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<Summary> Spatial descriptions are one of the most effective methods to enable interlocutors to identify which object 

is being discussed in discourse. In this paper, we propose a framework that can identify an object whose positional 

relation with another object is indicated verbally by a human. To this end, we construct a spatial knowledge ontology. 

The ontology is enriched by Description Logic (DL) of concepts, which allows discovering hidden knowledge. We also 

propose a Spatial Object Dataset that is specifically tailored for our experiments with ontological structures. The dataset 

currently contains 130 objects and in total of 720 images for object recognition and 360 scenes for spatial recognition. 

Preliminary experimental results confirmed that the system was able to correctly recognizes human descriptions and 

identify unknown objects and that understanding human spatial descriptions is efficient for human-machine interaction. 
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1. Introduction 

Spatial knowledge is ubiquitous in human 

communications. The comprehension and conveying shared 

information allow us learning new objects in a novel scene. 

However, this remarkable ability has still proven to be 

elusive task for visual object identification models. Unlike 

humans that can contiguously update the knowledge, it is 

impossible for robots to know all the objects that exist in the 

world. Robots may encounter new objects or recognize 

objects incorrectly even if they are able to obtain new 

knowledge on-the-fly. In order to perform tasks smoothly, 

e.g. pick up or deliver us a specific object, the most natural 

way is to simply describe unknown objects by spatial 

relations in relation to other known objects, rather than using 

some other finer concepts, such as fine-grained categories, 

and brand names. As suggested by 1), we advocate that 

spatial relations can provide strong cues in identification 

tasks in that: (1) a spatial relation is less influenced by 

illumination and scale changes; (2) a spatial relation is more 

stable than visual features, such as color and shape, etc. For 

example, a slight variance in color can make an object 

thoroughly different and may result in frustrating failure; and 

(3) a spatial relation is independent of object diversity. If an 

object is replaced by any other object, the spatial relation 

between the pair of objects will not be changed provided the 

objects are situated at the same position.  

  Spatial knowledge has been long an active research field 

in linguistics and cognitive science2)~6). The frame of 

reference(we use FoR for short) concept plays an important 

role, which serves as a coordinate system that allows us to 

make references to identify target objects as well as to 

comprehend references made by others. In English culture, 

people often employ three categories of FoRs: absolute, 

intrinsic and relative5). The absolute FoR generally refers to 

the earth’s cardinal directions such as North and South, and 

thus is often used to describe large-scale, and geographical 

landmarks. In our work, we are interested in table-top space 

where intrinsic and relative FoRs are more commonly 

employed. We will introduce these two types of FoRs in 

Section 3. 

How can we represent spatial knowledge? The difficulty 

is that spatial relations are regarded as somewhat of a weak 

sense. A spatial relation between entities is not something 

that the entity really ‘has’ like color or weight. For example, 

the rose is red can be interpreted as the rose in the object 

domain being associated with a particular RGB instance-- 

red in the color domain. As a consequence, the color red is 

independent of time and place. In other words, the color red 

is always the rose’s color. Moreover, spatial change occurs 

when objects possess different spatial attributes at different 

times and places. Assume there are two people--A and B 
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standing side by side. To A, B might be standing at his left 

side. However, to B, A becomes to be standing at his right 

side. Thus, to cope with the weakness and uncertainty, 

state-of-the-arts7)~11) in geography, computer vision and 

robotics present spatial knowledge in an ontology fashion. 

Although these works have already made significant 

breakthroughs, they still have limitations in that: 1) they do 

not provide an explicit mathematical formalism for spatial 

concepts; and 2) although the proposed ontologies are 

qualitative and can be used to infer primary spatial relations, 

they still far away to be applied in image interpretation and 

object identification.  

In this paper, we propose a knowledge-based approach. 

The framework is able to identify unknown objects 

incorporating with spatial knowledge. The spatial ontology 

serves as an intermediate layer and thus enables to discover 

the hidden knowledge, such as spatial arrangements. To 

summarize, we highlight here the main contributions of this 

work. 

First, we propose an ontology-based approach that allows 

to identify new objects. Unlike previous works focus on 

large-scale spaces, such as offices and corridors, our 

approach is suitable to table-top space. 

Second, we conceptualize spatial knowledge in an 

ontological fashion. Our proposed ontology is different from 

previous works12)~13) which define spatial relations either 

object by object, e.g. wings are touched and at the 

left/right side of a plane, or image by image, e.g. sky is on 

the top of the image. Instead, our ontology represents 

spatial knowledge in a more generic way and thus can 

employ appropriate FoR with respect to different reference 

objects. 

Third, we propose a spatial model for four directional 

spatial relations– front, back, left, and right, which is simply 

built upon angular deviation via a 2-D projections. 

Since spatial relations cannot be used alone, each object 

within the image should be separately segmented. To do so, 

we implement off-the-shelf methods to segment14) and 

recognize pre-learned objects15). In this research, we only 

focus on spatial ontology construction, spatial relation 

identification, and situated-language processing. 

