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Supporting Human–Robot Interaction Based
on the Level of Visual Focus of Attention

Dipankar Das, Md. Golam Rashed, Yoshinori Kobayashi, and Yoshinori Kuno, Member, IEEE

Abstract—We propose a human–robot interaction approach for
social robots that attracts and controls the attention of a target
person depending on her/his current visual focus of attention. The
system detects the person’s current task (attention) and estimates
the level by using the “task-related contextual cues” and “gaze pat-
tern.” The attention level is used to determine the suitable time to
attract the target person’s attention toward the robot. The robot de-
tects the interest or willingness of the target person to interact with
it. Then, depending on the level of interest of the target person,
the robot generates awareness and establishes a communication
channel with her/him. To evaluate the performance, we conducted
an experiment using our static robot to attract the target human’s
attention when she/he is involved in four different tasks: reading,
writing, browsing, and viewing paintings. The proposed robot de-
termines the level of attention of the current task and considers the
situation of the target person. Questionnaire measures confirmed
that the proposed robot outperforms a simple attention control
robot in attracting participants’ attention in an acceptable way. It
also causes less disturbance and establishes effective eye contact.
We implemented the system into a commercial robotic platform
(Robovie-R3) to initiate interaction between visitors and the robot
in a museum scenario. The robot determined the visitors’ gaze
points and established a successful interaction with a success rate
of 91.7%.

Index Terms—Gaze pattern, human–robot interaction, task-
related contextual cues, visual focus of attention (VFOA).

I. INTRODUCTION

FOR robots to interact effectively with humans in service
applications or in collaborative work scenarios, they should

be perceived as social actors and exhibit social intelligence and
awareness [1]. This social role awareness involves the ability to
behave in a socially correct manner, the ability to communicate
with proper timing, according to the situation, and the feelings
of the interactive partners as humans do with other humans. We
propose an intelligent robotic method of attracting a target per-
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son’s attention and establishing a communication channel with
her/him based on her/his level of visual focus of attention (LV-
FOA). The visual focus of attention (VFOA) is the behavioral
and cognitive process that indicates where and at what a person
is looking, and that can be determined by eye gaze and head
pose dynamics [2]. LVFOA refers to how much concentration is
given to a particular VFOA and is classified into discrete levels:
low, high, or medium [3]. If the robot needs to start communi-
cation urgently such as during an emergency, it does not need
to consider the current situation of the person. Otherwise, the
robot should observe the person to know at what/who she/he
is looking (VFOA) and how attentively she/he is doing so (LV-
FOA). Then, it should find a proper timing to attract her/his
attention so that it does not interfere with her/his current work.
We propose a system in which the robot interacts with the target
person intelligently and in a socially acceptable manner so that
it can interact by considering her/his current VFOA as well as
other persons in the environment. Researchers in human–robot
interaction have been interested in developing models inspired
by human cognitive processes because such models result in nat-
ural interaction behaviors [4], [5]. Providing robots with skills
that make the interaction intelligent and intuitive supports a high
level of satisfaction for interacting humans.

The VFOA is an important cue for attracting attention and
initiating interaction because: 1) it helps with understanding
what the person is doing, and 2) it indicates addressee-hood
(who is looking at whom). For instance, if the target person’s
VFOA is toward the robot, the robot can immediately establish a
communication channel through eye contact. If the target person
is involved in some task, the robot should wait to find a proper
timing to attract her/his attention and establish a communication
channel. In this research, the proper timing is determined by
detecting the level of attention of the target person on her/his
current task. In a scenario such as reading, writing, or browsing,
the robot should initiate interaction with the target person when
her/his level of attention is low. In other settings, such as at a
museum, the robot may need to consider people’s high level of
attention to help with objects of interest.

We use visual cues such as gaze pattern, and the task context
of the target person to recognize the VFOA and its level. Visual
cues such as gaze pattern and head pose can be used as an
approximation for VFOA [2], [6]. The task context plays an
important role to relate the set of circumstances in which the
task takes place [7]. Context is also relevant to derive a precise
understanding of task behavior. Knowledge of context can be
used to make decisions such as when to interrupt the target
person. For instance, if the target person is involved in “reading,”
contextual cues such as “turn page” or “change in the tilt angle
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of head” can be used to determine the loss of current VFOA.
In [8], we used head pose information to determine the level
of attention of the target human in a controlled experimental
environment. Here, we use head pose and eye gaze information
to determine the level of attention. We evaluate the proposed
system with a commercial robot in a museum scenario.

II. RELATED WORK

A. Visual Focus of Attention

VFOA is often highly correlated with behavior or activity
and is estimated by eye gaze. However, in some cases, the scale
of the scene does not permit estimation of eye gaze directly
because it could require either the movement of the subject to
be constrained or high-resolution images of the eyes, which
may not be practical [9], [10]. In [11], Stiefelhagen et al. use a
hidden Markov model to detect a user’s focus of attention from
an observed sequence of gaze estimates. They only consider
head pose as the indicator of the gaze and showed that VFOA
can be derived by head pose in many cases. For estimating
the degree of VFOA, Asteriadis et al. [12] use information
from head rotation and eye gaze estimation. In estimating head
pose, the authors use Bayesian modality fusion of both local and
holistic information, while for eye gaze, they use a methodology
that calculates eye gaze directionality, removing the influence of
head rotation. In [13], the authors use low-cost camera images
for estimating VFOA using head rotation, as well as fuzzy fusion
of head rotation and eye gaze estimates, in a fully automatic
manner, without the need for any special hardware or a priori
knowledge regarding the user, the environment or the setup.
However, in [13], the user needs to maintain a frontal pose to
the camera at start-up and there is no appropriate mappings
between 2-D projections and head/eye gaze analysis to certain
points on a target plane. We use a low-cost camera for estimating
VFOA that combines both eye and head movement effects in a
human–robot interaction scenario.

For recognizing a human’s level of VFOA, researchers use
techniques based on active sensing using infrared light [14].
Although accurate, these methods are invasive and restrictive.
Researchers try to estimate the level and orientation of attention
by relying on exterior attributes [15]. Movement analysis, head
pose estimation, and eye gaze measurement are used to investi-
gate the VFOA [16], [17]. These approaches require technology
applicable to laboratory environments (e.g., wearing devices
like binoculars or using multimirrored setups and projections).
Ba and Odobez [7] proposed a multiperson VFOA approach
using head pose and contextual information. They propose to
recognize the participants’ visual attention in order to introduce
context-dependent interaction models that relate group activity
and social dynamics of communication. However, we use the
task and task-related behavior pattern to measure the level of
attention.

B. Initiating Interaction

We consider when a human and a robot may not face each
other and the robot initiates an interaction in a socially accept-
able way depending on her/his level of current VFOA. Human

gaze supported better human–agent interfaces in [18]. Adap-
tive gaze patterns have been used for interaction with human
and artificial agents [19]. Moment-by-moment eye gaze plays
an important role in human–agent interaction and collabora-
tion. Mutlu et al. [20] investigated the role of eye gaze in a
story telling robot and showed that the participants can better
recall the story when the robot looked at them more often while
telling the story. The robot’s gaze directly influences where peo-
ple look in the scenes, and this affects people’s comprehension
of the robot’s utterance [21]. The eye-tracking data produce
different patterns of human eye gaze depending on the robot’s
gaze and speech. We use gaze pattern to estimate VFOA to
find a suitable time of interaction. Researchers have used gaze
behaviors as a tool to study human cognitive processes includ-
ing reading, viewing pictures or videos, and driving [22]–[24].
Although most state-of-the-art gaze trackers are accurate and re-
liable, they require complex hardware (helmet with a mounted
camera) and/or the user has to be in a fixed position (e.g., with
a chin chest). Few studies use gaze patterns for initiating inter-
action in HRI. Johansson et al. [25] used head pose patterns in
multiparty human–robot team-building interaction. They pre-
sented a data collection apparatus for exploring turn-taking in
three-party human–robot interaction involving objects compet-
ing for attention. Weiddenbacher et al. [26] showed that the
combined information of head pose and eye gaze provides more
effective information.

