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FABRIC TENSOR FOR DISCONTINUOUS
GEOLOGICAL MATERIALS

Masanosu Opa*

ABSTRACT

Geometrical property (fabric) of discontinuity in geological materials is discussed in terms
of (1) position and density, (2) shape and dimension and (3) orientation of related discon-
tinuities such as joint, fault and discrete particle. By taking into account these geometrical
elements, a unique measure called fabric tensor F,; is definitely introduced to embody the
fabric concept without loss of generality.

The first invariant of F,; is important as an index measure to evaluate the crack intensity
which is related to the number and dimension of cracks. Porosity of granite is shown to
be an index measure equivalent to the first invariant of F,,.  According to uniaxial
compressive tests on gypsum plaster samples with two-dimensionally oriented cracks and
granite samples, the logarithm of the first invariant of F,; is linearly related to their
uniaxial compressive strength.

A measure I" which is related to the second invariant of the deviatoric part of F;; shows
a distance from an isotropic fabric. So, it is expected to be an index to measure the
degree of anisotropy due to preferred alignment of discontinuity.

The principal axes of F;; are identical to the principal axes of fabric anisotropy. There is
no doubt that I' and the principal axes are important in the analysis of anisotropic-
discontinuous geological materials.
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so many published theories to deal with the

INTRODUCTION strength and constitutive equation of geologi-

Discontinuity (e. g., fault, joint and fissure)
is of widespread occurrence in rock masses.
Granular materials (e.g., sand, gravel and
rockfill) are also composed of discrete parti-
cles. It is quite reasonable to say that the
discontinuity is a common character in these
geological materials which makes their
theoretical analysis very difficult. There are

cal materials by taking into account their
discontinuity. Unfortunately, however, these
were not always successful in the representa-
tion of discontinuity. Since discontinuity is
usually very complicated in usual geological

situations, it seems almost impossible to
grasp its exact character without losing
generality.

* Associate Professor, Dept. of Foundation Engineering, Faculty of Engineering, Saitama University,

Urawa, Saitama 338.

Manuscript was received for review on March 1, 1982.
Written discussions on this paper should be submitted before October 1, 1983.

NI | -El ectronic Library Service



The Japanese Geotechnical Society

FABRIC TENSOR 97

Geometrical property of discontinuity in
the geological materials is simply called
“fabric” in this paper. The purpose of this
paper is to give a general definition of
fabric which determines the mechanical
properties of geological materials.

FABRIC FOR CRACKED ROCK MASSES

Elements to Define Fabric

Faults, joints and fissures in rock masses
should be distinguished in geological sense
(e. g., Price, 1966). For our purpose, crack
is enough to designate all these disconti-
nuities to avoid genetic implication. In the
light of the study by John (1962), Hansagi
(1974), Silveira, et al. (1966), Kiraly (1969)
and Ogata (1978), it is clear that the ge-
ometry of cracks must be described in terms
of the following elements at least:

1) Position and density of cracks

Position of cracks is conveniently given by
an assembly of points corresponding to their
centroids. A mean volume density p of
cracks is given by

o=mN[V (1)

where m" is a number of cracks whose
centroids are located inside a volume V.
Multiplication of p by V, gives an estimated
number of cracks belonging to the volume
V, if V,is large enough.

2) Shape and dimension of cracks

Let us consider a flat crack with an occu-
pied area A. The crack consists of two crack
surfaces each of which has a unit normal
vector n (or —n). (Note that crack and
crack surface are used in two different mean-
ings.) It seems reasonable to assume that
the crack is replaced by an equivalent circle
with the same occupied area A  (see,
Warburbon, 1980). Then, the equivalent
circle has a radius r equal to +A/r.

