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The ultimate flexural strength of composite steel girders with compact sections is examined through
experimental investigation and elasto-plastic finite displacement analyses to develop a reduction factor of
the ultimate flexural strength. A two-point loading test of a composite girder was carried out to verify
the numerical modeling by comparing the experimental and numerical results. Then, a parametric study
was performed using finite element analyses to investigate the effect of concrete crushing on the flexural
strength of composite girders constructed using SM570 grade steel. Observations made by comparison of
the ultimate flexural strength obtained from the experimental and numerical results with that according to
the AASHTO and Eurocode show that the existing reduction factor equations are conservative and can be
relaxed when the strength is controlled by crushing of concrete slab. A new reduction factor for the ultimate
flexural strength for composite I-girders under positive bending is proposed.
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1. INTRODUCTION

According to the American Association of State
Highway and Transportation Officials (AASHTO)
specifications1), composite sections with steel I-
girders can be classified into three classes–compact,
noncompact and slender sections–depending upon
behavior of web plates in compression. The compact-
ness requirements of Article 6.10.6.2.2 in AASHTO,
originated mainly from the analytical and experimen-
tal work of Lay and Galambos2),3). Although adjust-
ments were made for Load and Resistance Factor De-
sign (LRFD) from the original proposal in American
Institue of Steel Constuction (AISC) code4) by Yura
et al.5), where a rotation capacity of at least three is
required, the rotation capacity requirement is not ex-
plicitly given in AASHTO. Accordingly, in this paper,
the AASHTO’s definition of compact sections will be
adopted, which reaches its plastic moment capacity
Mp without any rotation capacity requirement.

As in reinforced concrete theory, the ultimate flex-
ural failure in composite compact sections can occur

either due to the yielding of steel in tension or crush-
ing of concrete in compression. For compact sections
in which the ductile failure takes place, the ultimate
flexural strength is given by its full plastic moment
capacity. However, for compact sections with higher
steel yield strength, crushing of the concrete slab may
take place prior to reaching the full plastic moment
capacity of sections. The use of high strength steel in
composite girders causes a deep position of the plas-
tic neutral axis, which causes excessive compressive
strain in concrete slabs and insufficient tensile strain
in steel lower flanges at the ultimate state. Accord-
ingly, in AASHTO and Eurocode6), the design mo-
ment capacities for compact sections and class 1, 2
sections are reduced to avoid the concrete crushing.
Furthermore, the position of the plastic neutral axis
Dp (see Fig. 1) is restricted from the view point of
ductility requirement.

One of the pioneering works on ductility of com-
posite girders was done by Rotter and Ansourian7) and
Ansourian8). They proposed a criterion to ensure duc-
tility as Dl/Dp >1.4, where Dl is called the limiting
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Fig.2 Assumed strain distribution in compact section8).

neutral axis depth and defined from the strain distribu-
tion shown in Fig. 2 and Dp is the depth of the plastic
neutral axis below the top of the concrete slab.

The 2001 AASHTO interim specifications9) pro-
vided Dp/D′ ≤ 5.0 as a ductility requirement, where
D′=β Dl/1.5 is defined as the depth of the plastic neu-
tral axis when the maximum strain in concrete slab
attains its crushing strain. The β factor was used
to account for the effect of different steel grades on
the ductility of composite sections and Ansourian’s
limiting value of 1.4 was rounded to 1.5 to ensure
Dp < Dl.

In the 2005 interim revision of AASHTO specifica-
tions, a simple form of ductility ratio Dp/Dt is used,
where Dt is the total depth of the composite girder.
The previous ductility requirement Dp/D′ ≤ 5.0 cor-
responds to Dp/Dt ≤ 0.5 where D′=Dt/10. The lim-
iting Dp/Dt ratio is lowered to 0.42 in order to ensure
ductile behavior. The value of β=0.75 was found to
be good enough for all types of steel grades and hence
adopted.

In view of the frequent modifications of the duc-
tility requirement in AASHTO, the need for further
investigation of ductility requirement becomes neces-
sary. It is to be noted that the ductility requirement in
Eurocode is given as Dp/Dt ≤ 0.40.