C. Establishing Communication Channel

Attention attraction (AA) can produce observable behavioral
responses such as eye movements, head movements, or body
orientation. If the target person is attracted by the robot behav-
iors, the target person will turn toward the robot, supporting eye
contact. Several robotic systems establish eye contact by gaze
crossing [27], [28]. Studies show, however, that the gaze cross-
ing action alone may not be enough to establish eye contact.
Gaze awareness is also necessary for humans to feel that they
have made eye contact [29]. Therefore, robots need not only
to detect human gaze but also to accurately display their gaze
awareness for human interpretation. Even if a robot has noticed
that a human is looking at it, eye contact may not be established
if the human is not aware of this fact. The computational agent
should be able to display its awareness explicitly through some
actions (e.g., facial expression, eye blinking, and waving) [30].
Eye blinking by an on-screen agent gives participants a stronger
feeling of being looked at [31]. Herein, we show the effective-
ness of awareness generation by eye blinking action in making
eye contact.

III. HUMAN VISUAL FOCUS OF ATTENTION ANALYSIS

Our main objective is to estimate VFOA and its level for a
given target person when she/he is involved in a task. While
the VFOA is defined by 3-D eye gaze direction, people tend to
look at target objects which are of immediate interest [32]. We
define the VFOA of a target person involved in a task, Ti (T =
{reading, writing, browsing, viewing painting}), where
i = 1 . . . 4, is an element belonging to a finite set of viewable
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TABLE I
SPAN OF VFOA IN MINUTES

Reading Writing Browsing Viewing

Average 2.50 3.25 5.25 2.52
Maximum 3.25 4.50 6.00 3.00
Minimum 1.50 2.00 3.50 1.00

targets, Li . The set Li is composed of different target ob-
ject(s) for different tasks. For example, L1 = {book}, L2 =
{notebook}, L3 = {display, keyboard,mouse}, and
L4 = {paintings} for reading, writing, browsing, and
viewing painting tasks, respectively. We define the loss of
attention when the target person diverts her/his VFOA from the
specified target object. We also measure the span or duration of
the VFOA of the target persons when she/he is involved in a
task.

Humans cannot continue attending to some task and looking
at the same target object and may need to divert their attention.
There may be occasions when they avert their eyes from the cur-
rent target. For example, in reading, they may not concentrate on
looking at the pages when they turn the pages. These occasions
are considered to be opportunities for the robot to try AA. The
span or duration for humans to keep their VFOA may depend
on the task. Thus, we performed observation experiments.

A. Participants and Procedure

We videotaped 18 participants (14 males, mean age 28 years,
standard deviation 4.9) doing four tasks: reading (four partic-
ipants), writing (four), browsing (six), and viewing paintings
(fixing attention on a painting in the room; four). The instruc-
tions were to concentrate on the task. The average recorded
length for each person for reading, writing, browsing, and view-
ing paintings were 9, 9, 8, and 8 min, respectively.

B. Data Collection

Our observation focused on measuring the span of VFOA
on a task and finding the task-related contextual information.
To measure the span of VFOA, we watched the recorded video
data and manually annotated (using pause and restart) the pe-
riod when a participant produces a consistent result on a task
without loss of attention. Loss of attention was detected when
the participant changed her/his current VFOA to another direc-
tion. For reading and writing, participants lost attention when
“turning over the pages” and “stopping writing,” respectively.
For reading, writing, browsing, and viewing paintings, we de-
tected 14, 10, 9, and 12 losses of attention, respectively. From
the duration of these occasions, we estimated the span of VFOA
for each task (see Table I).

From videos, we observed how head direction changed at
the time of loss of attention for different tasks. To measure
the head pose, we used the Seeing Machine faceAPI [33]. The
minimum deviation of the head orientation can be used as a clue
to detect the loss of attention. When humans lost attention from
reading or writing, they mostly changed the tilt angle of their

Fig. 1. (a) Abstract view of the proposed approach. (b) Basic steps of the
proposed approach.

head and then changed the pan angle. The minimum deviation
of tilt angle of the head for reading and writing were 14◦ and
18◦, respectively. However, when browsing, people normally
changed the pan angle of their head to shift their attention to
another direction. In this case, the minimum deviation was 17◦.
When participants attended to a painting, the loss of attention
was detected using either the pan or tilt angle of the head. In
such a case, the minimum deviation of pan and tilt angles were
14◦ and 9◦, respectively.

IV. PROPOSED APPROACH

The proposed approach is illustrated in Fig. 1. In the initiat-
ing interaction module (see Fig. 1(a), left), the robot recognizes
and tracks the target person’s VFOA. If they are initially face-
to-face, the robot generates an awareness signal and makes eye
contact with the target person. Otherwise, the robot tries to at-
tract the target person’s attention by recognizing her/his current
task. The robot detects the level of current VFOA until Ts (where
Ts is the maximum span of sustained VFOA). We use the max-
imum values in Table I in the later experiments. The robot uses
either a low or high level of current VFOA (depending on the
person’s current task) at time t to generate an AA signal (weak
or strong) depending on the viewing situation of her/his shifted
VFOA. A person’s field of view (FOV) is divided into central
and peripheral visions. We represent the viewing situation (re-
lation between the target person’s gaze (face) direction and the
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Fig. 2. Classification of head orientation into five angular regions. The faces
shown from the GTAV Face Database [37].

robot position) by where the robot is seen in the FOV of the
target person. We classify it into the three regions [34]–[36].

1) Central Field of View (CFV): This FOV exists at the center
of the human FOV. This zone is set to a 30◦ cone-shaped
area (75◦ to 105◦ in Fig. 2).

2) Near Peripheral Field of View (NPFV): It is defined as the
45◦ fan-shaped area on both sides of the CFV zone. On
the right side of the CFV (30◦ to 75◦ in Fig. 2) it is defined
as the right near peripheral field of view (RNPFV) and on
the left side (105◦ to 150◦ in Fig. 2) the zone is called left
near peripheral field of view (LNPFV).

3) Far Peripheral Field of View (FPFV): This FOV exists on
both sides at the edge of the human FOV. The right side
of the RNPFV (−35◦ to 30◦ in Fig. 2) is known as right
far peripheral field of view (RFPFV) and on the left side
of the LNPFV (−145◦ to 150◦ in Fig. 2) it is the left far
peripheral field of view (LFPFV).

If the VFOA is detected in CFV/LNPFV/RNPFV, then the
robot generates a head turning action (weak signal). If the de-
tected VFOA is in LFPFV or RFPFV, then the robot generates
a head shaking action (strong signal). Fig. 2 illustrates these
classified regions when the camera is placed in the CFV region.
We define the angular regions based on the detected frontal and
profile faces. For example, in the CFV region, we detect a frontal
face only. In the other regions, we may detect two face patterns
such as a half-pose right profile face and a full-pose right profile
face in the LFPFV region.

