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Optimization of Grinding Performance of
Tumbling Ball Mill*

Guoming HU**, Hideyuki OTAKI***
and Keiichi WATANUKI***

Based on motion and impact analysis, a theoretical model is presented for optimi-
zation of grinding performance of a tumbling ball mill. The motion of ball media in
the tumbling ball mill is analyzed. The impact parameters of the ball media caused by
the falling motion are deduced. The impact and attrition grindabilities are studied.
The grinding performance is expressed as the proportion of grindability of all colli-
sions to that of the collisions of ball media in the arc of the shell at a theoretically
suitable speed, and is calculated from the point of view of the separation layer. The
mathematical model is established and program coding is implemented to optimize
grinding performance for the tumbling ball mill. An example of design calculations is
given which shows that the grinding performance under the optimized operation
parameters is improved significantly.
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energy and then cataract into the grinding zone. The

1. Introduction .. . .
comminuting action takes place by impacts from

Tumbling ball mills, as types of rotary machin-
ery, are of significant industrial importance. Figure 1
shows the vertical section through a single-compart-
ment tumbling ball mill. The mill is characterized by
a shell, which contains grinding ball media and ore,
rotating about a horizontal axis. The mill shell is
supported at both ends by trunnion bearings. The
inside of the shell is lined. Usually, cast iron ball
media are used, and brittle materials as ores are
considered. Figure 2 shows the cross section of the
mill. The mill charge includes ball media and parti-
cles of ore, and is divided into three zones: the
ascending zone (A), the falling zone (B) and the
grinding zone (C). The ball media gain potential
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media, by rolling-action encounters between the ball
media and the particles, and by the trapping of parti-
cles between ball media during their elevation by the
cylinder shell. As a part of operation planning, the
selection of operation parameters has direct influence
on the grinding efficiency and production capacity of
the tumbling ball mill. Although a large number of
theoretical and experimental research studies have
been conducted on the design and calculation of tum-

\Trunnion bearing E

Fig. 1 Vertical section through a ball mill
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Fig. 2 Cross section of tumbling ball mill

bling ball mills, the main focus has been paid on the
grinding technological process. The determination of
operation parameters is mainly dependent on the
theoretically suitable speed, the inner layer radius of
the ball media and empirical knowledge. Bond™ had
proposed the selection of a grinding ball of suitable
size for a high grinding efficiency. Viswanathan and
Mani® had worked on the calculation of product
distribution from a time-dependent distributed frac-
ture model by the optimum method. Mishra and
Rajamani®® performed a simulation of charge
motion in ball mills by the discrete element method,
which focused on ball segregation with rotary speed,
frequency distribution of ball collision as a function of
collision energy, and friction between the ball charge.
Powell and Nurick®~ studied the nipping of the ore
between balls, the dilation, migration and segregation
of ball charge by X-ray films and r-camera filming
techniques, and found that the face angle of lifter balls
influences both the maximum impact energy and the
amplitude of work done by the charge, and that the
inner part of the cascading region and the toe region
are responsible for the majority of the grinding work.
These works provide useful information about mill
design and optimization. In this paper, we establish a
mathematical model for optimization of grinding
performance for a tumbling ball mill based on the
analysis of media motion and impact parameters, and
obtain the optimal speed ratio, filling ratio and dimen-
sions of the ball medium for various tumbling ball
mills.
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Aek :

Cl, Cz:
Ce:

Emax .

Fi:

Rk .
R,:
: relative velocity of collision balls,

Ve:

Wi
Wa:
Ws:
VVime

Wath .

: effect area nipped by ball media, m
B :

: area occupied by charge in falling zone, m
: total falling height, m

: number of cycles of tensile stress ¢

: intensity factor of critical stress,
. effective length of mill, m

: total mass of charge, kg

: total mass of ball media, kg

: mass of charge at £ layer, kg

: total numbers of layers of ball media
: calculation power, kW

Nmotor :
: impact force produced by collision, N

: maximum impact force produced by colli-

Nomenclature

: radius of strain contact circle caused by

impact force, m

maximum radius of strain contact circle
caused by impact force, m

maximum radius of strain contact circle of
ball media at % layer, m

3

effect area nipped by ball media at % layer,
m3

objective weighted factors

coefficient related to the surface energy of

the material

: Young’s modulus of ball media, Pa
El, Ez .
Eimk .