If we accept the assumption of circularity,
the dimension of cracks can be described by
a probability density function f() of their
radii » which must satisfy the following
relation:

j:of(r)dr:l (2)

Field observations generally suggest that the
number of cracks having larger dimension
becomes smaller (e.g., Priest and Hudson;
1981). If so, f(r) can be approximated
by a negative exponential distribution of

f(r)=2e (3)

This is one parameter distribution with
the mean and standard deviation both equal
to 1/4. The approximation by Eq. (3) is not
always necessary in the following discussion,
but is useful to simplify equations. For
example, the n—th moment of » is calculated
as

<r”>=fmrnie‘“dr= 7;; (4)
0
where we adopted the notation

@= [ "0t £trrar (5)

for the mean of any function @ (+), based
on the probability density function f£(r).

3) Orientation of cracks

A probability density function E(n, r) is
introduced to describe orientation of cracks.
E(n, r) df dr gives a fraction of crack
surfaces whose unit normal vectors ns are so
oriented to be in a small solid angle 42, and
whose radii are within a small range from
r to r+dr. By using the notation shown in
Fig.1, dQ is simply written as sin8 da dj.
E(n, r) must satisfy

v
X, NS
dx
Unit sphere

Fig. 1. Unit sphere to define solid angle
an

NI | -El ectronic Library Service



The Japanese Geotechnical Society

98

ﬁwngm, P d@dr=1 (6)

where 2 is a whole solid angle (4 ) equiv-
alent to a unit sphere of 0<a=<2rx and
0=p8=r (Fig.1). Since two normal vectors
at a crack are opposite in their direction,
E(n, r) must be symmetric in the sense of
E(n, r)=E(—n, r). If n and r are mutually
independent, we get

E(n,r)=E(n)f(r)
E(n)=E(—n) (7>

If a function P(n) satisfies the condition
of P(n)=P(—n) we get

f L 2P E(m)d2= f L P(n)E(n)d2

={P(n)) (8)
where £/2 is an solid angle (2 z) equivalent
to an upper hemisphere of 0<a=<2x and
0=<p8=r/2. In Eq.(8), the symbol of <P
(n)> is to represent the mean value of
P(n), based on the probability density func-
tion E(n). If P(n)>0 equals to —P(—n),
then we get

fL/ZZP(n)E(n)d.Q
- f fg P E(m)d2={ P> (9)

If ns are oriented isotropically, E(n) must
equal to 1/4 7.

Number of Cracks which Cross a Scanning
Line

Let’s consider a straight scanning line, as
being parallel to a unit vector . It is called
i-scanning line. At each crack, two normal
vectors are introduced. One of them (sym-
bolized by n') is selected with respect to the
scanning line so that it has a direction mak-
ing an acute angle with the i-direction.
(The scalar product n’:i=n; between n’
and i must be greater than zero.) The
designation of (n’, 2r)-crack is convenient
to identify the crack having m’ as a normal
vector and 2 r as a crack diameter.

Let's make a column of length 2 (Fig. 2).
Its center axis accords with the i-scanning
line, and its cross section corresponds to the

ODA

n®
\-r

, (n,2r)- cracks
SN
@ﬁ -
-
N

1

line

nl

\

4
i - scanning I
I
!
I

Fig. 2. A column of volume Ah (n'-i)
whose center line accords with i-scan-
ning line (Note that if the centers of
(n, 2r)-cracks are located inside the
column, these must cross the i-scan-
ning line)

projection image of the (n/, 2#)-crack on
a plane perpendicular to the i-scanning line.
Its cross section area is equal to z7%n; in
which #z; is a component of n’ on {. If the
length 2 is selected so that the volume
(zhri*n;) of the column is large enough, the
total number of cracks whose centers are
located in the column is obtained by multi-
plying the corresponding volume by p.
Since E(n’, r) is equals to 2E(n, r),
2E(n, r) d2dr gives the fraction of cracks
whose normal vectors fall in d2 and whose
radii are in a range {from r to r+dr.
Hence, (mohrin) x{2 E(n, r)dQdr} is the
number dN® of (n/, 2#7)-cracks whose
centers are inside the column. It is impor-
tant to know that if the centers of (n’,