When the robot succeeds in attracting the target person’s at-
tention, the communication channel establishment module [right
part of Fig. 1(a)] tries to establish a communication channel with
her/him. The robot determines the level of shifted attention to-
ward it and generates an awareness signal toward the target
person to indicate that it wants to communicate with her/him.
The robot makes eye contact through eye blinking.

A. Recognition of Visual Focus of Attention and Its Level

We are interested in detecting: sustained attention and focused
or shifted attention. Focused or shifted attention is a short-term
response to a stimulus or any other unexpected occurrence. The

span or length of this attention is brief [38], and after a few
seconds, it is likely that the person will look away, return to the
previous task, or think about something else. Sustained attention
is the level of attention that produces consistent results on a task
over time. The duration of sustained attention depends on the
task. We use the following cues to recognize VFOA and estimate
its level.

1) Visual Cues:
a) Head pose: We use the Seeing Machines’s faceAPI to

detect and track the head pose, hp of the target person.
Here, we classify the detected head poses into five angular
regions: hcf v

p , hlnpf v
p , hlf pf v

p , hrnpf v
p , and hrf pf v

p if they
are detected in the CFV, LNPFV, LFPFV, RNPFV, and
RFPFV areas, respectively. The pan, and tilt angles of
head poses are denoted by hp

p , and ht
p , respectively.

b) Head movement: To detect the head movement, hm we use
the optical flow feature [39]. We generate a rectangular
window circumscribing pixels with large flow values. If
the total flow value in the window exceeds a threshold, we
consider that a head movement (hm = 1) cue is detected.

c) Overlapping face window: If a face is detected and overlap
with the most recent head movement window, hm is more
than 50%, we consider that an overlapping face window,
of is detected (of = 1). This detection means that the
target person is turning her/his face toward the robot. Faces
are detected using the Viola-Jones AdaBoost Haar-like
face detector [40].

2) Gaze Pattern: A person’s gaze pattern indicates her/his
object of interest [41]. In general, human gaze patterns are classi-
fied into three viewing categories, distinguished by context [42].
Spontaneous viewing occurs when a person views the scene
without any specific task in mind, i.e., when she/he is “just see-
ing” the scene. Task or scene-relevant viewing appears when
a person views the scene with a particular question or task in
mind (e.g., she/he may be interested in a particular painting in
the museum). Orientation of thought viewing occurs when the
subject is not paying much attention to where she is looking, but
is attending to some “inner thought.” We consider the former
two. The gaze pattern indicates the pattern that is constructed by
considering the effect of both head movements and eye gaze. We
classify gaze pattern using the support vector machine (SVM)
classifier [43].

a) Iris center detection: We use a multistage approach for
detection of the center of the iris. First, the 3-D head tracker [44]
detects the head position Ht and its rectangular area in the
image. Then, based on the head location and its area, we detect
and track the facial feature points using the active shape model
(ASM) [45] [see Fig. 3(b)]. The facial feature points are used to
roughly estimate the eye regions on the face [see Fig. 3(c)]. The
vector field of the image gradients (VFIG) within the eye regions
are used to detect the iris center [red points in the Fig. 3(d)].
Although the facial feature points detected by the ASM model
include the eye center points, their accuracy is not sufficient for
iris center detection as in Fig. 3(b). We propose the VFIG iris
center detection method to detect the iris center [see Fig. 3(d)]
in the eye image as follows.
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Fig. 3. (a) Detected head and its location in the image. (b) Extracted facial feature points. (c) Estimated eye regions based on facial feature points. (d) Detected
iris center within eye area.

Fig. 4. Gaze pattern: (a) Task or scene-relevant viewing. (b) Spontaneous viewing.

Let Ic be the possible iris center and Igi
the gradient vector

at position Ixi
. If Idi

is the normalized displacement vector,
then it should have the same absolute orientation as the gradient
Igi

. We can determine the optimal center Ic
∗ of the iris (darkest

position of the eye) by computing the dot products of Idi
and

Igi
and finding the global maximum of the dot product over the

eye image:

Ic
∗ = argmax

Ic

{
1
N

N∑
i=1

(Idi

T Igi
)
2
}

(1)

where

Idi
=

(Ixi
− Ic)

(||Ixi
− Ic ||2)

(2)

i = 1, . . . , N , and ∀i : ||Igi
||2 = 1. The displacement vector Idi

is scaled to unit length in order to obtain an equal weight for all
pixel positions in the image.

b) Gaze pattern detection: To obtain the gaze pattern Gp ,
we consider the translation movement of the head in the image
and the position change of the iris in the eye. Let H0 indicates the
initial head position and Et be the eye gaze position (relative iris
position in the eye) for tth frame. If THt

indicates the translation
vector of the head movement from H0 , the gaze point, Qt for
the tth frame is determined as follows:

Qt = Et + (H0 + THt
). (3)

Then, Gp = {Q0 , Q1 , . . . , QL−1} denotes the gaze pattern for
L frames. The gaze pattern of a person viewing a particular
point in the scene (task or scene-relevant viewing) is in Fig. 4(a)

and viewing three different points (spontaneous viewing) is in
Fig. 4(b).

c) Feature representation and classification: The feature
vector is represented from the gaze pattern data through normal-
ization using the center of gravity for the pattern. Let us assume
Cm to be the center of gravity and rt to be the Euclidean distance
from Cm to the gaze point Qt :

rt = |Qt − Cm | (4)

where t = 0, 1, . . . , L − 1. We sort the distance values rt into
descending order and construct the feature vector for the clas-
sifier. We use the multiclass SVM classifier to classify the gaze
patterns. To train, we collect gaze data and construct gaze pat-
terns for scene-relevant and spontaneous viewing. The learned
SVM model classifies the gaze pattern into either spontaneous
viewing, Sl or task or scene-relevant viewing, Tl .

To evaluate the performance, we collected 80 gaze pattern
data (40 for the task or scene-relevant viewing and 40 for the
spontaneous viewing) from ten people (from 0.5 to 2 m dis-
tances between the people and the camera). For the task or
scene-relevant viewing, the participants looked at any specific
object in the scene. For the spontaneous viewing, the partici-
pants looked around aimlessly. Our system automatically col-
lected 150 frames per gaze pattern data. We randomly selected
40 samples (20+20) for training the classifier and the rest were
used for testing. Thirty-seven of 40 samples were recognized
correctly (recognition rate of 92.5%).