Young’s moduli of collision balls, Pa
energy related to impact grinding of ball
media at % layer, J

allowable maximum energy of individual ball
medium, J

area occupied by charge in ascending zone,

m2

2

Pa .m1/2

power of the driving motor, kW

sion, N

: maximum impact force of ball media at %

layer, N

radius of circle of ball media at % layer, m
radius of circle of leaving trajectory, m
m/s
initial relative velocity of collision balls,
m/s

impact grinding performance

attrition grinding performance

synthesized grinding performance

impact grinding performance of ball media in
k layer

attrition grinding performance of ball media
in % layer

: length of the crack, m
: impact force exponential
: collision frequency of ball media at & layer,

Sfl
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g: acceleration due to gravity, m/s
k. elevated height of ball medium from leaving
point, m
/: maximum radius of particle nipped by ball
media, m
m : mass of single ball medium, kg
mi, mz . masses of collision balls, kg
n : yield exponential
» : radius of ball medium, m
11, 72 radii of collision balls, m
minimum and maximum radii, respectively
of ball medium, m
te: duration time of collision, s
ter : collision time of ball media at %4 layer, s
vr : leaving speed of ball media at % layer, m/s
vry . y-coordinate section of v. of ball media at £
layer, m/s
vps : falling speed of ball media at & layer, m/s
vni © falling normal speed of ball media at % layer,

¥min, ¥max

m/s
v . falling tangential speed of ball media at %
layer, m/s

ax : leaving angle of ball media at % layer, rad

A : falling angle of ball media at £ layer, rad

Or: 7/2—a,, rad

Br: m—Ax, rad

6 . approaching distance of center of collision
balls, m

de : maximum approaching distance of center of
collision balls, m

n . efficiency of transmission system

72 . the overload coefficient of the motor

¢ : speed ratio of the running speed to the criti-
cal speed

Pmin, ¢max : minimum and maximum

respectively

speed ratios,

1. Poisson’s ratio of ball media
w1, (2. Poisson’s ratio of collision balls
v : coefficient of Coulomb friction
¢ : filling ratio of ball media
Dmin, Pmax : minimum and maximum filling ratios,
respectively of ball media
¢o: filling ratio of ore
&g : porosity of ore
em : porosity of ball media
0g: density of ore, kg/m®
o density of ball media,
0 : tensile stress, Pa
w : angular velocity of tumbling ball mill,

kg/m®

rad/s
2. Motion and Impact Analysis of Ball Media

2.1 Motion analysis
In the bulk of the charge, away from the outer
layer, the ideal layering charge is not likely to exist.
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Considering the natural packing of ball media, the
layers will overlap each other®. A ballis (1) stack-
ed on the top of another ball in the same layer; (2)
stacked on the top of two balls in a concentric row,
and (3) stacked between two layers, on the top of
three ball media. So are the impacts between ball
media. The outer layer of ball media being acted upon
directly by the mill shell predominantly determines
the motion of the entire charge; the motion of the
charge in the ascending zone is simplified for each ball
and each particle of the ore traveling on circular arcs,
concentric with the mill shell, and there is no slip
between the shell and the charge. As shown in Fig. 3,
considering the ball media in a layer of radius R, the
force equilibrium equation of the ball medium at the
leaving point is expressed as mR.w’=mg cos a, the
trajectory equations of the leaving points are given as
follows :

X=R:sin ax ( 1 )

Y =R: cos ar (2)
where

ar=arccos(w?R./g) (3)

which means that the trajectory of the leaving points
is an arc of the circle with the radius R,=g¢/(20%), and
the center (0, g/(20?)) in the X-Y coordinate system.
The speed of ball media at the leaving point is express-
ed by :

ve=+ygRx cos ax (4)

After projecting from the leaving point, the ball
medium follows a parabolic path. Its equation is ¥ =
—zx tan @, +9x%/(2v% cos’a). The dropping point of
the ball medium is at the original layer of the circle of
X?+ Y?=R: As the relationship between the x-y
coordinate and X-Y coordinate is x=X+ R sin ax
and y=— Y + R: cos ax, the trajectory equations of
falling points are given by :

d"
Vi
&
X
Ly
i > \
mg ‘84 w
v \ X

Fig. 3 Motion analysis of ball media
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Fig. 4 Contact analysis of collision
=4R: sin ax cos® ax (5)
y=4R; sin® ax cos ax (6)

