
B

Exx =

(25)

sin®(ax/2)—sin*(8/2)

As sin@ = 2sin(6/2)cos(6/2) = 2sin(6/2)(1 -
sin*(6/2))"/2, and expressing the above equation in terms
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of ¢, we obtain:

X
Lyx(0)= bl f singd¢ = 2’l(coséx —coséy)
kx Jsy kx
27

Letting £x = 7/2, the total projected length of the half
member OB along the Y-axis is

2
Lyx(ax)= kLXX cosdx (28)

The vertical lengths of the undeformed inclined mem-
ber AB and the vertical half members AE and BF are

117

vertical direction depends on the total projected lengths of
AB, AE and BF along the Y-axis. As vertical members do
not deform in this large deflection model, the strain in the
vertical direction due to oy is:

H- 2Lyx(ax) - (H - Lsin/l)

erx= H-2sind
_Lsin/l-4pxcoso'x/kx 29)
- H-LsinA

The Poisson ratio under X-direction loading is calcu-
lated as the negative transverse strain divided by the axial
strain in the loading direction:

LsinA and H (see Fig. 4), respectively. The strain in the

—_ 2 _ 30
vx LcosA (30)

Exx H-LsinA
2.4 Strain and Poisson’s ratio for loading in the Y-direction
With a similar approach to that in the above subsection, we can calculate the projected distances of the deformed
half member, and the strains along the horizontal and vertical directions, and therefore the Poisson’s ratio for loading in .
the Y-direction. The solution for the horizontal projected length Lyy of the half member along the X-axis for this loading
direction is similar to the solution of Lyy, instead of Lyx, with minor modification. The horizontal projected distance
Lxy(6) of a general point on the half member and the total horizontal projected length Lxy(ay) of the half member OB

along the X-axis due to Y-direction loading are:

_ Eyx __Lsin/l—4pxcosdx/kx/¢2[2E(ax)—F(ax)]/kX—Lcos/l

1 in6do 2
Lyx(®)= 5= f sin6d == (cosdy —coséy) 31)
Y JBy \/sinz(ay /2)-sin?8/2) ¥
2
Lyy(ay)= X cossy (32)
ky
6
where £y = arcsin sini / %) and By <0< ay. Similarly, the vertical projected distance Lyy(6) of a general point on the
half member and the total vertical projected length Lyy(ay) of the half member OB along the Y-axis due to Y-direction
loading are:
1 +cosfdé +1
Lyy(6)= o f = k—[ZE@Y) - F(y)] (33)
Y JBy \/;inz(ay)—sirﬁ(e/z) Y
+1
Lyy(ay)= . [2E(ay)-F(ay)] (34)
Y

where the positive sign indicates that the auxetic honeycomb undergoes a remote tensile stress, while the negative sign
indicates that the auxetic honeycomb undergoes a remote compressive stress.
For loading in the Y-direction, the strains in the vertical direction and horizontal direction due to oy are:

_ H-2Lyy(ay)—(H-Lsind) _ LsinAF¥2[2E(ay) - F(ay)l/ky

Ery= H-LsinA H-LsinA (33)
exy= 2Lxy(ay)—LcosA _ 4pycosdy/ky—LcosA (36)
LcosA LcosA
Thus the Poisson ratio for loading in the Y-direction is
yym &y __ 4pycosdy/ky —Lcos A / LsinAF2[2E(ay) - F(ay)]/ky a7
Eyy LcosA H-LsinA

3. Results and Discussion

3.1 Degeneration of the large deflection model
Referring back to Fig. 3 (b), letting A =7/2, and considering that the half member OB is under remote compressive
stress and that the deflection of OB is very small, the compressive force predicted by Eq. (19) is
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_ 7T2E51

Py="23 (38)

which is the value of the critical load for the elastic buck-
ling of a vertical bar as described by Timoshenko and

Gere.

Let A =0, and consider that the half member OB un-
dergoes a Y-direction force at point O. From Eq. (32), we

have:
2
o
2pycosdy ) (39)

Py=E¢I
reEs (LXY(OIY)

When the deflection of OB is very small, we have:
By =nr/2, ay =n/2+7, and Lxy(ay)=L/2. Through a set

of mathematical processing steps, vy is expressed as
Br=n/2, ay=n/2+y
Pyl?
=- 40
Y= 8EL I (40)
Lyy(ay)=L/2

which is the expression of the bending angle at end O of
a cantilever beam fixed at end B and loaded at free end
O by force Py, as predicted by the theory of the small

deformation of flexure.

Therefore, this large deflection model also contains
information of the elastic buckling and small deformation

of flexure.