3) Task Context: The task context is determined by recogniz-
ing the task in which the target person is involved. For instance,
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if the target person is involved in a “reading” task, then the
contextual cue such as “downward head” indicates that her/his
attention is toward the book. However, the “page turn over,”
or “upward the head” indicates that the person loses her/his
attention.

a) Task recognition: Given a video sequence, we extract
the histogram of orientation gradient (HOG) feature [46] for
each frame. The HOG features are combined for ten consecutive
frames to build an HOG feature pattern, HOGP . Thus

HOGP = F0 +
9∑

i=1

|Fi−1 − Fi | (5)

where F0 and Fi are the HOG features of the first and ith frames,
respectively. The first frame captures the human appearance fea-
tures involved in a task, and the rest of the HOG feature frames
indicate the change of behavior pattern in the task. Thus, the
HOGP feature captures the appearance of the task and the task
related behavior. Each bin in the histogram represents the num-
ber of edges with orientation within a given angular range. The
angular range is set to 20◦ and we use unsigned gradients. Thus,
the bin size = 180/20 = 9. With this bin size, we create the
HOGP feature vector of size 90. A multiclass SVM [43] is
learned using our HOGP feature. In detection, we use the SVM
classifier in the recognition mode. We use the dataset as de-
scribed in Section III-A to divide training and test videos for the
different tasks. The classification system generates training/test
samples from the training/test videos by taking ten successive
frames for each sample. The classifier is trained using 8270 sam-
ples for the four different tasks. To evaluate the performance, we
use 10275 test samples from the same dataset for the four dif-
ferent tasks. Among them, 9601 samples are correctly detected
with 93.4% accuracy.

b) Contextual cues: After recognizing the task (or current
VFOA) of the target person, we use the related contextual cues
of the task to recognize the level of attention. For each task, we
use the task related VFOA span (Ts) to determine how long the
robot should wait or within which period of time the robot in-
teracts with the target person. We also define some task specific
cues to determine the level of attention. With reading, we use
the page turn over, Pt , and deviation in tilt angle, dht

p
cues to

measure the LVFOA. For writing, LVFOA is estimated using
stop writing, Ws , and dht

p
cues. For browsing, we use deviation

in pan angle, dhp
p

to determine the LVFOA. For viewing paint-
ings, dht

p
, and dhp

p
cues are used for estimating LVFOA. Page

turn over, and stop writing cues are detected using a threshold
value for the resultant magnitude of the optical flow pattern.
The positions of these cues are determined with respect to the
relative position of the person’s body. The body-tracking system
is described in [47]. A threshold value of 100 is set to detect the
page turn over. If the resultant magnitude is approximately 0 (in
the experiment we set it 2) for ten consecutive frames, then the
stop writing behavior is detected. We consider ten consecutive
frames because people may stop their “writing motion” for a
moment without shifting attention. The threshold values are set
experimentally on a trial-and-error basis from the dataset in Sec-
tion III-A. We evaluated the system on this dataset to detect the

TABLE II
PERFORMANCE OF THE SYSTEM FOR RECOGNIZING THE LEVEL OF VFOA

(CORRECTLY RECOGNIZED SAMPLES/TOTAL NUMBER OF SAMPLE)

Loss of VFOA High VFOA False positive False negative

Reading 11/14 15/15 0 3
Writing 8/10 10/11 1 2
Browsing 8/9 9/11 2 1
Viewing 10/12 12/13 1 2
Avg. accuracy 82.2% 92.0% 11.1% 16.0%

loss of attention (low VFOA) using task context. The loss of at-
tention period in the video data are annotated manually with the
start and end frame numbers. We assumed the loss of attention
as positive samples. Among 45 cases of loss of attention in the
four different tasks, our system detected it 37 times correctly
with a detection rate of 82.2%. We calculated the true nega-
tive, false positive, and false negative of the system. Here the
true negative indicates a high LVFOA on a task. Table II shows
the performance of the system for determining the positive and
negative samples.

B. Level of Sustained Visual Focus of Attention

The level of VFOA is classified into two categories (low or
high) based on the contextual cues, and gaze pattern. When
the level of attention goes low, the system assumes that a loss
of VFOA is detected. For different tasks, the attention level is
detected as follows:

SAL,read ← Sl ∨ Pt ∨ (dht
p
≥ 14◦) (6)

SAL,write ← Sl ∨ Ws ∨ (dht
p
≥ 18◦) (7)

SAL,browse ← Sl ∨ (dhp
p
≥ 17◦) (8)

SAL,viewing ← Sl ∨ (dhp
p
≥ 14◦) ∨ (dht

p
≥ 9◦). (9)

Sl indicates spontaneous viewing. If spontaneous viewing is
detected then it is assumed that the person has no particular
attention on a task. Thus, a low attention level is detected. For
reading and writing tasks, in addition to head pose changes,
we consider the “page turn over,” Pt , and “stop writing,” Ws ,
behaviors for detection of low attention level. For (6)−(9), if
the specific head pose changes and stability is greater than or
equal to three frames, then the level of attention is low for the
corresponding task. Otherwise, the attention level is high, and
the current attentional focus remains on the task. The thresh-
old values for different head poses in (6)−(9) are determined
through human-based experiment (see Section III-B).

C. Detection of Focused/Shifted Attention

Focus/shifted attention is detected in two phases. First, to at-
tract the target person’s attention, the robot detects focus/shifted
attention from sustained VFOA. Second, after sending an AA
signal, the robot needs to detect focus/shifted attention toward
it.

1) Shifted Attention from Sustained VFOA: To initiate a po-
lite social interaction, the robot should attract the target person’s
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attention depending on her/his current sustained VFOA. The
robot first detects the loss of sustained VFOA of the target person
using one of (6)−(9). In some cases, such as reading, writing,
and browsing, the robot attracts the target person’s attention
when her/his sustained LVFOA is low. However, for viewing
paintings the robot attracts attention when her/his sustained LV-
FOA is high. After attracting attention, the robot detects the
shifted VFOA of the target person. Depending on the environ-
mental factors and the target person’s mental focus, the sustained
VFOA can shift into one of the five regions: CFV, LNPFV, LF-
PFV, RNPFV, and RFPFV. The shifted VFOA region is detected
using the pan angle of head pose, hp

p .
2) Focused/Shifted Attention Toward the Robot: The detec-

tion of focused/shifted attention toward the robot is an important
cue for the robot to make eye contact with the target person. If
the robot and the target person are not facing each other, then
the robot sends some AA signal and waits for her/his attention
toward it. When the target person shifts or turns her/his atten-
tion toward the robot, it needs to detect focused/shifted attention
toward it. To make successful eye contact, the robot classifies
the level of focused/shifted attention into three categories: Low,
Medium, and High. The robot sends an AA signal toward the tar-
get person and analyzes the input video images frame-by-frame
to detect whether the target person is moving toward it. If the
target person is turning to look at the robot from her/his current
focus of attention, then some contiguous hm windows will be
detected surrounding the head. Depending on the detected vi-
sual cues (see Section IV-A), the level of focused/shifted VFOA
is classified according to the following.

When none of the visual cues are detected except for head
movement as in (10), we assume that the focused/shifted atten-
tion level is low, FAL :

FAL ← ((Nhm
≥ 1) ∧ (of = 0) ∧ (Nfs

≤ 1)

∧(hp
p 
= CFV)

)
(10)

where Nhm
is the number of contiguous head movement win-

dows in the subsequent frames (in frames), of indicates whether
any overlapping window is detected (1) or not (0), hp

p is the es-
timated pan angle of head pose, and Nfs

is the face stability
detection result in the subsequent frame (in frames) after detec-
tion of the overlapping window.

If the head movement is detected with an overlapping window
of face within the contiguous head movement area, the level of
attention is medium, FAM :

FAM ← ((Nhm
≥ 5) ∧ (of = 1) ∧ (Nfs

≤ 1)

∧(hp
p = CFV/LNPFV/RNPFV)

)
. (11)

When the visual cues are successfully detected and stable, we
assign the high level of attention, FAH :

FAH ← ((Nhm
≥ 5) ∧ (of = 1) ∧ (Nfs

≥ 5)

∧(hp
p = CFV)

)
. (12)

When all conditions on the right-hand side of (10)−(12) are
satisfied, the corresponding level of attention is detected. The
detected level of attention is used in the subsequent awareness

generation, and making successful eye contact. Based on [3],
different threshold values for parameters Nhm

, of , and Nfs
in

the (10)−(12) are fixed manually.