As ar=7m/2— 6, rearranging Eq.(6) leads to y=
4R; cos® O, sin Bx. From the geometric relationship in
Fig. 3, v is also given by Ri(sin 6:+sin Az). So the
trajectory equation of falling points is also expressed
as:

Ak:?)ek ( 7 )

Next, the elevated height of the ball medium from
the leaving point obtained according to parabola
kinematics is #=(vxsin @)?/(2g). The total falling
height is H=h+y. Substituting 2 and Eq.( 6 ) into H,
yields H=h+y=4.5R: sin ax cos @.. The horizontal
speed v: and vertical speed vy are expressed as vx COS @&
and v2¢gH respectively, and B: equals 7—A.=3a
— /2, so the speeds of the ball media at dropping
points are expressed as follows :

Vo =+ V2+ v2=0:v9—8 oS ax (8)
Vne= vz c0s(3ar— 7/2)+ vy sin(3ar— 7/2)
=8uvs sin® ax COS ax (9)
vee=— vz sin(3a.— 7/2) + vy cos(3ar— 7/2)
=vr+4 vk sin® ax cos(2ax) (10)

2.2 Analysis of impact parameters
The impact force P varies with time ¢ during
collision. As shown in Fig. 4, if the approaching
distance of the center of collision balls is 8, the rela-
tive normal velocity of two collision balls is V, and
the impact force is P, then:

Pwmr=—dV/dt=— d?8/dt* (1n
where m,=1/mi1+1/m.. Hertz’s theory predicts that :

P=(4/3)77""E7'6°" (12)

A=(3/4)1/37"—1/3E;/3P1/3 (13)

where 7,=1/n+1/r, and E,=(1—p})/Ei+(1—13)/E..
Substituting d?6/dt*= VdV/dé and Eq.(12) into Eq.
(11), we obtain:

VdVidos=—(4/3)r7 P E: ' mz 0% (14)
Integrating Eq.(14) with respect to V from 0 to its
maximum value Ve, we obtain:

62:(5/3)2/577—1/5E;2/5m;2/5 ‘[/84/5 (15)
Substituting Eq.(15) into Egs.(12) and (13), we
obtain :
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Pe=(5/4)¥(4/3)*r; VP E;Pm; 35 VE (16)

Ae:(15/16)3/5m;3/5;,;1/5E$/5 VeG/S (17)

In the same way, integrating Eq.(14) with respect
to V from 0 to its arbitrary value V, the relationship
between V and & at any instance is given by V=
Ve 1—(8/8.)*%, which means :

dd/V1—(8/8e)*" = Vedt (18)
Integrating Eq.(18) with respect to & from 0 to its
maximum value d., we obtain the duration time of
collision by :

tezzae/u[drm—xs’z

=2.943 28(15/16)*°m7*°r; VP EF V' (19)

3. Grinding Performance Optimization of
Tumbling Ball Mill

3.1 Grinding performance

Usually, the energy exerted on the ore bed is
considered as the grindability, which correlates the
energy with the mass and the speed of the ball
medium. But Eq.(16) reveals that the impact force Pe
also depends on the sizes and the material characteris-
tics of the collision bodies. Moreover, even if the
energies exerted are the same, the grinding efficiencies
are evidently different as the collisions are of different
kinds. In the present study, we analyze the grind-
ability from the aspects of impact grinding and
attrition grinding, and define the grinding perfor-
mance as a dimensionless parameter in terms of the
proportion of grindability of all collisions to that of
the collisions of ball media in the outer layer at
theoretically suitable speed. The impact grinding
effect is mainly used in producing particles of 10 - 100
pum fineness, especially in the case where fine particles
are not required. The attrition grinding effect is
mainly used in producing particles of 1 - 10 pm fineness,
and is used in producing spherical particles.

3.1.1 Impact grinding Normal impact veloc-
ity vne produces impact grinding to the ore. When the
impact collision occurs between the ball media or
between the liner and the ball medium, the ore around
the media produces a cushioning effect, otherwise the
collision is invalid. However, the impact force exert-
ed on the ore bed is difficult to obtain; the impact
force on the media is commonly taken as a design
criterion. On the other hand, the size and density of
the ball medium are much greater than those of the
particles, and hence it is reasonable to omit the colli-
sions of the particles.