Even though sections satisfy the ductility crite-

Fig.3 Strength prediction in AASHTO and Eurocode.

ria explained before, their ultimate flexural strengths
have to be reduced fom the full plastic moment ca-
pacity Mp due to concrete crushing. The design pro-
visions in AASHTO for this strength reduction are
based on the work of numerous invesitgators7),8),10),11).
An analytical investigation was undertaken by Rot-
ter and Ansourian7) to check the experimental re-
sults of Chapman and Balakrishnan10) for composite
girders, which failed by crushing of concrete slabs.
They presented a strength equation to determine Mu.
However, the scope of their prediction equation is
not clear. In the 2001 AASHTO interim specifica-
tions, the calculation of both plastic and yield mo-
ment capacities were required to evaluate Mu. Re-
cently, Yakel and Azizinamini11) carried out exper-
imental and analytical studies and developed an al-
ternative strength equation, which requires less cal-
culation for predicting Mu, because calculation of
Mp was only needed. Their proposed method is re-
flected in the current AASHTO specifications, where
a shorter and simpler form of strength equation has
been used.

As shown in Fig. 3, the current AASHTO’s equa-
tion for calculating Mu/Mp is given as:

Mu

Mp
= 1.07 − 0.7

Dp

Dt

(
0.1 <

Dp

Dt
≤ 0.42

)
(1)

Similarly, the Eurocode’s equation for estimating
Mu/Mp, less conservative than AASHTO’s is given
as:

Mu

Mp
= 1.09 − 0.6

Dp

Dt

(
0.15 <

Dp

Dt
≤ 0.4

)
(2)

It is to be noted that compact sections in AASHTO
with Dp/Dt ≤ 0.1 and class 1 and 2 sections with
Dp/Dt ≤ 0.15 in Eurocode can reach a minimum of
Mp.
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Table 1 Material test results for steel plates.

yield strength [MPa]
Upper flange 313

Web 336
Lower flange 300

In this paper, the ultimate flexural strength of com-
posite girders with compact sections was investigated
by conducting a two-point loading test. The experi-
ment results under positive flexure were used to verfiy
the results of three-dimensional nonlinear FE analy-
sis. An analytical parametric study, using FE models
under positive bending is also presented. Details of
the parametric study which aims to establish the de-
sign flexural strength equation are also reported. The
ultimate flexural strengths obtained from experiment
and numerical analyses were compared with the ex-
isting design equations. Finally, a new reduction fac-
tor for the ultimate flexural strength is developed and
presented.

2. EXPERIMENTAL INVESTIGATION

The objective of the test is to determine the ulti-
mate flexural strength of composite girder with a sec-
tion qualified as compact sections. The experiment
was performed in the structural testing laboratory of
Komai Tekko Company.

(1) Test specimen and arrangement
A 10m long composite girder with a web depth-to-

thickness ratio bw/tw of 200 was tested. The cross
section dimensions are shown in Fig. 4. The compos-
ite girder has a 180mm thick RC slab. The test girder
was designed so that it was classified as compact sec-
tions and that its plastic neutral axis lied in the web
plate. The web slenderness 2Dcp/tw based on mate-
rial test results was 49.89, which satisfied the compact
sections requirements of AASHTO and Eurocode; see
Fig. 1 for the definition of Dcp. The Dp/Dt ratio
for the specimen was 0.242, which fell in the linear
descending range of Eqs. (1) and (2). This value
was selected to check the capability of AASHTO’s
and Eurocode’s ultimate flexural strength equations
to predict the strength governed by concrete crush-
ing. The steel girder was made of steel grade SM400,
whose material test results were shown in Table 1
and the concrete used for the RC slab had a compres-
sive strength of 44.3 MPa.

The test setup included two sets of a load cell over
the hydraulic jack and displacement measurements at
different locations. All measurements were taken us-
ing an electronic data acquisition system. The loading
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Fig.4 Cross-section dimensions of test girder, and details
of re-bars [mm].
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Fig.5 Composite girder under two-point loading [mm].

arrangement, which two symmetric point loads on the
top of the concrete slab, produced a constant moment
region between the loading points, as shown in Fig.
5. Since the experiment is primarily concerned with
the flexural behavior of the girder, shear failure was
prevented by installing vertical stiffeners on the web
plate, and by increasing web thickness in the shear
spans.

After the composite girder was ready to be tested,
a two-point load device was attached on top of the
girder. The behavior of composite girder in elastic,
cracking, and inelastic ranges was carefully observed
through a static test. The test girder was loaded in
seven cycles with maximum loads of P =200, 400,
600, 800, 1100, 1600, 1800 kN before ultimate load
was reached. Both load and displacement control
methods were applied for loading the girder. A pho-
tograph of the test setup is shown in Fig. 6.