D. Initiating Interaction Based on Visual Focus of Attention

In polite social interaction, humans usually raise or turn their
head first toward the person with whom they would like to
communicate. However, if the target person’s attentional focus
toward a task is high, humans try with stronger actions (e.g.,
turning head more than once, waving the hand, coming closer
to the person and turning the head, or even using voice) to at-
tract her/his attention. Robots should use the same conventions.
In this research, the robot detects the target person’s level of
sustained VFOA and the region of shifted VFOA to choose the
appropriate control signal. We chose the head turning action
(to look at the person) as the weak signal when the sustained
VFOA attention level is low and the shifted VFOA is in the
either CFV/LNPFV/RNPFV area. We use the head shaking ac-
tion when the sustained VFOA attention level is low and the
shifted VFOA is in the LFPFV/RFPFV area. We also use the
head shaking action when the sustained VFOA level is high
and the robot needs to attract the attention of the target person.
We use the head shaking action as a strong AA signal because
abrupt object motion draws people’s attention [48]. See [49]
for a detailed description of the cues. The visual stimuli by the
robot’s nonverbal behaviors cannot affect a person if she/he is
in a position where she/he cannot see the robot action. Thus, we
do not consider situations when the shifted VFOA is in the out
of the FOV area.

E. Establishing Communication Channel

To establish a communication channel, the robot needs to
make the person notice that it is looking at her/him. The robot
should be able to display its awareness through some actions
(for example, facial expressions, eye blinking, or nodding). We
adopt eye blinking to create such awareness since it is one of the
most important cues for forming a person’s impressions [30].
These actions are designed to evoke the target person’s sense of
being looked at by the robot.

a) Eye blinks: If the robot successfully attracts the target per-
son’s attention, or she/he notices the robot’s action, she/he will
direct her/his gaze at the robot. The robot recognizes her/his face
while she/he is looking at it. After detecting the face stability of
the target person, (i.e., FAH = 1), the robot starts blinking its
eyes about three times (1 blink/s) to establish a communication
channel. Eye blinks are produced by rapid closing and opening
of the eyelid of the CG images, and displayed through the LED
projector onto the robot’s eyes.

V. EVALUATION

We conducted an experiment using our static robot head for
four different tasks. We then implemented the proposed system
into a commercial robot.
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Fig. 5. Experimental robotic platform.

Fig. 6. (a) Experimental scene. (b) Success rate of the system.

A. Static Robotic Head Interaction

The proposed human–robot interaction scenario based on the
level of VFOA of the target human was implemented on a static
robot head. We conducted experiments to verify that the pro-
posed system caused less disturbances and was more successful
at initiating interactions with the target while she/he was in-
volved in some task.

1) Methods:
a) Participants: The 24 unpaid participants (19 males)

were students at Saitama University (mean age 30.7 years and
standard deviation 5.4).

b) Apparatus: Fig. 5 shows an overview of our robotic
platform [50].

The system includes the head detection and tracking, situation
recognition, body tracking, face detection, eye blinking, pan-
tilt unit control, VFOA detection, and shifted/focused attention
detection modules.

c) Procedure: The participants were asked to pay atten-
tion to their tasks and wore headphones with music to avoid
the sound effect of the pan-tilt movement of the robot. We used
two video cameras to capture all interactions. Fig. 6(a) shows
the experimental environment. For viewing paintings, the simple
head turning action fails if the robot exists in the LFPFV/RFPFV
area because the robot tried to attract attention when people were

focusing their attention on the paintings. Thus, in this case, we
placed the robot in LNPFV area of the visitor.

d) Independent measures:
1) Intelligent attention control robot (IACR). The robot de-

termines the level of attention to the current task and
considers the situation of the target person. For reading,
writing, and browsing, the robot attracts attention when
the target person loses her/his attention on the task (i.e.,
sustained VFOA is low). For viewing painting, the robot
attracts attention when the target person focuses her/his
attention on the task (i.e., sustained VFOA is high). The
robot sends the head turning action when the attention is
shifted to either CFV/LNPFV/RNPFV region. However,
if the attention is shifted to LFPFV/RFPFV region, then
the robot uses the head shaking action.

2) Simple attention control robot (SACR). This robot does
not consider the target person’s VFOA. After detecting
the target person, the robot tries to attract her/his attention.
When the target participant is involved in a task, after 5–
30 s, we start the experimental robot. The body-tracking
module of the robot immediately detects the target per-
son and tries to attract her/his attention. The robot uses
two types of AA signals. If the head turning fails, then
the robot uses the head shaking action to attract her/his
attention.

e) Dependent measures:
1) Impression of the robots: Participants filled out a four item

questionnaire for each condition (after two interactions).
The measurement was a rating on a Likert scale of 1 to
7 (1: Strongly disagree, 2: Disagree, 3: Somewhat dis-
agree, 4: Neither agree nor disagree, 5: Somewhat agree,
6: Agree, 7: Strongly agree). The questions were: Did
you feel that the robot attracted your attention? Was the
robot’s interruption acceptable to you for attracting your
attention? Did the robot’s interruption to attract your at-
tention disturb you? Did you make eye contact with the
robot?

2) Success rate: We counted the number of times the tar-
get participants looked at the robot after AA actions. We
counted the number of times that the robot was successful
in detecting attracted attention from the participants.

f) Data analysis: Our hypotheses were the following:
1) The proposed method (IACR) outperforms the other

(SACR) in attracting the participant’s attention toward
the robot.

2) The proposed method is more acceptable than SACR in
attracting the participant’s attention.

3) The proposed method creates less disturbance than SACR
in attracting the participant’s attention.

4) The proposed method outperforms SACR in establishing
a communication channel.

Participants were divided into four groups and asked to do the
task assigned to each group: reading (12 participants), writing
(four), browsing (four), and viewing paintings (four participants;
each participant was asked to randomly fix her/his attention on
a painting in the environment). The order of all experimental



672 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 45, NO. 6, DECEMBER 2015

TABLE III
QUESTIONNAIRE RESULTS WHERE 7 IS STRONGLY AGREE

Questionnaire (detailed IACR SACR
are in Section V-A1e) Median Mode Median Mode

Robot attracted your attention? 6 6 3 3
Robot’s interruption acceptable? 6 6 3 2
Robot’s interruption disturbed you? 3 3 4.5 5
Did you make eye contact with robot? 6 6 3.5 3

trials was counterbalanced. We use the Wilcoxon signed rank
test to test the above hypotheses.

2) Results:
a) Impression: The questionnaire results are shown in Ta-

ble III.
IACR is more effective in attracting attention than SACR

(Z = −4.136, p < 0.001, neg. rank = 11.5, pos. rank = 0.0).
The result supports hypothesis 1. The robot’s interruption time
to attract the target participant’s attention was more appropriate
and acceptable (Z = −4.208, p < 0.001, neg. rank = 12.89,
pos. rank = 3.5). The result verifies hypothesis 2. The partic-
ipants felt less disturbed when the robot considered her/his
attention for interaction behaviors (Z = −4.194, p < 0.001,
neg. rank = 5.00, pos. rank = 12.83). The result supports hy-
pothesis 3. The proposed method is more effective for es-
tablishing a communication channel (Z = −4.047, p < 0.001,
neg. rank = 11.0, pos. rank = 0.0). The result supports hypoth-
esis 4.

b) Success rate: Fig. 6(b) shows the success rate of our
system for two types of robotic behaviors. A two-tailed Z test of
proportions (Z = 3.837, p < 0.001) showed that the proposed
robot, IACR (87.5%, 21 times attracted the attention of the target
participant among 24 trials) is significantly more successful
than SACR (33.3%, eight times attracted the attention of target
participant among 24 trials) in attracting the target participants’
attention. In the eye contact stage, there were no significant
differences. However, since the overall success of eye contact
depends on the success rate of the AA stage, the results revealed
that the proposed method is better in making eye contact with
the target participant.