  The rest of the paper is organized as follows. In Section 2, 

we review some relevant work. We introduce the 

fundamentals of spatial knowledge in Section 3. The details 

of ontology-based approach is elaborated in Section 4. In 

Section 5, we introduce the dataset tailored for our 

experiment. And in Section 6, we conduct human-machine 

experiments to show the effectiveness of our approach.  

2. Related Work 

2.1 Qualitative spatial knowledge representation  

Spatial knowledge is an interdisciplinary topic combining 

linguistics and cognition studies. Due to the nature of the 

interaction between the agent and the environment, there are 

different types of spatial knowledge. Our work will focus on 

the table-top space, which is defined as a spatial 

environment that can be immediately and fully observed. 

Our work is inspired by several seminal works. The core 

concept is the FoR which serves as a coordinate system that 

allows us to make references to identify target objects as 

well as to comprehend references made by others. 

Levinson5) clarifies English speakers use two distinct classes 

of FoRs existing for representing the spatial relations 

between manipulable and small-scale objects in the world: 

intrinsic and relative. Levelt4) analyzes the ambiguities 

might be arisen in an intrinsic FoR in natural language. G. 

Schmidt6) draws on earlier works and summarizes how 

intrinsic and relative FoRs are determined by reviewing 

objects’ property. 

Another concept that plays an important role relates to the 

spatial relations. In general, spatial relations can be grouped 

into three categories: topological, including relations like 

overlap, contain, and intersect; directional, including 

relations like front, back, left, and right; distance, including 

relations like near, and far. Here, we focus on directional 

relations that has been proven to gain the highest 

consistency of all between small-scale and manipulable 

objects in table-top space16). The most commonly used 

relations are related to three axes of references: front, back, 

left, right, above, and below. In the 2-D field, we do not 

consider the top-bottom dimension. Currently, our work 

contains four main directional relations – front, back, left, 

and right corresponding to the projective prepositions: in 

front of, behind, to the left of, and to the right of in natural 

language. 

2.2 Modeling spatial relations 

A considerable body of research has been focused on 

modeling spatial relations. Wang et al.17) considers 2-D 

projections of 3-D spatial scenes and derives a three-level 

orientation relations from basic (front, back, left, and right) 

to compound relations (left-front, left-back, right-front and 

right-back). There are two major branches on generating 

spatial information from numerical data. Early works18)~19) 

define spatial relations by using fuzzy logic. A. Abella et 

al.18) propose a framework to describe qualitatively 2-D 
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objects. They define spatial prepositions using inequalities. 

Fuhr et al.19) model six spatial relations based on acceptance 

volumes of a 3-D objects. The main contribution is that they 

not only take into account the FoR issue but also define a 

FoR simply by three distinct axes: the front-back, left-right, 

and bottom-top. In this case, each axis is represented by a 

pair of reference vectors that are inverse to each other. For 

example, the front-back axis is given by the vectors fb and 

bf directing from front to back and back to front, respectively. 

However, our proposed model is different from theirs. In this 

work, we model spatial relations by identifying angular 

deviations.  

Gapp20) clarifies the interdependencies between angle, 

distance, and shape with respect to the acceptability of 

directional relations. For each relation, he presents subjects 

stimuli with different shapes and requires them scoring the 

applicability with respect to the combination of 4 different 

angles (0°, 22.5°,45°, and 67.5°) and distances(130,240,350 

and 460 pixels). Results show that the angular deviation 

gains the predominant effect with F (3,608) = 521.82, p < 

0.001 and F (3,608) = 487.15, p < 0.001 in the horizontal 

and vertical experiments, respectively. He21) accordingly 

utilizes the observation above on localizing landmarks in 

large-scale environments where the angle and distance 

between a reference object and a target object are mapped to 

a spline function so that the value is between 0 and 1. 

Another method close in spirit to ours is by Moratz et al. 22). 

They develop a robotic system to localize and deliver 

objects placing on the ground (e.g. trash cans, briefcases 

etc.). The main contributions of their work are two-fold: 1) 

they simply define the directional relations based on angular 

deviations; and 2) the system is capable of distinguishing 

intrinsic FoR from the relative one. However, they only 

focus on the deictic case which is counted as a sub-category 

of the intrinsic FoR, such as the bucket is in front of me. 

More general cases in the intrinsic FoR are beyond the 

scope. 

2.3 Ontology-based spatial knowledge representation 

Ontology engineering is widely used to resemble 

knowledge in a specific domain. An ontology is defined as a 

set of explicit formal specifications of the terms in the 

domain and relations among them23). It is able to bridge the 

semantic gap between real-world domains to knowledge. 

Ontology OWL24), which goes beyond others as a 

development language, enable to construct complex 

knowledge and allow data to be shared and reused across 

applications. Our ontology relies on OWL-DL, which is 

based on description logics (DL) 25).  

Two recent approaches are closer to our proposed 

ontology. Mailot et al.12) present an ontology approach to 

categorize biological organisms by encoding high-level 

(color, texture, etc.) features and the spatial relations 

between the object and their subparts. Hudelot et al. [13] 

formalizes 6 directional relations: above, below, front, back, 

right, and left. They consider a spatial relation between 2 

entities not as a concept, but as a property. And the 

corresponding FoR is treated as a concept and dedicated to 

the representation of uncertain and subjective spatial 

knowledge by integrating with a fuzzy temporal model.  