137/18 'Y 11n/18

Sn/6

Tn/18
oa=57/18

X
(a) Compressive loading
Y
a=31n/36\ﬁ
02 [ /
a=8n/9
01
a=117/12 /
-0.4 0.2 4
0.1¢ o=17n/18
021 4=35136

(b) Tensil loading

Fig. 5 Deformed shapes of an inclined member under
X-direction loading with H/L=2 and A=7/6
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3.2 The shape of the deformed member AB

Using Egs. (23), (26), or (31), (33), the coordinates of
a general point on the deflection member along the X-axis
or the Y-axis can be calculated. The shape of the deformed
member becomes S-shape. Setting the mid-point O as the
origin, the shapes of the deflection curves for various val-
ues of ay and ay are shown in Figs. 5 and 6, representing
the compressive and tensile loading in the X-direction and
Y-direction, respectively. In these figures, the cell’s geo-
metric parameters considered are: H=2L, 1=n/6.

At compressive loading, the inclined members will
touch each other, if the deformation is sufficiently large.
At this time, the force and the moment distribution will
change, which means that this large deflection model is
not suitable for a higher deformation than the critical point
of touch. The contact between the inclined members will
not occur when the auxetic honeycomb is stretched.

3.3 Poisson’s ratio versus strain

Poisson’s ratios for X-direction loading and Y-
direction loading are obtained from Egs. (30) and (37), re-
spectively. The Poisson’s ratios vy and vy for loading in
the X-direction and the Y-direction are, as expected, inde-
pendent of density, for the large deformation model used
here neglects axial compression.

Figure 7 shows Poisson’s ratios in the orthogonal di-
rections versus strain for the case of H =2L and 1 =7/6.
It can be seen that Poisson’s ratios are not constant, and

o=131/18 Y

04
o=771/9

0.2
a=571/6
\

0.2 0.4
o=871/9

T o178

o=

(b) Tensil loading

Fig. 6 Deformed shapes of an inclined member under
Y-direction loading with H/L=2 and A=n/6
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are negative in general. The magnitude of Poisson’s ratio
decreases significantly at high strain when the auxetic hon-
eycomb is compressed in X-direction loading or stretched
in Y-direction loading, while if increases significantly at
high strain when the auxetic honeycomb is stretched in X-
direction loading or is compressed in Y-direction loading.
Poisson’s ratio at the limit value of small deformation is
—1; the same result was obtained by Gibson et al.' and
Masters and Evans?).

The variation of Poisson’s ratio versus strain is dif-
ferent for compressive loading and tensile loading at large
deformation. For X-direction loading, the magnitude of
Poisson’s ratio decreases as strain increases when the aux-
etic honeycomb is compressed, and increases as strain
increases when it is stretched. For Y-direction loading,
Poisson’s ratio becomes increasingly negative as strain in-
creases when the auxetic honeycomb is compressed, and
becomes decreasingly negative as strain increases when it
is stretched. In particular, when the auxetic honeycomb
undergoes a tensile stress in the Y-direction or undergoes
a compressive stress in the X-direction at large deforma-
tion, the sign of Poisson’s ratio may change from nega-
tive to positive. This phenomenon can be explained on
the basis of Figs.5(a) and 6(b). As can be seen from
Fig. 6 (b), the horizontal projected length of member AB
increases as ay, the bending angle at origin O, increases,
when ay changes from 7/2 - A to x/2, but when ay ex-
ceeds 7/2, it decreases as ay increases. In Fig. 5 (a), the
vertical projected length of member AB increases as ax
increases when ax changes from A to 71/2, but decreases
as ay increases when ay changes from x/2 to x.

3.4 Effect of geometry on Poisson’s ratio

To investigate the effect of geometry of the re-entrant
cell on Poisson’s ratio, vx and vy at the limit of small de-
formation are tabulated in Tables 1 and 2 for the combina-
tions of H/L and A. In reality, the negative Poisson’s ratios
in the parentheses of these tables are never achieved, be-
cause for geometric considerations, the inclined members
of the cells will touch each other before deformation with
these geometric parameters of H/L and A. vx and vy, as

v

2.5

Fig.7 Poisson’s ratios vary with strain for a re-entrant cell with
geometric parameters of H/L=2 and 1=n/6
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they depends on the values of A and H/L are also plotted in
Figs. 8 and 9 for a given value of 4 and for varying H/L,
and for a given value of H/L and for varying A, respec-
tively.

As can be seen from Tables 1 and 2, negative Pois-
son’s ratios at the limit of small strain converge to the re-
sult predicted by the small deformation of flexure:

cos?
I — 41
VX = T H/L-sinY)sind @1
vy =_(H/L—sin/l)sin/l @)

cos? A
vy and vy comply with the reciprocal relation vx-vy =1 for
the same geometric parameters. In particular, the orthogo-
nal symmetry of Poisson’s ratio occurs for some cells with
their geometric parameters satisfying:

sindAH/L=1 43)

and Poisson’s ratio of this sort of auxetic honeycombs is
minus one. A special case is the cell with geometric pa-
rameters of H/L =2 and A=x/6. In contrast with the con-
ventional regular hexagonal honeycomb, such cells have
the same magnitude of Poisson’s ratio, but with a different
sign; and have the same inclination angle of the inclined
member, but in a different direction. The relative density
of this auxetic honeycomb calculated by Eq. (1) is larger
than that of the conventional regular honeycomb. A re-
entrant honeycomb with geometric parameters of H/L=3
and A = /6 has the same relative density as the conven-
tional regular honeycomb, but their magnitudes of Pois-
son’s ratios are different.