2 r)-cracks are inside the column, those

cracks must cross the i-scanning line. The

number dN® calculated by
AN®=2rphr*n,E(n,r)d2dr (10)

is also the number of (n’/, 27)-cracks which
cross the i-scanning line. The cracks which
cross the i-scanning line are called cracks
associated with the i-scanning line. The
total number of all cracks associated with
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the i-scanning line is estimated by integrat-
ing Eq. (10) over 2/2 and 0=xr<oo:

N(i):2”hpfwff rm,E(n,r)d2dr  (11)
o JJass

1f the crack orientation n’ is independent of
its dimension r, we get

N® -
A =27zpj; r f(r)drfj;/zniE(n)dQ
=z pl{rHy|ml) (12)

where N®/h means the number of the
cracks associated with the unit length of
the i-scanning line.

Fabric Tensor for Cracked Rock Masses
The unit normal vector m’ has been de-
fined at each contact to specify its orientation
with reference to a scanning line. A new
vector m (called crack vector) is now intro-
duced at each (n’/, 2r)—crack. The direction
of m accords completely with n’, and its
norm is 27, not unity. Then we get
m=2rn’ a3
AN® of Eq.(10) is the number of (n/,
2r)—cracks which cross the length A of
I-scanning line. So, the multiplication of
AN®|h by m corresponds to the vector sum
of all (n’/, 2r)-cracks associated with the unit
length of the scanning line.
dN(i)
h
This vector can be projected on a direction
given by j, with the following projected
image dF,;®:
dF, ;' ® =4nprinn,E(n, r)dQ2dr 15)
(,7=1,2,3)
(The reference vectors { and j are selected
s0 as to make orthogonal reference axes.)
The j-component of the total sum of all ms
associated with the unit length of the
i-scanning line is then obtained by integrat-
ing dF;;'® over 2/2 and 0=r<oo as follows:

Fuy® =470 f ) f f rinn,E(n, r)d@dr (16)
0 2/2
(i, 7=1,2,3)

If n/ and r are mutually independent vari-
ables, we get

-m={4rorn, E(n, r)d@drin’ (14)

Fig. 3. An assembly of spheres replaced
by an assembly of lines (called
branches) connecting centers of
adjacent particles which are in contact
at points (g,=center of sphere; ¢;_ ;=
contact between spheres g; and g;; d;_;
=mid-point of branch g;g,)

Fyy®=2r0{r*) {nn an
(7, 7=1,2,3)

Note that F,;® of Eq. (16) is transformed
as a second order tensor when the reference
axes are rotated. F;;® is called fabric tensor.
Note that the tensorial character is inde-
pendent of the specific form of the probability
density function E(n, r). Note also that
F,;® is a dimensionless quantity which, as
will be shown later, is a favorable character
for an index measure of discontinuity in
rock masses.

In the definition (Eq. (16)) of the fabric
tensor, E(n,r) plays an essential role.
However, it is easy to rewrite Eq.(16) in
another way without using E(n, 7), as fol-
lows;

1 mv)
Fpy® = v > @rringny) (18)
(,7=1,2,3)

summation must be taken all
over cracks m") included in a given volume

V.

where the

FABRIC FOR GRANULAR MATERIALS

Element to define fabric of spherical granules

For the sake of simplicity, each particle is
idealized as a sphere with the same volume.
If we accept this simplification, size of parti-
cles can be expressed by a probability density
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function f(R) so that f(R)dR means the
fraction in number of spheres with radii
ranging from R to R-+dR.