(2) Test results
The load-displacement response of the tested com-

posite girder is shown in Fig. 7. At the initial cycle of
loading (i.e., within 11% of the ultimate load Put) the
response is linear and no cracks were visible on the
slab. As the load increased, the stiffness slightly de-
creased from the third cycle, but still no visible crack
was observed on the surface of the concrete slab. Dur-
ing the seventh cycle, cracks begin to appear at the
bottom of concrete slab. Finally, the failure took place
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Fig.6 Test setup.
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Fig.7 Load-displacment curve of test specimen; Vertical
displacement is measured at point E in Fig.5.

Fig.8 Typical crushing failure mode.

by crushing of concrete near one of the load points
as shown in Fig. 8. The concrete crushing occurred
within the constant moment region. No crushing was
observed at the other locations.

Table 2 Results of experiment and its comparison with
theoretical values.

Ultimate load Pu 1.81 MN
Ultimate moment Mu 5.42 MNm
Plastic moment Mp 5.03 MNm
Dp/Dt 0.242
Mu/Mp from exp. 1.08
Mu/Mp from Eq.(1) 0.902
Mu/Mp from Eq.(2) 0.916

Note: definition of Mp is shown in Fig.1.

Table 2 shows a summary of test results at fail-
ure condition, where the plastic moment Mp and the
depth of plastic neutral axis Dp were calculated ac-
cording to the rigid-plastic analysis theory. The con-
crete crushing occurred at a load of 1807kN, which
represents the ultimate load of the specimen. There-
fore, the ultimate moment Mut is greater than Mp for
girder with Dp/Dt = 0.242. This shows that sections
with Dp/Dt = 0.242 can reach the plastic moment ca-
pacity Mp of the composite section without any duc-
tility concerns. From the above results, it is interest-
ing to note that the moment capacity of the test girder
is much greater than those predicted by AASHTO and
Eurocode ultimate flexural strength equations.

3. NUMERICAL SIMULATION OF EX-
PERIMENT

The FE analysis of the test girder under pure
bending was carried out by using a nonlinear FE
software12). The primary aim of the numerical sim-
ulation was to validate the employed FE modeling by
comparing with the experimental results.

(1) FE modeling
A three-dimensional FE model was developed to

represent the tested specimen as shown in Fig. 9
through the use of symmetry of the structural and
loading conditions.

In the elasto-plastic finite displacement analysis,
the brittle property of concrete is simulated with 8-
noded solid elements that can change their stiffness
depending on development of cracking and crushing
of concrete and the steel girder is idealized by 4-
noded isoparametric curved shell elements. The el-
ements at the bottom of the concrete slab and mid-
surface of the steel upper flange have common nodal
points. Top and bottom longitudinal reinforcements
have been modeled by the embedded element12).
The reinforcement consisted of two layers of D16
(15.9mm) reinforcing steel bars.
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Fig.9 FE model of the composite girder.

(2) Material model
The FE analysis uses three sets of material proper-

ties for structural steel, reinforcement steel and con-
crete. These material models are described in the sub-
sequent sections.
a) Structural steel

The uniaxial stress-strain relationships for steel
shown in Fig. 10 were adopted. These stress-strain
curves have three distinct regimes—elastic, distinct
yield plateau and multi-linear strain hardening ranges,
which are based on
σs

fy
=

1
ξ

Est

Es

{
1 − exp

[
−ξ

(
εst

εy
− ε

εy

)]}
+1 (3)

where σs and ε are the corresponding stress and strain
of the steel respectively; fy and εy are the yield
strength and strain of steel respectively; Est is the
strain-hardening slope and ξ = 0.0213). The von
Mises yield criterion were employed. The associated
flow rule and the isotropic strain hardening were used.
b) Reinforcement steel

The steel reinforcement was modeled as an elas-
tic and ideally plastic material as shown in Fig. 10.
The yield stress of the reinforcing steel was taken as
376MPa based on material tests.
c) Concrete

Concrete in compression is considered to be
a linear-elastic, plastic and strain-softening mate-
rial. The concrete material subjected to compressive
stresses show pressure dependent behavior, i.e., the
strength and ductility increase with increasing the hy-
drostatic pressure.