However, both of the works only perform on the objects or 

images with fixed patterns, where the spatial relation is 

defined either object by object, for example, wings are 

touched and at the left/right side of a plane, or image by 

image, for example, sky is on the top of the image. 

 

3. Qualitative Spatial Knowledge Representation 

Before elaborating our approach, it is useful to start with 

introducing some preliminary knowledge of spatial 

representation.    

As we mentioned earlier, this work concentrates on the 

directional relations. Directional relations (a.k.a. orientation 

relations) specify where objects are located relative to one 

another. There are three elements essential: a target object 

(TO), a reference object (RO), and a certain frame of 

reference (FoR) which is a coordinate system that underlies 

the use of the relation between objects. According to 5), 26), 

English speakers employ two distinct classes of FoRs 

between manipulable and small-scale objects in the world: 

intrinsic and relative. 

Intrinsic FoR is a binary relation with respect to two 

elements: a TO and a RO. Intrinsic FoR requires that ROs 

should have intrinsic directions that act as a baseline 

analogous to the due north direction on the earth’s surface, 

that is, the intrinsic front, back, left, and right. These 

directions are extracted from the corresponding inherent 

sides of ROs. Due to the asymmetry in the front-back 

dimension, the intrinsic front and back directions have a 

privileged status, while the intrinsic left-right directions of 

objects are rare. In 27), A. Galton points out that dolls and all 

of animal species including human beings that have 

perceptual apparatus have intrinsic front sides. Miller and 

Johnson-Laird3) specify that objects such as cars, bullets, 

and arrows which possess characteristic of direction of 

motion have intrinsic sides, and objects such as cameras, 
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chairs and screens which have functional parts also have 

intrinsic sides3). As in Figure 1, one might say the 

soda-can is in front of the robot, which means the 

soda-can is located at the front side of the robot’s body 

where the front region of the body is inherent. We note that 

once the intrinsic front is determined, the back, left, and 

right directions can be deduced accordingly. As shown in 

Figure 2(a), the direction which is opposite to the front 

counts as the back direction. The left-front-right-back then 

follows an anticlockwise path around the RO. 

 Relative FoR is a ternary relation with respect to three 

elements: a TO, a RO, and a viewpoint (we call VP for 

short). The directions of ROs are extracted from 

interlocutors’ viewpoint (either speaker or listener) from 

which the ROs are seen. In general, any objects existing in 

the world can be applied in relative FoR. In Figure 1, the 

man might say the soda-can is behind the tissue-box, 

which means the soda-can is located at the back side of the 

tissue-box when viewing from the man’s viewpoint. Since 

there are no intrinsic front, back, left or right directions 

generated by the tissue-box in the horizontal and vertical 

dimensions, the back side is determined by the man’s 

viewpoint. In other words, it is the position of the man that 

determines how the space around the soda-can is arranged. 

In principle, the space is arranged as the same as the intrinsic 

FoR. We emphasize that the front is facing directly towards 

the observer, which is parallel to the observer’s viewpoint as 

illustrated in Figure 2(b). 

 

4. The ontology - based approach 

4.1 Overview 

 Our goal is to identify unknown objects in novel scenes 

by comprehending the spatial knowledge within. We use 

Figure 3 and Algorithm 1(see Table 1) to illustrate the 

overall approach. Given a novel scene image, we first 

segment the image with semantic regions. The segmented 

objects are recognized into one of the categories, if the 

exemplars are pre-learned. For unlearned objects, they are 

labeled as unknown objects. This can be done either 

manually or automatically. With the recognition result, we 

begin the interactive process of identifying an unknown 

object. Our goal is to generate a tuple to represent the 

knowledge via ontological retrieving and inferring. With a 

referral sentence input by the user, e.g. the pen is in front of 

the can, we use the Stanford Part of Speech (POS) tagger28) 

to tag every word. We note that the spatial prepositions are 

 

Table 1 overall framework 

Algorithm 1 Overall framework 

Input: Image I 

Segment image with semantic regions 

Recognize objects within using trained models 

repeat(if there are any unknown object) 

Tag referral sentence input by the user 

Retrieve in the ontology 

Infer the hidden knowledge by rules 

Identify TO using the spatial relation model 

until user satisfied or all objects examined 

(a) Intrinsic FoR spatial arrangement        (b)  Relative FoR spatial arrangement 

Fig. 2  Spatial arrangement in intrinsic and relative FoRs 
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annotated as adjectives. The tagged words/phrases are 

retrieved in the ontology if they are defined spatial 

prepositions and objects. For a noun that cannot be retrieved 

in the ontology, we use WordNet29) to determine if it is a 

defined synset and then infer it if is a RO or TO. With the 

tuple such as <TO spatial_relation RO>, we infer the 

underlying FoR by rules. Finally, we use the resulting tuple 

<TO [spatial_relation FoR] RO> to identify the TO with 

the computational spatial model. If there are several 

unknown objects, we repeat this process till user satisfies or 

we have identified all objects in the image. 

4.2 The spatial knowledge ontology 

In this section, we describe the spatial ontology in detail. 