According to the study by Satake '(1978)
and Oda, et al. (1980), the assembly of
spheres can be replaced by an assembly of
049 -« in Fig.3) connect-
ing the centers of adjacent particles which
are in contact at points (==, ¢;oy Cjp *=0).
This replacement is possible on the basic
assumption that the corresponding fabric is
represented with sufficient accuracy by the
distribution and geometrical arrangement of
lines. Satake (1978) calls the line connecting
the centers of two contacting spheres, branch.
Branch is also used here. Based on the
view point that an assembly of particles is
represented by an assembly of branches, (1)
density, (2) dimension and (3) orientation
of branches must be included at least in the
definition of fabric.

1) Density of branches

Since the volume of a sphere with a radius
R is 4/37R%, and since the number of spheres
whose radii range from R to R-+dR is given
by 2" f(R)dR, the solid volume V, by all
spheres can be estimated by

R
%=£f%wMMWﬂRMR:%mwmw>
19

where n" is the total number of spheres in
a total volume V(=V,-+void volume), and R,
and R, are the minimum and maximum
radii of spheres respectively. Furthermore,
since the total volume V' equals to (1+¢e)V,
the number 7" of spheres can be expressed
as

_ 3V

T An(1+e)XR>
where e is the void ratio of assembly defined
by (V—-V)|V.

Associated with each contact there are two
contact points, one belonging to each con-
tacting particle. Accordingly, the total num-
ber of contacts (not contact points) equals
to 1/262%, in which £ is a mean number
of contact points per a particle (=mean
co-ordination number). The volume density

(20)

")

0oDA

d of contacts is defined as

& 3¢
T2V T 8m(1+e){R%
There have been published a number of equa-
tions to show the relation between the mean
co-ordination number & and the correspond-
ing void ratio e; e,g., Smith, Foote and
Busang (1929), Field (1963), Gray (1968)
and Oda (1977). According to the experi-
ments by Field (1963) and Oda (1977), there
is a unique relation between & and e, being
independent of the grain size distribution
f(R). By using the relation, the volume
density ¢ of Eq.(21) can be expressed as a
function of ¢ and <{R®>. Note that position
of branches is represented by their mid-points
(-, di_y dj_p, dip in Fig.3). Since the
number of contacts is exactly the same as
the number of the mid-points, Eq. (21) gives
not only the volume density of contacts but
also the volume density of the mid-branch
points.
2) Dimension of branches
On the basis of statistical consideration,
Oda, Nemat-Nasser and Mehrabadi (1980)
have given the f{ollowing equation as a
density function ¢g() of branch length I:

s =" FR fa-RaR]

2D

2Ry ("l-Rm
f f SR fI—-R)ARIL (22)
2Rm oJ L-RBy

which yields the distribution of branch
length / in terms of the particle size distri-
bution f(R).

3) Angular distribution of branches

Two unit normal vectors ns for spherical
granules which are co-axial with the cor-
responding branch are considered at each
contact. Horne (1965) and Oda (1972) have
introduced a probability density function
E(n) to describe the angular distribution of
n. E(n) is sufficient to describe the angular
distribution of branches if the branch length
[ is an independent variable of the direction
n. In more general cases, E(n, [) must
be used instead of E(n).
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branches associated with
i-scanning plane

(positive
“ side)
AN %
1 -scanning (negative
plane side)

Fig. 4. Number of branches associated with
i-scanning line

Number of Branches which Cross a Scanning
Plane

Let’s consider a scanning plane cutting
through an assembly of particles. Since the
plane is specified by its unit normal vector
i, it is called i-scanning plane.

All particles located in the immediate
vicinity of the i-scanning plane can be
divided into the following two groups (Fig.
4): Group A (hatched) consists of those
particles whose centers are located on the
negative side of the plane, and Group B
(unhatched) consists of those whose centers
are located on the positive side of the plane.
Branches connecting the centers of the hatch-
ed particles with those of the unhatched
ones through common contacts is called
branches associated with the i-scanning plane.