From the point of view of grinding energy exert-
ed, the grindability per unit time depends on the
impact speed and the collision frequency :

Eimr=mv%ufr/2 (20)

In the cases that the same energy is exerted, the
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high frequency of impact can remedy inadequate
impact velocity :

fe=(1/v3) (21)

If the exerted force does not exceed the strain
limit, the ore would be compressed and elastic strain
would be produced. When the external load is off, the
ore would return to the original shape and not be
ground. But from the point of view of fracture
mechanics®, in the above process, although the ore is
not destroyed, a new surface cannot be created, as
numerous cracks are produced and particularly, the
original cracks are extended in the ore. Because the
stress at the peak of the crack exceeds the pulling
stress vertical to the crack, the ore might be ground
when the same force is exerted later. The stress
criteria of brittle destruction and yield destruction are

given by®:
U:Kz'c/(ce\/z) (22)
0"] =d§-Jo=Const. (23)

where : the subscript 0 indicates the base cycles. The
tensile force ¢ is emphasized because the brittle parti-
cle is loaded predominantly by impact and very large
compressive stresses are generated at the contact
point, substantial tensile stresses are also induced
within the particle. The existing micro-flows inten-
sify the applied tensile stresses and the particle fails at
the large flaws'®. Equation (22) is mainly applied for
the primary breakage of particles while Eq.(23) is
applied for the secondary breakage of particles.

The ore grinding in the mill generally involves
multi-collision, and the grinding action involves brit-
tle destruction yielding final particles of sizes larger
than 30 pm, or synthesized destruction of yield and
brittleness yielding particles ranging in size from 10
pm to 30 pmY. It can be considered that the ability of
impact grinding is a function of impact force and
frequency as Pé.f:. As the grindability of the ball
media of an assumed radius in the outer layer at a
theoretically suitable speed is given by Paf, the
impact grinding performance is defined as:

Wimk:Perfk/(Peeof()) (24)
where the subscript 0 indicates that those parameters
represent the ball media in the arc of the shell.

3.1.2 Attrition grinding The ability of attri-
tion grinding depends on the tangential velocity v
and the force Pexr caused by the normal velocity vne.
As stated by Brach®?, tangential impact can occur
only when the mass center trails the contact point in
the initial tangential motion, and tangential force
existing during contact can only be developed in the
presence of a normal force. For the media impact in
the tumbling ball mill resembling collinear collision,
tangential impact causes media whirling. The radius
of the strain contact circle caused by impact force is
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Particle

Ball Medium

Fig. 5 The nipping zone between ball media

expressed by Eq.(17). Assuming Coulomb friction is
valid in this zone, because of the presence of v, the
energy exerted on the ore is given by vPerviler, 50 the
attrition grindability is expressed as the product of
vPovwter and A2 The effective area nipped by the
ball media as shown in Fig.5 is given by B=
2ml* (v + 1/3), the energy exerted on the ore is expressed as
mvi/2, so the attrition grindability in that zone is
expressed as the product of muv#/2 and B.
Comparing the attrition ability of all ball media
to that of the ball media in the arc of the shell at a
theoretically suitable speed yields the attrition grind-
ing performance as:
Waw= PekUtkAézzkfk/(PeOUtOAgoﬁ)>
+ mvi Brfr/(movicBofs) (25)
3.2 Mathematical model for performance optim-
ization of tumbling ball mill
3.2.1 Objective function Considering the
media-made motion in the separation layer, the ball
media of the falling zone in the outer layer collide
with the liner, and the ball media in other layers
collide with other ball media. Hutching"® and
Thornton"® discovered that when the impact velocity
increased, the coefficient of restitution decreased
accordingly. In the case of a tumbling ball mill, we
can consider that due to the constraint by the shell and
the surrounding media, the speed of the ball medium
after the collision equals zero. Assuming that the
radius and mass of the shell greatly exceed those of
the medium, that is when £=1, then m.>n,=m, and
22> =7 ; and that the radius and mass of all media
are equal, that is when £2>1, then mz:=m=wm and r.
=n=r (see Fig.2), and the material characteristics
of the media and the liner are the same, which means
E\=E,=F and m=w=u. From Egs.(16), (17) and
(19), we obtain the impact parameters as:
(5/4)°2/3)*°r > m**((1— p*) [E) 2P VP
B k=1
- (5/16)3/5(4/3)2/571/57”3/5((1 _‘UZ)/E)—Z/B Veﬁ/f)
k>1
(26)