The Mohr-Coulomb failure criterion is employed as
a yield criterion. The yield function for this failure
criterion is expressed in terms of the principal stresses

Fig.10 Stress–strain curve for structural steel.
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Fig.11 Stress–strain curve for reinforcement steel.

σi, (i = 1, 2, 3) as follows

F =
1
2
(σ1 − σ3) +

1
2
(σ1 + σ3) sin φ − c cos φ (4)

where φ and c are the angle of internal friction and
cohesion, respectively. The associated flow rule and
the isotropic hardening are used in the analysis. The
angle of internal friction is assumed to be constant
φ = 20 deg., while the cohesion is considered as a
function of the equivalent plastic strain defined by

ε̄p =
∫ √

2
3
dεp

ijdεp
ij (5)

where εp
ij stands for the plastic strain tensor, and the

summation convention is used. The cohesion as a
function of the plastic strain is obtained from a uni-
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Fig.12 Size-consistent stress–strain curve for concrete.

axial stress-strain relationship and

c = σc
1 − sinφ

2 cos φ
(6)

where σc is the compressive stress (positive in com-
pression), which can be expressed as a function of the
equivalent plastic strain.

The Comite Euro-International du Beton (CEB)14)

has proposed the stress-strain model shown in Fig.
12, which includes the descending part of the stress-
strain curve under uniaxial compression. This relation
is composed of two parts: for |εc| < |εc,lim|

σc =
Eci
Ec1

εc
εc1

−
(

εc
εc1

)2

1 +
(

Eci
Ec1

− 2
)

εc
εc1

fc (7)

and for |εc| > |εc,lim|

σc =

[(
ξ

εc,lim

εc1

− 2
εc,lim

εc1

)(
εc

εc1

)2

+

(
4

εc,lim

εc1

− ξ

)
εc

εc1

]−1

fc (8)

with

ξ =
4

[(
εc,lim

εc1

)2 (
Eci
Ec1

− 2
)

+ 2 εc,lim

εc1
− Eci

Ec1

]
[

εc,lim

εc1

(
Eci
Ec1

− 2
)

+ 1
]2 (9)

where εc is the compressive strain; Eci = 2.15 × 104

(fc/10) 1/3 and Ec1 = fc/εc1 are the initial and se-
cant moduli of elasticity respectively; εc1=0.0022 is
the concrete strain at the peak compressive stress and
fc is the compressive strength of concrete and was
taken as 44.3 MPa from material tests.

Since the post peak behavior is due to micro crack-
ing in localized regions in an experimental specimen,

the descending portion of the stress-strain relation de-
pends on the specimen length. Furthermore, it is
well known that FE numerical results employing the
strain softening plasticity present serious mesh de-
pendency. A procedure known as fracture energy
regularization was used to solve the mesh depen-
dency or localization problem in FE analysis while
modeling the strain-softening behavior of concrete in
compression15),16).

The main idea of the regularization process is to
modify the material softening behavior in such a way
that the fracture energy integrated over the element
is independent of the element length17). The fracture
energy in compression Gf is defined as

Gf =
∫

σcdui
c (10)

where ui
c is the inelastic displacement. For general

use of the fracture energy concept, it is better to
rewrite Eq. (10) in terms of the specific fracture en-
ergy:

gf =
Gf

L
=

∫
σcdεi

c (11)

where L stands for the element length, εi
c is the in-

elastic compressive strain, and the integral represents
the shaded area of the compressive stress-strain curve
shown in Fig. 11.

Eqs. (7) to (9) represent the stress-strain relation-
ship for an element length of 200 mm, while the con-
crete element length adopted in the FE analysis is
125mm.

Hence, for the FE model the descending part of the
stress-strain curve was calibrated to maintain a con-
stant fracture energy,

Gf = L200gf = L125g
′
f (12)

in which L200 = 200 mm and L125 = 125 mm are the
length of CEB-FIP 90 concrete element and the finite
element length used in the analysis, respectively; and
gf and g′f are the corresponding specific fracture en-
ergies.

From Eq. (12), we have

g′f = 1.6gf (13)

and the scaled stress-strain curve used in the present
analysis is shown in Fig. 12.