According to the definition, the associated
branches must cross the i-scanning plane at
points (see, Fig.4). Oda et al. (1980) have
already given the number M® of the
associated branches per unit area of the
i-scanning plane. The number equals to
the areal density of the branch intersec-
tions. M® is given by

i R
Aﬂnzzqu”j]'zmga>Eoondz
2Rm Q/2

=00 ml> (23
which corresponds to N®h of Eq. (12)
showing the number of the cracks associated
with the i-scanning line. In the derivation
of Eq. (23), [ and n are assumed to be
mutually independent variables which is
quite reasonable for the assembly of
spheres.

Fabric Tensor for Granular Materials

Let’s consider each associated branch as
a unit vector (symbolized by n’) from the
unhatched particle to the hatched one (Fig.
4). We can make the vector sum of all
vectors m’ s associated with the unit area of
the i-scanning plane. The vector sum has
a projection on a unit vector j. The projec-
tion Fy;@ is calculated by

2R
Fw(G):25f Mlg(l) dlff nnE(n)dQ
2R m Q/2

= {mynyy 24
(,7j=1,2,3)
This expression was first reported by Oda
et al. (1980). Mehrabadi, Nemat-Nasser and
Oda (1980) have also said that stress mobi-
lized in a granular mass can be defined in
terms of the fabric given by Eq. (24) by
taking into account its arrangement of
discrete particles.
Similar tensors with the form of

Jyy={nmny (25)
have been introduced by Satake (1978) as
an index to show the fabric anisotropy of
granular materials, and by Scheidegger
(1965) in the analysis of plane and linear
elements in geological body. Gudehus (1968)
has also introduced a tensor A;; (Affiniydt)
in order to represent the micro-structure of
soils.

FURTHER CONSIDERATION ON THE FABRIC
TENSOR

The fabric tensor is symmetric, F;;=F;;.
Therefore, F;; has three principal values Fy,
F, and F; which are calculated by solving

the following determinant (see, e.g., Prager
(1961)).

]F”——F3¢jl=() (26)

where §;; is Kronecker delta. Their corre-
sponding principal direction p; are calculated

by
(F;;—F6,p) 1,=0
s 1) M } (o7
ﬂiﬂj:5w ‘
Invariants I,'®, I, and I,'™ of the fabric

are defined by
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Fig. 5. Principal fabric space

I, =F +F,+F,
IZ(F>=-<F1F2+F2F3+F3F1)
Is(F)=F1F2F3
Let’s introduce a space of principal values
F,, F, and F,. Since the space is quite similar
to the principal stress space, we call it

tentatively principal fabric space. Then,
the fabric character can be represented by

(28

a vector OP in the space (Fig.5), with
components Fy, F, and F, respectively.
Since the straight line of F=F,=F; passing
through the origin means an isotropic fabric,
we call it isotropic axis.

—_—
The vector OP in the space is resolved
into two vectors; OP=0OA+OB. The length
—
of OA is proportional to the first invariant

I1,® of the fabric tensor:

[OA] =5 ™ (29)

,

On the other hand, another vector OB
which is on the plane of F,+F,+F;=0
characterizes the deviatoric part of F,j; that
is,

Il(F>
3 Gus

It is well known that the length I" of the

D,;=F,;— (30

—-+ - .
vector OB is related to the second invariant
Ig(D) Of D“ as

r=v2L®
= VF—F (B =P (F=F)*
3D

it becomes

From the above discussion,

ODA

clear that the tensor F,; conveys the follow-
ing informations each of which is important
in the analysis of fabric character of geo-
logical materials:

1) I,'® (the first invariant of F;): The
isotropic part of F,; is proposed as an index
to evaluate the intensity of discontinuity,
depending not only on a volume density
(p or 8) but on a typical dimension ({r*) or
<I>). On an acceptable assumption, I, is
proved to be proportional to porosity p of
a body, as follows: A crack with radi-
us r has a corresponding void volume of
zrit (t=width of crack). The void volume
V, by all cracks in a total volume V is thus
estimated by

V,= f T m 2 F(r)dr
0

On an assumption of #=2kr where % is
a proportional coefficient, porosity p is given
by

(32)

p=—yr-=2mho [ rifrdr
0
=2mkolr®)
=RLD (33)
2) I': By thinking that I' (=+v2I,®P)

gives the distance of a point P with com-
ponents F,, F, and F; from the isotropic
line in the principal fabric space, it is
proposed as an index to evaluate the degree
of anisotropy of Fi.