Per
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(15/8)3/5m3/571/5((17ﬂ2)/E)3/5 VeGIS

A k=1

e (1/2)1/5(15/16)3/57%2/57”5((1 . ﬂZ)/E)SIS VESIS

k>1
27)

2.94328(15/8)¥5m®> v 5((1— p®) [E)?° VP
k=1
fe= 2.94328(1/2)5(15/16)*°m?/ 5y 1/°

X ((1—®/E)B Ve k>1
(28)

The movement distance of the ball medium in the
ascending zone per unit time is v, the number of ball
media passing through this distance is v+/(27). As the
ball media make a continuous movement in the
ascending zone, the frequency of the impact force is
given by :

fe=wR:/(27) (29)

Therefore the impact grinding and attrition grind-
ing performances are expressed by :

N

Wa= 3 Wi (30)
N

I’VZ = ';g] Wrztk (31)

The synthesized grinding performance is expressed
by :

m:C1VV1+Cz[/V2 (32)
where 0< (<1, and 0<C:<1. As impact grinding
and attrition grinding inevitably occur in the tumbling
ball mill, Ci and C: should be determined by the
material properties, the fineness of production and the
shape of particles.

So the objective function is:

F(X)=—W, (33)

3.2.2 Design variables We take the operation

parameters of the tumbling ball mill, speed ratio ¢,
filling ratio ¢, and radius of ball media » as design
variables. The design variables are given by

XT=[X, Xz, Xs]=[¢, ¢, 7] (34)

As the calculation of grinding performance is
based upon the accumulation of every layer, the filling
layer, N, needs to be determined by filling ratio .
When the radius of the shell Ro, and the rotation speed
w are determined, @ can be solved according to R and
o by Eq.(3). As shown in Fig. 6, considering a small
element within the ascending zone with a thickness of
dR at a distance R from the mill center, we can
deduce the areas occupied by the charge in the ascend-
ing zone and falling zone. They are:

Ro fo
FI:fR (A+0)RdR:8R3ﬁ 0 sin(20)do
=8R¥ @ sin® 6 —0/2+sin(20)/4)5% (35)
F= fR 4R sin 0 cos OdR

8o
—16R? ﬁ sin? 8 cos? 0d6
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Fig. 6 Charge analysis of tumbling ball mill

=R226—sin(20) cos(28)) (36)
As the filling ratio is defined as ¢=(Fi+F:)/(zR?$),
substituting Eqs.(35) and (36) into it leads to:

[86 sin®? 8 —26+sin 28(2—cos 20)]4,

=47¢ sin® 6 (37
So a~ can be solved according to the above equation
by a numerical method. The area in the ascending
zone occupied by a layer of media is AFi=27R:(6s
+2x) =87R:0:, therefore the area in the ascending
zone occupied by all layers is given by :

F1=g18er<9k (38)
Substituting Eq.(35) into Eq.(38), the resultant

equation includes two unknown variables, N and ¢.
When one variable is determined, the other one is
solved accordingly.
3.2.3 Constraint functions
(1) The limitation of power of the driving motor

The opposite moment caused by the charge in the
ascending zone is overcome by the driving torque of
the motor. Considering the porosity of the ore and the
ball media €4, €n, and the filling ratio of the ore ¢, we
obtain the mass of the charge:

M=+ ¢pgen(l—eg)0g/((1—en)0)) Mn (39)

As shown in Fig. 6, considering the ascending
zone within a thickness of 27 at a distance R» from
the mill center, the power required to elevate the ball
media and the ore in the % layer is Nmx= MixgUsy.
Rearranging and substituting Eqs.(4) and (39) into
it, and considering the efficiency of the transmission
system and overload coefficient of the motor, we
obtain the power determined by the accumulation of
the separation layer :

Np= g(zm/a)mzezakwlgw sin(26,) (40)

where ¢1=1+ ¢oen(l—eg)0q/((1—en)p). So the
constraint is expressed by :
gl(X):Nm—Nmotorgﬂ (41)
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Table 1 The calculation results of original and optimum design
| ) w r (m) Ex) | W
| Original parameters 0.42 0.76 0.04 61 | 3.4438
| Optimized parameters 0.57 0.871 | 0.03 31 ‘L 4.1912
1T -
Parameter . Motion urve
(2) Constraint of the radius of inner layer media Integration Optinum Model Anf?lysoig Simulati';nl
*§919CF Objective J L
unctions