Specifically, Sect. 4.2.1 – 4.2.3 describe the three concepts 

we defined. In order to infer the hidden spatial knowledge, 

Sect. 4.2.4 introduces the rules. By retrieving the ontology, 

our goal is to generate a triple repository to store the spatial 

information, such as <TO spatial_relation RO>. 

Algorithm 2 illustrates the procedure. The ontology is 

constructed based on DL [13, 25]. We briefly introduces the 

fundamental syntax in Appendix. 

The spatial ontology is represented by three classes: 

Space, Object and Utterance. We note that the terminologies 

are different between spatial representation and natural 

language. In space domain, we cannot say an object has a 

front/back /left/right relation. Instead, it is feasible to say an 

object has a front/back/left/right direction. On the other hand, 

in language domain, we use spatial prepositions such as in 

front of and to the back of map the direction concept in the 

space domain. 

4.2.1 Knowledge class – Space 

 The Space class consists of three concepts: FoR, Direction, 

and VP. 

FoR – the frame of reference. Intrinsic and relative FoRs are 

instantiated in this domain. 

Direction – the general concept. It subsumes defined 

topological, directional and distance directions.  

VP — the viewpoint, which is an indispensable entity in 

relative FoR. Currently, we include two sub-concepts: the 

speaker’s viewpoint and the listener’s viewpoint with four 

instances: upper view, frontal view, left-profile view, and 

right-profile view.  

As described in Sect. 3, a TO, RO, and at least one 

defined directions constitute the general concept FoR, 

which is defined by using the in Eq. (1).  

 

FoR ≡ ∃ hasRO.Recognized_Object 

      ⊓ = 1 hasRO 

      ⊓ ∃ hasTO.Defined_Object                    (1) 

Fig.3  Illustration of the framework of the system 
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      ⊓ = 1 hasTO 

      ⊓ ∃ has_Direction.Defined_Direction 

where the Defined_Direction belongs to the general 

concept Direction.  

 

 Defined_Direction ⊑ Direction                       (2) 

Eq. (1) contains two properties: hasRO and hasTO. The 

range of these two properties - Recognized_Object and 

Defined_Object can be found in the Object domain. For 

example, in the sentence the dry battery is in front of the 

camera has a property of hasRO with the value camera 

and a property of hasTO with the value dry battery.  

Specifically, as sub-set of the FoR the intrinsic and relative 

FoRs can be described by DL as:  

Intrinsic_FoR ⊑ FoR                           (3) 

Relative_FoR ⊑ FoR 

            ⊓ ∃ hasVP. VP                        (4) 

We stress that VP is a necessity of relative FoR which can be 

either specified by the listener or the speaker. However, in 

most cases, the speaker’s viewpoint is set as the default VP if 

no other VP is specified. Thus the VP can be defined as:  

VP ≡ ≥ 1 hasVP 

⊓ ∃ viewFrom. {Speaker} 

⊓ ∋ hasVPInstance. {vp_value}                      (5) 

where {vp_value} is the set of individuals.  

We also specify some properties of the directions, such as 

symmetric, transitive, and functional. For example, the 

front-back and left-right are complement to each other. In 

this case, the Left direction can be defined as:  

Left_Direction ⊑ Direction 

          ⊓ Directional_Direction               (6) 

          ⊓ ∃ inverse.Right_Direction 

4.2.2 Knowledge class – Object 

Two concepts are defined in this domain: 

Recognized_Object and Defined_Object. 

Defined_Object – a subset of the Object concept. Note that 

we do not elaborate any abstract concept, only objects that 

have not be recognized yet are assembled here. 

Recognized_Object – a subordinate concept adhering the 

Defined_Object, which represents a set of ROs. They are 

basic-level categories of objects collected by ourselves, such 

as balls, screens, bottles, etc. (Sect. 5.1), and are 

recognized by the vision module. 

 

Given a name, to obtain semantic synsets (e.g. whether 

the query is an existing object identity), we import the 

WordNet database29). We make use of the hypernym 

(super-term) and meronym (contains) relations. We pick up 

some distinguished constituent parts from the meronym and 

determine whether a RO is able to generate an intrinsic 

direction by finding the individual’s distinguished (inherent) 

part. For example, in the sentence of the battery is in front 

of the camera, the RO--camera can be described as a kind 

of equipment, and has a distinguished part of lens. This 

can be written as:  

Camera ≡ ∃ isRo.Recognized_Object 

         ⊓ ∃ hasSuperClass.Equipment           (7) 

         ∋ hasDistinguishedPart. {lens} 

 

Table 2 ontology retrieving and inferring 

Algorithm 2 Ontology retrieving and inferring  

Require: WordNet Dictionary W 

        Rule Set R 

Input: Referral sentence U 

Output: Tuple T 

Initialize Tuple: T = < > 

C ← SENTENCETAGGING(U) 

for each  ISNOTEMPTY(C{i}) 

if  ISNOUN(C{i}) 

     obj_candidate ← ONTOLOGYRETRIEVAL.DEFINED(C{i})  

 if  ISNOTEMPTY(obj_candidate) 

ro_candidate ← ONTOLOGYRETRIEVAL.RECOGNIZED(C{i}) 

if  ISNOTEMPTY( ro _candidate) 