3) The last information derived from Fy;
is concerned with its principal axes. These
principal axes can also be considered as the
principal axes of fabric anisotropy. In a
rather special case in which r and n are
mutually independent variables, F;; has
the same principal axes as the tensor Jy;
proposed by Satake (1978) and Scheidegger
(1965). It must be emphasized, however,
that J;; was formulated by taking into
account only the orientation n of disconti-
nuity.

EXPERIMENTAL JUSTIFICATION TO INTRO-
DUCE THE CONCEPT OF FABRIC

Many experimental and theoretical studies

NI | -El ectronic Library Service



The Japanese Geotechnical Society

FABRIC TENSOR 103

|9 _
!
\/
250
/ / / mm
/
\ —-—-—/
/ c>ccks\
—
\ ~ g
1‘_— s /?5 mm

mm I l

Fig. 6. Gypsum plaster sample with ran-
dom cracks

have been published to show the cross relation
of the fabric of granular materials to their
mechanical properties (e.g., Oda, 1972;
Arthur and Henzies, 1972; Matsuoka, 1974;
Mahmood and Mitchell, 1974; Mulilis, Chan
and Seed, 1975; Konishi, 1978; Mehrabadi,
et al, 1980; Kanatani, 1981). In particular,
Oda (1978) has examined this relation rather
extensively with the conclusion that the
fabric concept gives us a sound basis to make
clear the complex mechanical property of
granular materials.

In spite of the importance of fabric concept
in the analysis of cracked rock masses
(Gerrard, 1977), there has been published
few work dealing with the topic from a
general point of view. This is because the
geometry of cracks is usually too complicated
to be identified by a unique measure. In
this section, two experimental results are
given with special attention to show how
powerful the fabric tensor is in the analysis
of cracked rock masses.

Uniaxial Compression Tests on Gypsum
Plaster Samples with Randomly Oriented
Cracks (Onodera, Oda and Ishii, 1972)
Experimental work

Onodera, et al. (1972) reported uniaxial
compression tests on gypsum plaster samples

with random cracks. Their experiment was
done in the following order:

1) In order to make a gypsum plaster
sample with a system of two-dimensional
cracks, the position and orientation of cracks
are arranged in random so that the system
of cracks becomes isotropic as well as homo-
geneous. A random digit is conveniently
used for this purpose.

2) Water-gypsum mixture (2:3 by
weight) is poured into a rectangular prismatic
mold with a dimension of 250 %125 x 100 mm?.
Strips (27 %x100x0.25 mm?®) made of picture
postcard are inserted into the water-gypsum
mixture at the previously selected positions
with the previously selected orientations
(Fig.6). Boundaries between the gypsum
plaster and the picture postcard are regarded
as two-dimensional cracks of length 27.

3) After about an hour, the well-hard-
ened water-gypsum mixture is taken out of
the mold, and is trimed to make a rectangu-
lar prismatic sample of 250x125x75 mm3.
The samples thus made are cured for a week
in a constant temperature (50°C) and hu-
midity (38%) bath.

4) Axial compressive stress ¢, increases
at a constant loading rate of 9.8kN/m?s to
determine the uniaxial compressive strength
(Ga) [

5) Experiment consists of the following
three series:

a) a-series: The number m" of cracks
changes from 10 to 100, with a definite
crack length (2=10mm).

b) b-series: The crack length changes
from 10 mm to 50 mm, with a definite num-
ber of cracks (m®" =20).