In order to avoid the motion interference of the
media, and to guarantee the falling motion and
ascending motion of every layer, we require the falling
points to be at or below limited positions. That is, the
X-coordinate of the trajectory of the falling points
must be above the minimum value. From Eq.(5), we
obtain the X-coordinate of the falling point of the
inner layer by rendering k=N :

X =4Ry sin ar cos® ay — R~ sin ay (42)
Rearranging Eq.(3) leads to Ry=g cos ax/w’. Sub-
stituting this into Eq.(42) and differentiating it with
respect to a~, we obtain :

dX/day=(16 cos® ay —14 cos® av +1)g/w®  (43)
Letting dX/dav=0, the limitations for the leaving
angle of the inner layer, a~, and the radius of the inner
layer, Rv, are obtained. The radius of the inner layer
should not exceed the limitation. This constraint is
given by :

g X)=g cos avja?—(Ro—2rN)<0 (44)
(3) The constraint of allowable maximum
energy

The maximum energy of an individual ball
medium is the design basis of the shell, the liners, and
the bolts linking the shell and the liners. It also
primarily determines the wear of the liners and the
ball media. So the maximum energy of an individual
ball medium would be under a certain threshold,
which means that this constraint is given by :

(X)) =477 003%/6— Emax <0 (45)
(4) Boundary constraints
9 X)= mn— ¢ <0 (46)
gS(X'>:¢_"/)max£O (47)
96(X) = pmin— p <0 (48)
g7(X~):¢*¢max£0 (49)
(X)) = rmn—r <0 (50)
Go(X)=r— rmax<0 (51)

3.4 Implementation of the optimum design

The optimization of grinding performance for a
tumbling ball mill is performed using the optimal
algorithm of the improved constraining varied-scale
method®® (ICVM). The ICVM changes the constraint
optimal problem into a series of quadratic planning
sub-problems, and considers the solution of the sub-
problem as the direction of the linearity searching.
Meanwhile, when constituting the quadratic planning
sub-problem, the ICVM uses the approximate matrix
of the inverse Hessian matrix as the recurrence for-
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Fig. 7 Structure of the program

mula. The program for optimum design is made up of
multi-modules. The modules are integrated by calling
and transferring data. The structure of the program
is shown in Fig. 7.

4. Design Results and Conclusion

According to the above analysis and mathemati-
cal model, the grinding performance of some tumbling
ball mills have been optimized. The tumbling ball mill
of @3.0X4 m uses smooth liners, and is equipped with
a power of 375kW. The Young’s modulus and
Poisson’s ratio of the ball media and liners are £=210
Gpa and #=0.3, respectively. The filling ratio of the
ore is po=1. The porosities of the ball media and the
ore are en=¢&,=0.4. The average densities of the ball
media and the ore are p=7 860 kg/m® and ps=23 000
kg/m?® respectively. The optimized parameters and
the original parameters are shown in Table 1. It can
be seen that the grinding performance has been in-
creased 21.79% after the optimization. Through optimi-
zation, the range for the selection of the operation
parameters is extended. For the example given
above, the operation speed can reach 879% of the
critical speed, instead of the conventional speed range
of 70 - 789, and the filling ratio of the ball media can
reach 57%, instead of the conventional filling ratio of
40 - 5095. Meanwhile the maximum energy of the
individual ball medium falls from 61 J to 31 J, which is
advantageous in terms of the strength of the mill and
wear of the media and the liners.

The above results agree in part with the experi-
mental results of other researchers. For example,
Mishra and Rajamani® obtained a frequency distri-
bution of impact energy for ¢=609% and ¢=80%.
The total energy of the latter is much greater than
that of the former. Moys et al.*® measured the forces
exerted by the ball media on the liners in a ball mill at
several different speed ratios, which showed that at
¢=77% and ¢ =869, the forces exerted on the liners
rose more rapidly.

This research provides an approach for the optimi-
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zation of grinding performance for tumbling ball
mills. The equations of motion, impact parameters
and grindability have been established, and used as the
objective and constraints functions for the optimiza-
tion of grinding performance. The grinding perfor-
mance under the optimized operation parameters is
improved significantly.

Substantial further work is required to validate
these predictions and to improve the mathematical
model for multi-points stacking and impacting.
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