RO ← ro _candidate 

else 

         sim_score ←ONTOLOGYINFERRANCE (W, R, C{i} ) 

           if sim_score < threshold 

           TO ←C{i} 

      else RO ←C{i} 

else OUTPUT(“Cannot resolve the sentence!”) 

   else if  ISADJECTIVE (C{i}) 

    sp_candidate ← ONTOLOGYRETRIEVAL (C{i}) 

  if  ISNOTEMPTY(sp_candidate )       

SP ← sp_candidate 

else  OUTPUT(“Cannot resolve the sentence!”) 

end for 

FoR ← ONTOLOGYINFERRANCE (R, RO, SP) 

T  ←  GENERATETRIPLE (R, RO, TO, SP , FoR) 
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In future work, we would like to extend the ontology to 

infer object affordance and functionality in an ontological 

hierarchy, where given a name, the ontology not only can 

recognize the object, but infer its hypernyms/hyponyms 

(super-term/sub-term), e.g., hypernyms of computer are 

machine, device, etc., and how to interact with it, e.g. type 

on.  

4.2.3 Knowledge Class – Utterance 

The Utterance class relates to the language module (see 

Sect. 4.4). It is used to parse the spatial prepositions of what 

humans use and capable of mapping the Direction concept 

onto the Space class. Note that this is not a strict one-vs-one 

mapping due to linguistic diversity. For example, both of the 

spatial prepositions such as in front of and at the front side 

correspond to front concept in the Direction domain. Thus, 

given a referral sentence, it can be described as: 

Spatial_Description  

≡ ∃ hasTO.Defined_Object 

          ⊓ = 1 TO 

          ⊓ ∃ hasRO.Recognized_Object             (8) 

          ⊓ = 1 RO 

          ⊓ ∃ hasSpatial_Prepostions.Spatial_Preposition 

   

where  

  Spatial_Preposition 

 ≡ ∃ inRelationwith.Defined_Direction 

        ⊓ = 1 Defined_Direction                      (9) 

4.2.4 Reasoning about hidden knowledge 

Logical inference is able to identify the hidden knowledge 

using well-defined rules. Currently, we define two types of 

rules: unidirectional RU and bidirectional RB. The RU rules 

ensure the reasoning between properties, and instances 

within the same ontological classes, while RB is able to 

transfer knowledge between different ontological classes.  

Rule 1: matching of RO’s name 

People may use different terms to express the same sense. 

For example, both the monitor and display can express the 

sense of computer monitor. It is thus necessary to evaluate 

whether a query X, often a name of RO, is a synonym of the 

recognized object Y. To do so, we first apply the 

unidirectional rule: 

   

   

          

     

IF X is RO

AND Y is recognized

AND similarity between X and Y is greater than Threshold T

THEN X is synonym of Y

 We then use WordNet Similarity for Java (ws4j)30)—a 

java reimplementation of WordNet-Similarity31). The WS4J 

provides several published semantic relatedness algorithms. 

We use the WUP32) to estimate how semantically close 

between a querying and an existing synset defined in 

WordNet. We set the threshold T as 0.9. If T is less than 0.9, 

we treat the querying as a false negative, namely, maybe 

the observer names the object incorrectly. Assume one 

names a mug as coffee mug, the relatedness is Rela(mug, 

coffee_mug) = 0.957, or the relatedness between camera 

and digital camera is Rela (camera, digital_camera) = 

0.952. However, the relatedness between cup and can is 

only Rela (cup, can) = 0.89. 

Rule 2: matching TO’s name 

This rule is unidirectional as well as rule 1. If a query X 

cannot be retrieved in the Recognized_Object concept where 

the T is less than 0.9, but belongs to the Defined_Object, we 

assert that X is a TO. The rule is defined as: 

    

 X is  

   a TO

IF X is Defined

AND NOT recognized

THEN X is

 

Rule 3: Reasoning about the FoR 

The bidirectional rule is applied across the different 

ontological classes. We consider the intrinsic FoR can be 

inferred from the following rule: 

    

     

     

    

IF X is recognized object

AND X has distinguished part P

THEN X has Intrinsic Front

AND X generates Intrinsic FoR

 

Otherwise, we assert the FoR is relative. Once the relative 

FoR is determined, we find viewpoint from the utterance, 

and update the ontology. 

4.2.5 Ontology implementation and the results 

We use OWL Protégé 5.033) to construct the ontology. 

We implement the Apache Jena framework34) as the 

underlying library to load and infer the OWL model. For 

instance, the referral sentence the pen is in front of the 

camera can be viewed as concept and denoted by DL as: 

C0 ≡ ∃ hasFOR. FOR  

⊓ ∃ has_Spatial_Object. Defined_Object          (10)  

⊓ ∃ has_Spaial_Descritpion. Spatial_Description 

The object individuals pen and camera can be retrieved 

from the Object class. And the spatial preposition in front of 

is represented in the Utterance class. After retrieving the 

Regonized_Object, we assert that the object individual 

IIEEJ Transactions on Image Electronics and Visual Computing Vol.3 No.2 （2015）

156



 

 

 

camera serves as the RO, while pen is the TO (rule 2). 