B. Robovie-R3 in a Museum Scenario

We conducted an experiment to verify that the proposed sys-
tem is useful to initiate interaction between visitors and the
robot in a museum scenario. We assumed that a visitor observes
paintings in a museum and fixes her/his attention at a particular
painting after a few moments. The robot is situated far from the
paintings; therefore, it may not interfere with the visitor’s move-
ment and attention. When the robot detects a high attention level
of the visitor, it classifies her/his head orientation to select from
which side or position the robot should initiate interaction. The
robot classifies the visitor’s head orientation into five angular
regions: LFPFV, LNPFV, CFV, RNPFV, and RFPFV. Then, the
robot selects a suitable motion path and position for initiating
interaction (see Fig. 7).

Fig. 7. Robot’s position for interaction: (a) Robot selects the left-side inter-
action path when the visitor’s orientation of attention is detected in the LNPFV
area. (b) Robot selects the right-side interaction path when the visitor’s orienta-
tion of attention is detected in the RNPFV area.

Fig. 8. (a) Experimental environment. (b) Original Robovie-R3’s eyes. (c)
Replaced eyes for gaze communication. (d) Position of the camera for eye
contact detection.

1) Methods:
a) Participants: The 12 unpaid participants (ten males)

were students at Saitama University (mean age 29.7 years and
standard deviation 4.8).

b) Apparatus: We hung six paintings (P1–P6) on the wall
at the same height [see Fig. 8(a)]. These paintings were placed
to make participants look in various locations and fix VFOA
to a particular painting from a fixed standing position. A USB
camera (Logicool) was located on the top of the painting (P3)
to detect the visitor’s gaze and head orientation. Paintings P2,
P3, and P4 were placed in the LNPFV, CFV, and RNPFV ar-
eas, respectively. If the robot is present in front of a visitor,
she/he may be attracted by the robot even though it does not
perform any action due to its human-face like appearance [51].
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Fig. 9. Snapshots of the experimental scene.

Thus, the robot (Robovie-R3) was situated behind the visitor
[see Fig. 8(a)] far from the paintings so that the robot might
not interfere with her/his attention. We replaced the Robovie-
R3 eyes [see Fig. 8(b)] with the computer graphics generated
projected eyes for gaze communication, because it was shown
to be effective for gaze communication [52] [see Fig. 8(c)]. To
confirm eye contact of the visitor with the robot when it turns
its head toward the visitor, we put a USB camera in the lower
side of the robot head [see Fig. 8(d)]. We designed two possible
motion paths to move the robot autonomously toward the visitor
and settle it at a suitable position for initiating interaction with
her/him depending on her/his orientation of attention.

c) Procedure: In the interaction scenario, each participant
was asked to stand in a fixed position, to freely move her/his
gaze and head orientation among the paintings, and finally to
fix her/his attention to picture P2, P3, or P4 (see Fig. 9). The
robot determined the visitor’s gaze pattern, gaze point, and head
orientation. For simplicity, among five head orientation regions
(see Section V-B), we considered only three categories of the
visitor’s head orientation: RNPFV (when the visitor looks at the
picture P4), CFV (when the visitor looks at the picture P3), and
LNPFV (when the visitor looks at the picture P2). When the
robot detects the visitor’s orientation of attention in the LNPFV
or RNPFV region, then the robot selects the left-side or right-
side interaction path and position. However, when the robot
detects visitor’s orientation of attention in the CFV zone, then
the robot can select either right-side or left-side interaction path
and position. We changed the motion path and orientation of
attention so that each participant experienced 6 trials. In each
trial, the robot tried to select the appropriate motion path and
position and to attract the participant’s attention by moving its
head toward her/him, because head movement is an effective
cue for attracting the attention of the target human [35]. Two
video cameras were used to capture all interactions.

d) Independent measures: Two methods were considered.
1) Method 1 (M1): To initiate interaction with the visitor,

the robot selects the motion path based on the visitor’s
orientation of attention so that the robot and the visitor
can be face-to-face.

2) Method 2 (M2): The robot appears from the opposite
direction of the visitor’s orientation of attention in the
LNPFV or RNPFV area cases.

e) Dependent measures:
1) Visitors’ impression: We asked participants to fill out a

questionnaire for each method (after interactions). The
measurement was a rating on a Likert scale of 1 (strongly

TABLE IV
VISITOR’S IMPRESSION FOR QUESTIONNAIRE 1 (Q1)

Picture-2 (P2) Picture-3 (P3) Picture-4 (P4)

M1 M2 M1 M2 M1 M2

Median 6.5 5 6 5.5 6 4.5
Mode 7 5 6 6 6 4
Z −2.831 −1.930 −2.609
P − value 0.005 0.054 0.008
neg. rank 5.50 4.17 5.67
pos. rank 0.0 3.0 3.5

TABLE V
VISITOR’S IMPRESSION FOR QUESTIONNAIRE 2 (Q2)

Picture-2 (P2) Picture-3 (P3) Picture-4 (P4)

M1 M2 M1 M2 M1 M2

Median 6 5 6 6 6 5
Mode 6 5 6 6 6 4
Z −2.836 −1.897 −2.687
P − value 0.005 0.058 0.007
neg. rank 5.50 4.08 5.0
pos. rank 0.0 3.5 0.0

disagree) to 7 (strongly agree). The questionnaire had two
subjective questions:

a) Q1: Did you feel that you made eye contact with the
robot during the initiation of interaction?

b) Q2: Did you think that the robot’s approach was
effective for initiating an interaction?

2) Success rate: From the videos and experimental site, we
observed how many times the robot detected the visitor’s
gaze point and established a successful interaction. The
success rate was measured by the ratio of the number of
successful interactions to the total number of attempts that
the robot made.

f) Data analysis: The experiment was performed in a
within-participant design, and the order of all experimental tri-
als was counterbalanced. We compared the Likert scale data of
questionnaire measures using the Wilcoxon signed rank test.

2) Results:
a) Impression: Subjective measures for both Method 1

and Method 2 are shown in Tables IV and V, respectively. We
considered three different gaze points when the visitor was look-
ing at pictures P2, P3, and P4 and compared the interaction
impression with the robot.

For questionnaire Q1 (see Table IV), the differences between
the two methods (M1 and M2) were statistically significant when
the visitors looked at picture P2 (Z = −2.831, and p < 0.01).
For picture P4, the differences between two methods were also
statistically significant (Z = −2.609, and p < 0.01). For picture
P3, we did not find any significant differences. Thus, for making
a successful eye contact during interaction initiation, the robot
should select the left-side and right-side motion path when the
visitor looks at picture P2 and P4, respectively. However, when
the visitor looks at picture P3, the robot may select either the
left-side or right-side motion path for making eye contact.
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For questionnaire Q2 (see Table V), the Wilcoxon signed
rank test shows significant differences when the visitors looked
at picture P2 (Z = −2.836 and p < 0.01). For picture P4, the
differences were also statistically significant (Z = −2.687, and
p < 0.01). For picture P3, no significant differences were found.
Thus, for initiating an interaction scenario, the robot should
select the left-side and right-side motion path when the visitor
looks at picture P2 and P4, respectively. When the visitor looks
at picture P3, the robot may select either the left-side or right-
side motion path.

b) Success rate: Each visitor experienced three trials as
the target for each method. We observed a total of 72 interactions
(12 × 3 × 2). Among 72 interactions, our system was able to
detect 66 times the visitor’s gaze point and make a successful
interaction at a rate of 91.7%. The proposed system is effective
for initiating interaction with visitors.