¢) c-series: Both of 27 and m" change
so as to give a suitable value of the first
invariant I,*F? of F;;®.

Result
Since cracks in a sample are arranged to be
isotropic as well as two-dimensional, its
fabric tensor can be reduced to
V) (452
Foym= m iz/lr >T|:1{)2 1(32] 34)
where T is the thickness of sample (Fig.6).
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for four gypsum plaster samples hav-
ing different values of first invariant
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Two crack systems with different appearance

(Note, however, that both have almost the same

fabric tensor F,(R)
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In this special case, the first invariant I,
is only a nonvanished measure derived from
F,;®. (Real samples are not ideally isotrop-
ic but with some deviatoric component
of D,;¥. With a few exceptions, however,
the deviatoric component is so small that it
can be neglected in the following considera-
tion. The problem of the deviatoric tensor
will be discussed in the next paper.)

Fig.7 shows the relations between axial
strain e, lateral strain ¢, and axial stress
g, for four samples. Each sample has a
value of the first invariant different from
others. A sample with I,®=0 means a
crack-free sample. It is no wonder that the
crack-free sample has the highest uniaxial
compressive strength (g,); and the sharpest
stress-strain relation. With the increase of
the first invariant I,, the sample loses
gradually its strength and stiffness.

Fig. 8 shows the change of the uniaxial
compressive strength as a function of I,'™.
(Note that (g,); is normalized by that of
the crack-free sample. It must be emphasized
that all experimental results about (g,)y are
plotted in almost the same area, irrespective
of the series (a, b, c¢) of tests. This result
strongly supports the idea that the first
invariant I, has a unique physical meaning
as an index for the crack geometry. A sample
(a) in Fig.9 seems to have a quite different
crack system from a sample (b) because of
such different appearance. It must be pointed
out, however, that both samples have almost
the same uniaxial compressive strength and
secant deformation modulus owing to the
same value of I,'"=0.256.

Experiment on weathered granite (Onodera,
Y oshinaka and Oda, 1974)

In order to see the effect of weathering
of granite on its mechanical property, Ono-
dera, et al. (1974) observed cracks under a
microscope on thin sections sliced from the
weathered granite. Granite was sampled from
Innoshima and Shimotsui at which Honshu-
Shikoku bridges were planned to be con-
structed. Cracks were observed along a scan-
ning line (total scanning being 240 mm).

—~eo—9o—~ weathered

slightly
weathered

“WenVes frach »
200 —'/

Frequency _ .. _

200

Shimotsui- Innoshima-

granite . granite
'
100 1008, A
: v
.'.;\_\ /o - ) .
0 = N @ ?“‘&1—--5 Ol L kih04q

a b c¢c de f

Fig. 10. Progressive change of cracks due
to weathering "of “granite (Onodera,
Yoshinaka and Oda, 1974)

They were classified into six classes according
to their crack widths as a (0~0.0016 mm),
b (0.0016~0.016 mm), ¢ (0.016~0.032 mm),
d (0.032~0.048 mm), e (0.048~0.064 mm)
and f (more than 0.064mm). Number of
observed cracks belonging to each class are
summarized in Fig.10. It is clear that the
width as well as the number of cracks in-
crease with the progress of weathering which
was estimated by the chemical analysis.
Especially, the rate of cracks belonging to
the class f becomes larger when granite is
exposed to more severe weathering.