(3) Comparison of load vs. displacement plot
The load-displacement curve obtained from the nu-

merical analysis is compared with the experimental
one as shown in Fig. 13. Both numerical and ex-
perimental displacements are taken from the vertical
deflection at the point E in Fig. 5, which is the bot-
tom point and 200 mm left from the mid span. The
loads corresponding to the yield and full plastic mo-
ments are plotted as the horizontal lines indicated by
Py and Pp, respectively. These yield and plastic loads
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Fig.13 Comparison of load–displacement relationships at
point E.

Table 3 Results of FE analysis.

Ultimate Ultimate Yield
load moment load
Pu Mu Py Mu/Mp

[MN] [MN-m] [MN]
1.68 5.05 1.43 1.01

are calculated on the basis of the beam theory and the
rigid-plastic assumption. The maximum loads in the
load-displacement curves are defined as the ultimate
loads Pu, which are indicated by the open triangles in
Fig. 13.

It is found that, in the linear range, the load-
displacement curve of the simulated FE model shows
a trend almost similar to that of the experimental
girder. However, in the nonlinear range, the response
of FE model changes with increasing displacements
compared to the experimental girder. It appears that
the presence of residual stresses in the steel girder
affects the behavior during the section B’C’ of the
experimental plot in Fig. 13. In general, the resid-
ual stresses cause initial yielding of the center por-
tion of the bottom flange at a lower applied load. In
this state, the stiffness of the experimental girder is
less than that of the FE model, in which the residual
stresses are not considered. At the points B and B’,
the lower portions of the steel girders start to yield,
and at the points C and C’, the loads attain the full
plastic load of the composite section. At the point
D’ in the FE analysis, strain hadening was observed
in the lower portion of the web plate but still 30% of
the web plate behaved elastically. However, in the ex-
perimental specimen it appears that strain hardening

begins in the bottom flange at C’ and may have spread
through the steel girder until point D’ is reached. At
points D and D’ the concrete can no longer sustain the
any increase in applied loading and eventually fails by
crushing; the applied loads attain their maximum val-
ues. These maximum bending moments are defined
as the ultimate bending moments hereafter. The nu-
merical results of the FE analysis are summarized in
Table 3.

4. FINITE ELEMENT PARAMETRIC
STUDY

With the aim presented in chapter 1, parametric
studies have been carried out using FE method. A
wide range of cross-section dimensions were exam-
ined and the numerical analyses were conducted on
35 composite girder models to investigate the effects
of variations in geometry, such as the web depth-to-
thickness ratio, on the flexural strength and ductility
of composite girders. Table 4. summarizes the main
section properties used in the parametric analyses.

The primary parameter varied in this study was
Dp/Dt ratio and the sections were chosen to have
Dp/Dt ratio in the range 0.15-0.4. In all of the chosen
sections, the plastic neutral axes are located within the
web of steel girders. Three bw/tw ratios 120, 150 and
200 were considered for nonlinear FE analyses. The
sections with bw/tw =120, 150 and 200 satisfied the
compact section requirement proposed by Gupta et
al.18)

2Dcp

tw
≤ 4.00

√
Es

fy
(14)

where Dcp = depth of the web in compression at the
plastic moment and tw = thickness of the web, Es =
Young’s modulus of steel and fy = yield strength of
steel.

The aspect ratio and depth of the web plates are as-
signed to 3 and 3m, respectively. Five concrete slab
widths of 1.5m, 1.7m, 2m, 2.5m and 2.8m were cho-
sen but its thickness was fixed to 300mm for all anal-
yses. The upper flange width and thickness was var-
ied between 300-700mm and 16-34mm, respectively
whereas the lower flange width and thickness was var-
ied between 650-850mm and 30-50mm, respectively.
In the following sections, the analytical model and the
results will be discussed.

(1) Analytical model
A 3D FE model simply supported at ends was se-

lected for the parametric study. The symmetry of
geometry and loading about the mid-span plane al-
lows modeling of only half the length of the girder as
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Table 4 Section properties.