From Figs. 8 and 9, we know that Poisson’s ratio not
only varies significantly with the strain in all cases of ge-
ometric parameters, but is also influenced significantly by
the geometric parameters of the cell. As H/L becomes
large, the magnitude of vy reduces while the magnitude
of vy increases generally, for a given value of strain. A
similar tendency occurs for the influence of A on vx and
vy. The effect of H/L on vy under tensile loading in the
Y-direction becomes complicated when the deformation

Table 1 Poisson’s ratio vx at the limit value of small

deformation

HL 5 2 23 3 35 4
w18 4211 | 3058 | 240 | -1.976 | -1.679 | -1.460
w9 2230 | -1.557 | -1.196 | 0971 | -0.818 | -0.706
N B N X -1 0.75 0.6 05 | 0429
289 1065 | 0673 | -0.492 | -0387 | 0320 | -0272
5n/18 (:0.733) | -0437 | 0311 | 0241 | -0.197 | -0.167
3 (-0455) | 0255 | -0.177 | -0.135 | -0.i10 | -0.092

Table 2 Poisson’s ratio vy at the limit value of small

deformation

H/L 15 2 2.5 3 35 4
/18 0237 | 0327 | -0417 | -0.506 | -0.596 | -0.685

9 0449 | -0642 | -0.836 | -1.030 | -1.223 | -1.417

6 0.667 -1 1333 | 1.667 2 2333
2n9 | VY[ 0939 | -1487 | -2.034 | -2.582 | -3.130 | -3.677
Sn/18 (-1.361) | 2288 | -3.215 | -4.142 | -5.069 | -5.996

w3 (-2.196) | 3928 | -5.660 | -7.392 | 9.124 | -10.856
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H/1=2

H/L=3

H/L=1.5

(a) vy versus exx

(b) vy versus gyy

Fig. 8 Effect of H/L on Poisson’s ratios for a given value of
A=n/6

(a) vy versus exx

/ A=n/3 A=/6

(b) vy versus gyy

Fig. 9 Effect of 2 on Poisson’s ratios for a given value of
H/L=2

Series A, Vol. 47, No. 2, 2004

vx* vy
1.3
12
02 0.1 0

Fig. 10 vy -vy versus strain for the case study with cell’s geo-
metric parameters of H/L=2 and A=n/6

is sufficiently large. The sign of Poisson’s ratio changes
to positive at a critical strain, which, on the other hand,
depends on the value of H/L. Under X-direction compres-
sive remote stress, the sign of Poisson’s ratio changes from
negative to positive at a strain of about 1.7.

In the effective intervals of tensile £x and compressive
&y, the variation of vx-vy with strain is shown in Fig. 10 by
a least squares fit. Geometric parameters of the re-entrant
cell are: H/L =2 and A=n/6, for the case study. As can
be seen, the reciprocal relation for vx and vy does not hold
when the deformation is large.

4. Conclusions

Nonlinear behavior becomes important when honey-
combs are to be used as the load bearing or energy absorp-
tion structure, because large deformation often occurs. In
this paper, we provide a theoretical approach for evalu-
ating negative Poisson’s ratios of re-entrant honeycombs.
The prediction of negative Poisson’s ratios of these honey-
combs is based on the large deflection model, which is also
suitable for small flexure and elastic buckling. This large
deflection model extends and refines our understanding on
negative Poisson’s ratios of auxetic honeycombs, giving a
complete estimation of negative Poisson’s ratios.

It is found that Poisson’s ratios of re-entrant honey-
combs are not a constant at large deformation, vary sig-
nificantly with the strain, but converge to the results pre-
dicted by the small deformation of flexure at the limit of
small strain of this model. At large deformation, the neg-
ative Poisson’s ratios are different in the case of remote
compressive loading and tensile loading. Geometric pa-
rameters of the re-entrant cell, i.e., H/L and A, have very
significant effects on the magnitude of the Poisson’s ra-
tio. They even change the sign of Poisson’s ratio from
negative to positive, when this sort of honeycomb bears
a Y-direction tensile loading or a X-direction compressive
loading under the condition that the deformation is suf-
ficiently large. Orthogonal symmetry of Poisson’s ratios
occurs for some cell geometric parameters at small defor-
mation, and a re-entrant cell of H/L=2and A=n/61is a
special one. The reciprocal relation for vy and vy is con-
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served for all geometric parameters when the deformation
is small. Neither orthogonal symmetry, nor the reciprocal
relation of Poisson’s ratios are maintained when the defor-
mation is large.
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