Since granite has isotropic appearance, the
density function E(n) can be assumed to be
isotropic (E(n)=1/4 ). Then, the number
N®/h of cracks associated with the unit
length of the scanning line is estimated by

/2 T
N®h=rp <r2>f f —41——cosBsianade
0 0 4

=Z0(r® (35)

N®/p  measured under a microscope is
shown in Fig. 11 which represent the relation
between N®/h and p (porosity). Porosity
of cracked materials has the equivalent mean-
ing to the first invariant of Fy;'® if the
crack width is proportional to the crack
length 27. (This assumption seems to be
reasonable for the weathered granite.) N®/h
of Shimotsui-Granite is plotted within a
rather small range from 1.2 to 1.8, while
N®[h  of Innoshima-granite is linearly
related to the porosity. This result suggests
that N®/a itself is not an adequate index
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Fig. 11. Number of cracks crossed by unit
length of i-scanning line
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Fig. 12. Relation between uniaxial com-

pressive strength (o, and porosity
p of granite (modified from Yoshina-
ka’s (1973) data) (Note that this
linear relation is quite similar to the
relation of Fig.8)

measure of cracks.

Yoshinaka (1973) has reported that the
uniaxial compressive strength (¢,); of gran-
ite is given as a linear function of log
p (Fig.12). It is worthy of note that this
linearity between (g¢,); and log p is quite
similar to the linearity between (o,); and
log I,'"). This seems to support the idea
that porosity of cracked materials is related
to the first invariant of fabric tensor.

CONCLUSION
Geometrical property (fabric) of discon-

ODA

tinuity in geological materials was discussed
in terms of (1) position and density, (2)
shape and dimension and (3) orientation of
related discontinuities such as joint, fault
and discrete particle. Based on the statisti-
cal consideration, a unique measure called
fabric tensor was introduced to describe the
fabric.

From the fabric tensor of cracked rock
masses, we can obtain the following infor-
mations:

1) The first invariant of fabric tensor is
important as an index measure to evaluate
the crack intensity which is related to the
number and dimension of cracks. Porosity
of granite is an index having almost the
same meaning as the first invariant. Accord-
ing to uniaxial compressive tests on gypsum
plaster samples with two-dimensionally ori-
ented cracks and granite samples, the loga-
rithm of first invariant is linearly related
to their uniaxial compressive strength.

2) The measure I which is related to
the second invariant of the deviatoric part
shows a distance from an isotropic fabric.
So, it is expected to be an index to measure
the degree of anisotropy due to the preferred
alignment of discontinuity.

3) The principal axes of the fabric tensor
are identical to the principal axes of fabric
anisotropy. The determination of I wvalue
as well as the principal axes are indispen-
sable in the analysis of anisotropic, discon-
tinuous materials,
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NOTATION

A=area of crack surface
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~(n) =density function showing distribution of
ns (normals to contacts and cracks)
E(n,r)=density function showing distribution of
ns (normals to cracks)
e= void ratio
Fi, Fy, Fy=principal values of fabric tensor Fy;
F;;® and Fy;/@ =fabric tensors for rock masses
and for granular materials respectively
F(#) and f(R)=density functions of r (radious of
crack) and of R (radious of spherical par-
ticle) respectively
h=length of column
I,E, It and I3 =first, second and third invar-
iant of fabric tensor Fy;
1,0 =second invariant of deviatoric tensor Dy
[=length of branch
N@=number of cracks associated with i-scan-
ning line.
m ") =number of cracks inside a volume V
m=crack vector defined by 2rn’
M@ =number of branches associated with i-
scanning plane.
2" =number of particles inside a volume V
n;=component of unit vector n on a direc-
tion given by i
n=unit vector normal to crack surfaces and
contact surfaces
n'=unit normal vector defined with respect
to i-direction (n'-iz0)
p=porosity
R=radius of circular crack
r=radius of spherical particle
V =reference volume
a and B=angles to show unit normal vector n
" =parameter showing anisotropy of Fy

equal to V/2I;®
d=volume density of contacts
d;;=Kronecker delta
¢, and g;=axial and lateral strains
p;=direction cosine to show principal axes
of F“
&=mean co-ordination number
p=volume density of cracks
g,=axlial stress
2 =whole solid angle (4x7) given by a sur-
face of unit sphere
0/2=half solid angle given by a surface of
upper hemisphere
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