Then we update the FOR concept in the Space class. As a 

result, Eq. (1) can be written as: 

FoR ≡ ∃ hasRO. Camera 

    ⊓ ∃ hasTO. Pen                            (11) 

    ⊓ ∃ has_Direction. Front 

where the concept camera is defined in Eq. (7). Finally, by 

using rule 3, we can infer that camera has an intrinsic 

FoR. The result is shown in Figure 4. 

4.3 Modeling spatial relations 

Based on Hernandez17) and Moratz22)’s models, we 

introduce a geometric method to model the directional 

relations. The model is built upon 2-D view. With the 

scene being viewed from above, all the objects are 

represented in a planar view. According to Figure 2, the 

reference axis is along a RO’s front direction and the 

reference plane, where a RO is centered, is thus 

partitioned into front, behind, left, and right regions. 

Figure 5 illustrates  

the configuration. In order to identify the partitions 

geometrically, we refer to the angle θ between the 

reference axis and the connected line from the TO to the 

RO in Eq. (12): 

TO front RO :  0 ≤ θ < π/4    

or   7π/4 ≤ θ ≤ 2π 

TO left RO:    π/4 ≤θ < 3π/4                (12) 

TO behind RO:  3π/4 ≤θ < 5π/4 

TO right RO:    5π/4 ≤θ < 7π/4 

4.4 Situated dialogue processing 

The Language module treats an input as a natural 

language utterance, which contain references to objects by 

names and descriptions of spatial locations in relation to 

 

Table 3   Examples of inputs and the corresponding responses 

 

Input Response 
 

 

How/how many objects can you see (?) “[number of detected objects]” 
 

 

What/what are they (?)  

What/what is it (?) 

“[name of the detected object

s]” 
 

 

The toolbox is in front of the cup (.) “Is this one?”/ 

 “I can’t see it”  
 

 

Can/can you see the can (?) 

Can /can you see 3 cups (?) 

“Yes, I can.”/ 

“No, I can’t.” 
 

 

  

 

Fig.4  A FoR reasoning result. When camera serves as the RO in a referral utterance, by applying rule 3, the 

intrinsic FoR with intrinsic front and back directions can be inferred 

Fig.5  The computational model of intrinsic and 
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other objects. To extract names and spatial terms from an 

utterance, we rely on the Stanford Part of Speech tagger28). 

When executing inputs, we restrict a limited of syntactic 

formats to reduce matching complexity. For example, the 

query Can you see the soda-can (?) is matched by the 

keyword Can with case insensitivity. Table 3 represents the 

syntactic formats. If the inputs cannot be interpreted, users 

will receive I don’t understand as a response. Then users 

will reconsider and take further attempts.  

 

5. The Spatial Object Dataset 

Since there is no publicly dataset available, in order to 

tailor our tasks, we present a Spatial Object Dataset with 

samples of 130 objects and 300 scenes. The dataset is 

presented with 400 × 300 pixel resolution color images. All 

images are taken with a Canon IXY910IS digital camera. 

5.1 Training dataset - Objects 

Currently, the Spatial Object Dataset contains 130 objects 

and in total of 720 images. The chosen objects are 

commonly found in home and office environments, 

including office workspaces, living rooms, and kitchen areas. 

Objects are organized into a WordNet29) hierarchy with 

hypernym/hyponym relations. The dataset contains 4 levels: 

basic, subordinate, superordinate and abstract. Apparently, 

the basic-level category (e.g., apples, cars, etc.) is the 

easiest for humans to organize knowledge. At the next lower 

levels, subordinate categories can provide fine-grained 

knowledge, such as soda can and coffee mug. The 

secondary-level subtrees in the hierarchy adhering to the 

basic level is superordinate categories, which are a higher 

degree of abstraction, such as vessel and dish. Categories 

such as device and container are the abstract-level subtrees 

in the hierarchy, which concentrates a high degree of world 

knowledge. We collected objects from 4 areas: fruit & 

vegetables; clothes & shoes; container and device. 

Figure 6 shows the subtrees in the current version of the 

dataset. The leaf nodes are shaded in cyan, and the number 

of object instances in each category is given in parentheses.  

We resort the way of building the dataset by a few 

prototypes. Each object is presented by 5 or 6 images from 

semi-upper viewpoint and scale slightly changed in 

canonical (frontal) pose. In Fig. 7, the first two rows show 

some example objects of the dataset.  

5.2 Testing dataset-Scenes 

  We collected the scene images in home and office 

environments with the same manner as described in Sect. 

5.1. In current version, we collected 360 scenes. Each scene 

has at 2-4 objects with at least one recognized object and 

one unknown object which indicate the RO and TO 

respectively that people can refer to. All of the objects are 

basically at their frontal view. A snapshot is also shown in 

Figure 7. 