VI. DISCUSSION

We developed a robot that can attract the attention of a partic-
ular person and establish a communication channel with her/him
depending on her/his LVFOA. The proposed method is effec-
tive in initiating an interaction process to a target person in
terms of initially attracting her/his attention, and establishing a
communication channel with her/him. Our results with a com-
mercial robot (Robovie-R3) in a museum scenario confirms the
proposed method is making polite and successful interaction.

A robot naturally initiating interaction to control someone’s
attention is one of the major capabilities to be implemented in
social robots. In the real world robots may wait for people to
approach them, which is one strategy for robots to initiate in-
teraction. Alternatively, robots can proactively approach people
to initiate interaction. In this research we have implemented the
proposed system in a museum scenario.

The current system has the following limitations. First of
all, it needs cameras in the environment to observe people’s
gaze patterns. This may be acceptable in the museum scenario.
However, this should be modified so that it can be used in
various situations. Present robots make loud noises when they
move. If they move, they attract people’s attention and interrupt
their work. Thus, in our experiments, we asked the participants
to wear headphones with music to mitigate these noise effects.
However, if such robots were developed to move as quietly as
humans, they could move to positions where it could more easily
observe the target person with onboard cameras. The robot can
first estimate attention level by human head movements and
other actions of the body from a fixed position. If the robot is
not sure about the attention level of the human subjects, it can
move to obtain more precise information.

We use a constant value for the maximum span of sustained
VFOA, Ts . This is the maximum time span that the robot will
wait if people do not show their low attention level or the robot
cannot detect their low attention level. People often exhibit a
low attention level before this time. Thus, if we set it to be large
enough as we did in the experiments, there would be no serious
problems. However, it would be better if Ts could be adjusted
depending on the situation. Humans determine the maximum

waiting time by taking account of various factors. If the person
seems to be really concentrating on her/his current work, we
may wait longer. However, if we cannot wait too long, we may
interrupt.
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“Joint attention by gaze interpolation and saliency,” IEEE T. Cybernetics,
vol. 43, no. 3, pp. 829–842, Jun. 2013.

[5] A. M. Sabelli, T. Kanda, and N. Hagita, “A conversational robot in an
elderly care center: an ethnographic study,” in Proc. 6th Int. Conf. Human-
Robot Interaction, 2011, pp. 37–44.

[6] S. R. H. Langton, R. J. Watt, and V. Bruce, “Do the eyes have it? cues
to the direction of social attention,” Trends Cognitive Sci., vol. 4, no. 2,
pp. 50–58, 2000.

[7] S. O. Ba and J.-M. Odobez, “Multiperson visual focus of attention from
head pose and meeting contextual cues,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 1, pp. 101–116, Jan. 2011.

[8] D. Das, Y. Kobayashi, and Y. Kuno, “Attracting attention and establishing
a communication channel based on the level of visual focus of attention,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2013, pp. 2194–2201.

[9] P. Smith, M. Shah, and N. da Vitoria Lobo, “Determining driver visual
attention with one camera,” IEEE Trans. Intell. Transp. Syst., vol. 4,
no. 4, pp. 205–218, Dec. 2003.

[10] Y. Matsumoto, T. Ogasawara, and A. Zelinsky, “Behavior recognition
based on head-pose and gaze direction measurement,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2000, pp. 2127–2132.

[11] R. Stiefelhagen, M. Finke, J. Yang, and A. Waibel, “From gaze to focus of
attention,” in Proc. 3rd Int. Conf. Visual Inf., Inf. Syst., 1999, pp. 761–768.

[12] S. Asteriadis, K. Karpouzis, and S. D. Kollias, “Robust validation of visual
focus of attention using adaptive fusion of head and eye gaze patterns,” in
Proc. IEEE Int. Conf. Comput. Vision Workshops, 2011, pp. 414–421.

[13] S. Asteriadis, K. Karpouzis, and S. D. Kollias, “Visual focus of attention
in non-calibrated environments using gaze estimation,” Int. J. Comput.
Vision, vol. 107, no. 3, pp. 293–316, 2014.

[14] J. S. Babcock and J. B. Pelz, “Building a lightweight eyetracking head-
gear,” in Proc. Symp. Eye Tracking Res. Appl., 2004, pp. 109–114.

[15] R. Vertegaal, R. Slagter, G. C. van der Veer, and A. Nijholt, “Eye gaze
patterns in conversations: There is more the conversational agents than
meets the eyes,” in Proc. SIGCHI Conf. Human Factors Comput. Syst.,
2001, pp. 301–308.

[16] S. O. Ba, H. Hung, and J.-M. Odobez, “Visual activity context for focus
of attention estimation in dynamic meetings,” in Proc. IEEE Int. Conf.
Multimedia Expo, Jun. 28–Jul. 2, 2009, pp. 1424–1427.

[17] M. Voit and R. Stiefelhagen, “Deducing the visual focus of attention from
head pose estimation in dynamic multi-view meeting scenarios,” in Proc.
10th Int. Conf. Multimodal Interfaces, Oct. 20–22 2008, pp. 173–180.

[18] R. Vertegaal, J. Shell, and S. Lahlou, “Attentive user interfaces: the surveil-
lance and sousveillance of gaze-aware objects,” Soc. Sci. Inf., vol. 47,
no. 2, pp. 275–298, 2008.

[19] C. Yu, P. W. Schermerhorn, and M. Scheutz, “Adaptive eye gaze patterns
in interactions with human and artificial agents,” TiiS, vol. 1, no. 2, p. 13,
2012.

[20] B. Mutlu, T. Shiwa, T. Kanda, H. Ishiguro, and N. Hagita, “Footing in
human-robot conversations: how robots might shape participant roles



DAS et al.: SUPPORTING HUMAN–ROBOT INTERACTION BASED ON THE LEVEL OF VISUAL FOCUS OF ATTENTION 675

using gaze cues,” in Proc. Int. Conf. Human-Robot Interaction, 2009,
pp. 61–68.

[21] M. Staudte and M. W. Crocker, “Visual attention in spoken human-robot
interaction,” in Proc. Int. Conf. Human-Robot Interaction, 2009, pp. 77–
84.

[22] Z. Kang and S. J. Landry, “Eye movement analysis of a multielement
target tracking task: Maximum transition-based agglomerative hierarchi-
cal clustering algorithm,” IEEE Trans. Human-Mach. Syst., vol. 45, no. 1,
pp. 13–24, Feb. 2015.

[23] R. J. K. Jacob, “The use of eye movements in human-computer interaction
techniques: What you look at is what you get,” ACM Trans. Inf. Syst.,
vol. 9, no. 2, pp. 152–169, 1991.

[24] L. Fletcher and A. Zelinsky, “Driver inattention detection based on
eye gaze - road event correlation,” Int. J. Robot. Res., vol. 28, no. 6,
pp. 774–801, 2009.