Width-to- Girder Upper flange Lower flange Slab Ductility Web
thickness ratio of [mm] [mm] [mm] ratio slenderness

web bw/tw buf × tuf blf × tlf bs × ts Dp/Dt 2Dcp/tw Mu/Mp

1 450 × 20 700 × 30 2000 × 300 0.219 55.7 1.21
2 400 × 19 750 × 35 2000 × 300 0.283 83.99 1.19
3 400 × 20 750 × 45 2800 × 300 0.175 36.01 1.27
4 350 × 18 700 × 45 2800 × 300 0.170 33.62 1.28
5 300 × 16 650 × 50 2800 × 300 0.192 44.03 1.30

200 6 700 × 32 700 × 32 1700 × 300 0.171 32.5 1.01
7 600 × 33 700 × 32 1700 × 300 0.197 43.8 1.01
8 700 × 32 700 × 32 1500 × 300 0.215 52.2 1.01
9 650 × 33 700 × 32 1500 × 300 0.240 63.5 1.00
10 500 × 34 700 × 32 1500 × 300 0.268 75.7 1.00
11 550 × 33 750 × 34 1500 × 300 0.286 84.1 0.998
12 450 × 20 850 × 40 2500 × 300 0.306 70.83 1.01
13 400 × 18 800 × 45 2500 × 300 0.333 80.33 1.01
14 500 × 16 750 × 50 2500 × 300 0.336 81.64 1.01
15 400 × 20 750 × 35 2500 × 300 0.256 53.96 1.02
16 350 × 18 700 × 30 2500 × 300 0.230 45.82 1.02
17 300 × 16 700 × 45 2000 × 300 0.317 74.82 1.01

150 18 700 × 32 700 × 32 2000 × 300 0.208 36.7 1.01
19 600 × 33 700 × 32 2000 × 300 0.227 43.2 1.01
20 550 × 33 750 × 33 2000 × 300 0.257 53.2 1.00
21 500 × 34 850 × 35 2000 × 300 0.303 68.5 0.998
22 550 × 33 800 × 34 1700 × 300 0.325 76.3 0.994
23 550 × 32 850 × 35 1700 × 300 0.348 84.0 0.993
24 500 × 16 750 × 50 2500 × 300 0.378 76.53 1.00
25 450 × 20 700 × 40 2500 × 300 0.317 59.73 1.00
26 400 × 20 750 × 45 2500 × 300 0.357 70.53 1.00
27 500 × 20 700 × 45 2000 × 300 0.40 81.87 0.985
28 450 × 20 700 × 40 2000 × 300 0.385 77.87 0.988
29 400 × 22 750 × 38 2000 × 300 0.390 78.99 0.986

120 30 700 × 32 700 × 32 2000 × 300 0.248 40.2 1.00
31 550 × 32 750 × 33 2000 × 300 0.281 49.0 0.996
32 700 × 32 700 × 32 2000 × 300 0.315 58.3 0.991
33 600 × 33 750 × 32 2000 × 300 0.341 65.1 0.986
34 550 × 34 800 × 35 2000 × 300 0.371 73.2 0.982
35 500 × 32 850 × 36 2000 × 300 0.402 81.7 0.982

Note: Definitions of symbols are shown in Fig.1.

shown in Fig. 14. The bending moment loading was
obtained by using forced rotation at the rigid end sup-
port about the major axis of the section. Constraints
were applied at mid span to prevent the displacement
in the girder axis direction. In the parametric study,
the same elements as used for modeling the experi-
mental girder are used.

For steel, the metal plasticity uses the von Mises
yield criterion, the associated plastic flow, and the
isotropic strain hardening. In this study, a multilin-
ear stress-strain curve with and strain hardening was
used (Fig. 15). The steel grade SM570 was employed.
The residual stresses in steel girders have little effects
on the ultimate bending moment19),20),21) because of
stress redistribution, so that they are not considered

in the analyses. However, the initial geometric im-
perfection of web palates may induce local buckling
of the web plate, and thereby reducing the strength.
Accordingly, the initial geometric imperfection was
introduced into only the web plates in the nonlin-
ear load-displacement analyses. The maximum ini-
tial displacement of bw/250 that is the allowable max-
imum initial imperfection in the Japanese Specifica-
tions for Highway Bridges23) (JHBS) was introduced
in the web plates.

The size consistent uniaxial stress-strain curve with
compression softening behavior similar to one shown
in Fig. 12 is adopted. The curve also follows the
CEB-FIP 90 stress-strain relationship and the con-
crete is assumed to have a compressive strength of
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Fig.14 FE model of the composite girder for parametric
study.

Fig.15 Stress–strain curve for steel grade SM570.

40MPa. The concrete material was modeled using
Mohr-Coulomb model with the associated flow rule
and the isotropic strain hardening.