6. Experiment 

6.1 Image segmentation and object recognition  

In order to train and learn object models, we implement 

strongly-supervised deformable part-based model15). The 

model not only is able to category the objects, but also to 

Fig.6  The fruit, shoes, container subtrees of the Spatial Object Dataset. The number of instances in each leaf category (shaded in 

blue) is given in parentheses 
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recognize object parts such as camera lens, etc. For a scene 

image, we first use the multiscale combinatorial Grouping 

(MCG)14) to semantically segment the image. The 

segmented objects are recognized into one of the categories, 

if the exemplars are pre-learned. For unlearned objects, they 

are labeled as unknown objects. 

6.2 Ground truth 

  To evaluate the performance, we relied on human labors 

to verify each candidate scenes collected in the dataset. For a 

given RO and a TO, we required 15 students to select a best 

answer. The ground truth was defined by majority vote. 

6.3 Experiment scenes and setting 

200 scenes were chosen in this experiment in which 

recognized and unrecognized objects were well segmented 

and recognized. Each image contained one or two unseen 

objects positioned around a recognized object.  

6.4 Procedure 

Twenty university students, who were trained to familiar 

with our strategy were invited to take part in the experiment. 

They were required to sit in front of a computer, and 

received ten images at a time. Each image was presented for 

two minutes. If the user did not succeed within the 

prescribed time, the system skipped and moved to the next 

image. If a command cannot be interpreted, users received a 

response such as I don’t understand so that they could 

reconsider the strategy in the further attempt.  

6.5 Experiments 

6.5.1 Experiment 1: one-shot experiment 

This experiment was designed to evaluate the accuracy of 

the system. We only allowed the subjects to input a referral 

sentence which directly referring to the TO: 

 

 

With all the testing images, we collected in total of 352 

utterances, corresponding to an average of 17.6 per person. 

There were 24(6.8%) utterances that cannot be interpreted 

because of thoroughly syntactic form or spelling errors. In 

general, of the 328(93.2%) valid sentences, 5 cannot be 

executed correctly because participants confused right with 

left regions. In the rest of 323 utterances, there were 82 

utterances corresponding to the front preposition in which 77 

led to success with the accuracy being 94.0%. In the 5 

unsuccessful trials, we noticed that the TO was placed at the 

proximate orthogonal region around the RO. This region is 

not considered as a good acceptance region of front by 

Logan and Sadler35), but still acceptable so that it was 

difficult to distinguish it was a front or left. As a result, three 

subjects used the compound prepositions - left front. The 

other two people considered the TO was left to the RO. The 

same phenomenon occurred in the back trials. Of 80 

utterances, 70 were achieved success with the accuracy 

being 87.5%, six people used the term right behind, and the 

other four people thought of the TO was being placed to the 

right of the RO. The accuracy was slightly increased in the 

left and right trials. Perhaps it was easier for human to 

User: The CD is to the right of the book. 

Fig.7  A snapshot of object and scene exemplars from the Spatial Object Dataset 
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identify directions in the horizontal dimension than the 

vertical one. There were 80 and 81 utterances corresponding 

to the left and right with the accuracy being as high as 96.2% 

(77 utterances) and 95.6% (77 utterances), respectively. 

Figure 8 illustrates the accuracy. 

6.5.2 Experiment 2: interactive experiment 

In this experiment, subjects were allowed to interact with 

the system. Instead of performing on all the testing scenes, 

we picked up 100 images and suggested two types of 

interactive strategies to the users. We note that at current 

stage the input sentences are restricted with a fixed pattern.      

Strategy 1: user-leading strategy 

Users incrementally provide the scene information. The 

most advantage is that the strategy reveals users’ intention 

and allows users to find out what the system is able to 

understand. For example, at the beginning, users often 

prompted the system by querying Can you see the 

scotch-tape? and waited for a feedback. Figure 9 shows 

the transcript. 

Strategy 2: system-leading strategy 

Instead of user predominating interaction, the system first 

reports how many/what objects that can be seen at the 

beginning by saying, I can see a book and a stapler or I 

can see 1 object. Camera. Then users provide spatial 

information. We show the transcript in Figure 10. 

We compared the accuracy by using two strategies. With 

the user-leading strategy, of 170 utterances, 156 led to 

successes with the accuracy approximately being 91.89%. 

By contrast, of 148 collected utterances by using 

system-leading strategy, there were 140 validated sentences 

led to success where the accuracy was increased as high as 

95.83%. Despite of the syntax errors, the main reason was 

the objects named by users were not able to be understood 

by the system. For example, people may use object’s names, 

such as Oreo rather than object categories - box or bag. 

Performance in the system-leading strategy outperformed 

the user-leading strategy with 91.89% vs. 95.83%. The main 

reason is that it allowed users to understand how capable of 

the system is. In some of the trials, we observed that the RO 

recognized by the system was not the one that seen by the 

users (false-positive cases). For example, an orange might 

be recognized as an apple due to its color variation. Figure 

11 shows the comparison result. We also evaluated the 

accuracy of four spatial prepositions on two strategies, 

which is shown in Table 4. As a result, the left and right 

outperformed the front and behind, which was in accordance 

with the result we observed in Sect. 6.5.1.  