[25] M. Johansson, G. Skantze, and J. Gustafson, “Head pose patterns in mul-
tiparty human-robot team-building interactions,” in Proc. 5th Int. Conf.
Social Robotics, 2013, pp. 351–360.

[26] U. Weidenbacher, G. Layher, P. Bayerl, and H. Neumann, “Detection of
head pose and gaze direction for human-computer interaction,” in Proc.
Int. Tut. Res. Conf. Perception Interactive Technol., 2006, pp. 9–19.

[27] T. Kanda, H. Ishiguro, T. Ono, M. Imai, and R. Nakatsu, “Develop-
ment and evaluation of an interactive humanoid robot ‘robovie’,” in
Proc. IEEE Int. Conf. Robot. Autom., Washington, DC, USA, 2004,
pp. 1848–1855.

[28] B. Mutlu, J. K. Hodgins, J. Forlizzi, and T. Shiwa, “A stroytelling robot:
Modeling and evaluation of human-like gaze behavior,” in Proc. IEEE-
RAS Int. Conf. Humanoid Robots, 2006, pp. 518–523.

[29] M. V. Cranch, The Role of Orienting Behavior in Human Interaction,
A. H. Esser, Ed. New York, NY, USA: Plenum Press, 1971.

[30] K. Takashima, Y. Omori, Y. Yoshimoto, Y. Itoh, Y. Kitamura, and
F. Kishino, “Effects of avatar’s blinking animation on person impres-
sions,” in Proc. Graphics Interface, May 28–30, 2008, pp. 169–176.

[31] Y. Yoshikawa, K. Shinozawa, and H. Ishiguro, “Social reflex hypothesis
on blinking interaction,” in Proc. 29th Annu. Conf. Cognitive Sci. Soc.,
Nashville, TN, USA, Aug. 1–4, 2007, pp. 725–730.

[32] M. Hayhoe and D. Ballard, “Eye movements in natural behavior,” Trends
Cognitive Sci., vol. 9, no. 4, pp. 188–194, 2005.

[33] Facetrackingapi version 3.2.6, Seeing Machines Limited, Tucson, AZ,
USA, Aug. 2010.

[34] M. M. Hoque, D. Das, T. Onuki, Y. Kobayashi, and Y. Kuno, “An integrated
approach of attention control of target human by nonverbal behaviors of
robots in different viewing situations,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2012, pp. 1399–1406.

[35] M. M. Hoque, T. Onuki, Y. Kobayashi, and Y. Kuno, “Effect of robot’s gaze
behaviors for attracting and controlling human attention,” Adv. Robot.,
vol. 27, no. 11, pp. 813–829, 2013.

[36] C. Ware, Information Visulization: Perception for Design. San Francisco,
CA, USA: Morgan Kaufmann, 2004.

[37] F. Tarrés, (2013, Mar.). “GTAV face database.” [Online]. Available:
http://gps-tsc.upc.es/ GTAV/ ResearchAreas /UPCFaceDatabase /GTAVF
aceDatabase.htm

[38] D. Cornish and D. Dukette, The Essential 20: Twenty Components of an
Excellent Health Care Team. Pittsburgh, PA, USA: Dorrance Publishing,
2010.

[39] S. S. Beauchemin and J. L. Barron, “The computation of optical flow,”
ACM Comput. Surv., vol. 27, no. 3, pp. 433–467, 1995.

[40] P. A. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.
Comput. Vision, vol. 57, no. 2, pp. 137–154, 2004.

[41] A. J. Glenstrup and T. Engell-Nielsen, “Eye controlled media: Present and
future state,” Ph.D. dissertation, Dept. Inf. Psychol., Univ. Copenhagen,
København, Denmark, 1995.

[42] D. Kahneman, Attention and Effort, A. H. Esser, Ed. Englewood Cliffs,
NJ: Prentice-Hall, 1973.

[43] T. Joachims, “Making large-scale support vector machine learning practi-
cal,” in Advances in Kernel Methods. Cambridge, MA, USA: MIT Press,
1999.

[44] Y. Kobayashi, D. Sugimura, Y. Sato, K. Hirasawa, N. Suzuki, H. Kage,
and A. Sugimoto, “3d head tracking using the particle filter with cascaded
classifiers,” in Proc. Brit. Mach. Vision Conf., 2006, pp. 37–46.

[45] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape
models-their training and application,” Comput. Vision Image Under-
standing, vol. 61, no. 1, pp. 38–59, 1995.

[46] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern
Recog., 2005, pp. 886–893.

[47] Y. Kobayashi and Y. Kuno, “People tracking using integrated sensors for
human robot interaction,” in Proc. IEEE Int. Conf. Ind. Technol., Ann
Arbor, MI, USA, Mar. 14–17, 2010, pp. 1597–1602.

[48] W. James, The Principles of Psychology. New York, NY, USA: Dover,
1950.

[49] M. M. Hoque, T. Onuki, D. Das, Y. Kobayashi, and Y. Kuno, “Attracting
and controlling human attention through robot’s behaviors suited to the
situation,” in Proc. Int. Conf. Human-Robot Interaction, Mar. 5–8, 2012,
pp. 149–150.

[50] M. M. Hoque, D. Das, T. Onuki, Y. Kobayashi, and Y. Kuno, “Model for
controlling a target human’s attention in multi-party settings,” in Proc.
IEEE RO-MAN, 2012, pp. 476–483.

[51] P. Downing, C. Dodds, and D. Bray, “Why does the gaze of others direct
visual attention,” Vis. Cog., vol. 11, no. 1, pp. 71–79, 2004.

[52] T. Onuki, T. Ishinoda, E. Tsuburaya, Y. Miyata, Y. Kobayashi, and Y. Kuno,
“Designing robot eyes for communicating gaze,” Interaction Studies,
vol. 14, no. 3, pp. 451–479, 2014.

Dipankar Das received the B.Sc. and M.Sc. degrees
in computer science and technology from the Univer-
sity of Rajshahi, Rajshahi, Bangladesh, in 1996 and
1997, respectively, and the Ph.D. degree in science
and engineering from Saitama University, Saitama,
Japan, in 2010.

He is currently a Professor with the Department of
Information and Communication Engineering, Uni-
versity of Rajshahi. His research interests include ob-
ject recognition and human–computer interaction.

Md. Golam Rashed is currently working toward the
Ph.D. degree in engineering from the Computer Vi-
sion Laboratory, Saitama University, Saitama, Japan.

He is a Faculty Member (on study leave) with
the Department of Information and Communica-
tion Engineering, University of Rajshahi, Rajshahi,
Bangladesh. His research interests include robotics
and human–robot interaction.

Yoshinori Kobayashi received the Ph.D. degree from
the Graduate School of Information Science and
Technology, the University of Tokyo, Tokyo, Japan,
in 2007.

He is currently an Associate Professor with
the Graduate School of Science and Engineering,
Saitama University, Saitama, Japan. His research in-
terests include computer vision for human sensing
and its application to human–robot interaction.

Yoshinori Kuno (M’80) received the B.S., M.S., and
Ph.D. degrees in electrical and electronics engineer-
ing from the University of Tokyo, Tokyo, Japan, in
1977, 1979, and 1982, respectively.

After working with Toshiba Corporation and Os-
aka University, since 2000, he has been a Profes-
sor in the Department of Information and Computer
Sciences, Saitama University, Saitama, Japan. His re-
search interests include computer vision and human–
robot interaction.