(2) Parametric study results
The parametric study was conducted by changing

Dp/Dt ratio, depth-to-thickness ratio of the web,
width and thickness of the top and bottom flanges and
width of concrete slab. Table 4. shows the results for
selected composite girders, which failed by crushing
of concrete. In parametric study, the ultimate flex-
ural moment Mup is defined as the maximum value
of bending moment obtained just before the bending
moment tends to decrease with increasing curvature.

Fig.16 Relationship between Mu/Mp and Dp/Dt.

Nearly all of the girders except for a few girders ei-
ther reached its plastic moment capacity or exceeded
it. The girders with moderately high Dp/Dt ratios
failed to reach their full plastic moment capacity. It
is interesting to note that even for webs with bw/tw =
200, the full plastic moment capacity was obtained.
It has also been found that, for girders having low
web width-to-thickness ratios, the ultimate flexural
strength reduces as the Dp/Dt ratio increases.

5. PROPOSED FLEXURAL STRENGTH
EQUATION

Fig. 15 shows the plot between the non-
dimensionalized ultimate flexural strength with re-
spect to the full plastic moment capacity Mp and
Dp/Dt ratio. The results of the present experiment,
its simulation and the parametric analyses were com-
pared with the existing experimental data reported by
Ansourian8), Ohgaki et al.22) and Mans et al.24). An-
sourian employed European I beams called IPE 200
and 270 with total depths of 200 and 270 mm, re-
spectively. Their depth-to-thickness ratios were 28
and 33. Hence, Ansourian’s specimens seem to be
too small to represnt composite girders used in re-
cent composite girder bridges. The steel web depth
of both Ohgaki’s specimens was 1420 mm, and the
depth-to-thickness ratios of web plates were 118 and
157. Mans et al. used two specimens made of HPS-
485W with yield strengths of 556-583 MPa; their web
depth was around 760 mm, and depth-to-thickness ra-
tios were 89 and 85. Details so these specimens, such
as Dp/Dt ratio, are summarized in Table 5.

The current design equations (1) in AASHTO and
(2) in Eurocode are plotted as the lines in Fig. 16.
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Table 5 Summary of test results by other researchers.

Source Specimen Dp Dp/Dt Mp Mu Mu/Mp Failure mode
[mm] [kN-m] [kN-m]

Ansourian8) 1 7.36 0.04 295 344 1.17 Slab crushing
2 45.0 0.35 280 277 0.99 Slab crushing
3 27.1 0.22 160 166 1.04 Slab crushing
4 12.0 0.09 170 192 1.13 Slab crushing

Ohgaki et al.22) MC1 586 0.36 7527 7178 0.97 Slab crushing
MC2 630 0.39 7952 7522 0.95 Slab crushing

Mans et al.24) POS1 189 0.19 5353 5304 0.99 Slab crushing
POS2 80.5 0.08 4272 4369 1.02 Slab crushing

From the comparative plots shown in this figure, it
can be seen that both AASHTO’s and Eurocode’s ul-
timate flexural strength equations are conservative,
especially for Dp/Dt in the range 0.25-0.4. Al-
though Eurocode’s equation underestimates the flex-
ural strength, it gives a fair estimation of the flexural
strength for Dp/Dt between 0.15 and 0.20. Further-
more, the experimental result of POS1 specimen by
Mans et al. closely agrees with Eurocode’s strength
equation. It is suggested, therefore, that the reduction
factor for the ultimate flexural strength is predicted by
the following equation:

Mu

Mp
=

1.00
(

Dp

Dt
≤ 0.15

)
1.05 − 0.33Dp

Dt

(
0.15 <

Dp

Dt
< 0.4

)
(15)

Eq. (15) gives a better estimate of the reduction fac-
tor for the flexural strength of composite girders with
compact sections with Dp/Dt in the range 0.15-0.40.

6. CONCLUSIONS

In this study, all the girders were designed to ver-
ify the ability of the ultimate flexural strength equa-
tions provided by the current AASHTO and Eurocode
specifications to predict the flexural strength of sec-
tions with Dp/Dt in the linear range. The selected
girders have Dp/Dt in the range 0.15 to 0.4. Both
experimental and analytical results show that the ex-
isting strength equations are conservative. Finally, an
equation to estimate the reduction of ultimate flexural
strength is developed and presented, which is found
to be less conservative. The proposed equation is ex-
pressed as a function of Dp/Dt ratio. Moreover, the
proposed equation gives a better estimate of the ulti-
mate flexural strength of composite girders.
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