 To summarize, if the system is capable enough to 

recognize RO candidates accurately, the user-leading 

strategy is a preference. Otherwise, users would like to take 

the system-leading strategy. Perhaps without any prior 

knowledge provided, the user-leading strategy increases the 

risk of failure. This observation is extremely valuable for us 

    

Table 4  accuracy of 4 spatial prepositions on 2 strategies 

Spatial Prep. User-leading 

Strat. 

System-leading 

Strat. 

Avg. 

Front 95.44% 95.38% 95.41% 

  Behind 92.24% 92.89% 92.57% 

  Left 95.67% 95.73% 95.70% 

  Right 95.43% 95.68% 95.56% 

Fig.8  Results on four spatial relations. The accuracy is 

displayed on top of each bar 

Fig. 9   Transcript of user-leading strategy 

Fig.10 Transcript of system-leading strategy 
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to design an interaction scheme and achieve natural, 

unconstrained communication in the future work. 

7. Conclusion 

In this paper, we presented a spatial recognition approach 

of integrating with ontology hierarchies. The geometric 

spatial model can map projective spatial prepositions in 

language onto characteristic points on a 2-D reference plane, 

and the ontology is able to infer underlying knowledge of 

space, for example, the FoR. We also proposed a Spatial 

Object Dataset that is specifically tailored for our 

experiments with ontological structures. Preliminary 

experimental results confirmed that the system was able to 

correctly recognizes human descriptions and identify 

unknown objects and that understanding human spatial 

descriptions is efficient for human-machine interaction. 

  Possible directions for future work may be as follows. 

First, we observed the failure cases mostly occurred in front 

and behind trials and attributed to the occlusion issue. The 

worst case occurred when the TO and RO are collinear. To 

address the problem, we need to obtain 3-D data such as 

RGB-D style. Second, we are interested in presenting a 

knowledge-based (KB) network to transfer knowledge. For 

instance, if object A is in front of B, and B is in front of C, 

we can infer that object A is also in front of C. Another 

example is if we know object A has an intrinsic direction, 

we can infer its hypernyms/ hyponyms also has intrinsic 

direction. This allows us to recognize objects by their 

attributes and parts, and learn the visual similarities. Third, 

in nature scenes, objects are usually arbitrarily placed, a 

measure that would allow adjusting the main axis direction. 

Perhaps finding the front direction is the most interesting 

and crucial case as it weighs the highest priority in all four 

directions. Meanwhile, more candidate images with large 

scale and viewpoint changes should be collected for further 

experiment use. 
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A-1 DL syntax, example and interpretation 

Constructor Syntax Example Semantics 

   Atomic concept C Human C ℒ  ⊆ ∆ ℒ 

    Individual a Bob a ℒ  ∈ ∆ ℒ 

  Atomic role r has-sibling R ℒ  ⊆ ∆ ℒ  × ∆ ℒ 

Conjunction  C ⊓D Human ⊓ male C ℒ  ∩ D ℒ 

Disjunction C ⊔D Human ⊔male C ℒ  ∪ D ℒ 

Negation ¬C ¬ Human ∆ ℒ  \ C ℒ 

Existential restriction ∃r. C ∃has-sibling. Girl {x ∈ ∆ ℒ | ∃y ∈ ∆ ℒ : (x , y) ∈ R ℒ ∧ y ∈ C ℒ } 

Universal restriction ∀r. C ∀has-sibling. Human {x ∈ ∆ ℒ | ∀y ∈ ∆ ℒ : (x , y) ∈ R ℒ ⇒ y ∈ C ℒ } 

Value restriction ∋ r. {a} ∋has-sibling. {Tom} {x ∈ ∆ ℒ | ∃y ∈ ∆ ℒ : (x , y) ∈ R ℒ ⇒ y =aℒ } 

Number restriction (≥ nR) 

(≤ nR) 

(≥ 2 has-sibling) 

(≤ 2 has-sibling) 

{x ∈ ∆ ℒ |  |{y | (x,y) ∈ R ℒ }| ≥ n }  

 {x ∈ ∆ ℒ |  |{y | (x,y) ∈ R ℒ }| ≤ n }  

Subsumption D ⊑ C Man ⊑ Human D ℒ  ⊆ C ℒ 

Concept definition C ≡ D  Father ≡ Man⊓ ∃has-child. Human D ℒ  = C ℒ 

  Concept assertion a : D Bob : Man a ℒ  ∈ D ℒ 

  Role assertion (a, b) : R (Bob, Mary) : has-sibling ( a ℒ , bℒ) ∈ R ℒ 
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Appendix 

This section introduces a formal representation of 

Description Logic (DL). In DL, a semantics is associated 

with concepts, roles and individuals in the form of ℒ = (∆ℒ, 

·
ℒ), where ∆ℒ is a non-empty set and ·ℒ is an interpretation 

function that maps a concept C to a subset Cℒ of ∆ℒ or a role r 

to a subset R ℒ of ∆ℒ × ∆ℒ. A Concept C corresponds to a class 

in knowledge domain and is represented by a set of 

individuals. Roles are binary relations between objects. For 

instance, the concept BlackCat can be denoted as BlackCat 

≡ Cat ⊓∃hasColor.Black. A-1 describes the main 

constructor and syntax in DL.  
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