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Selection rules for electromagnetic transitions in triaxially deformed odd-A nuclei
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The approximate selection rules for the interband and intraband electromagnetic transitions are predicted
referring to two quantum numbers, which are derived from an algebraic solution for the particle-rotor model with
one high−j nucleon coupled to a triaxially deformed core. It is shown that the inclusion of angular momentum
dependence for moments of inertia reproduces the experimental excitation energies relative to a reference quite
well both for positive and negative parity TSD bands in 161,163,165,167Lu.
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I. INTRODUCTION

In our previous paper [1] (to be referred to in what
follows as I), it has been shown that the particle-rotor model
with rigid-body moments of inertia consistently reproduces
details of the experimental energy level schemes as well as
the electromagnetic transition rates for the triaxial strongly
deformed (TSD) bands in odd−A Lu isotopes [2–5]. In I,
we extended the Holstein-Primakoff (HP) transformation for
the rotor Hamiltonian in the even nucleus [6] to the case
of the odd-mass nucleus by introducing two kinds of bosons for
the total angular momentum �I and the single-particle angular
momentum �j . Then, we can obtain the precise algebraic
solution by taking into account the invariance of the nuclear
states under Bohr symmetry group [7]. The algebraic treatment
allows an automatic introduction of two kinds of quantum
numbers describing precessions of �I and �j . In this scheme,
both angular momenta interact on an equal footing, and
the precession of the core angular momentum �R = �I − �j
correlates with that of �j . Such an interplay between two tops
with �R and �j is called the “top-on-top mechanism”. As for
163Lu, similar mechanism is also discussed by Hamamoto in a
somewhat different way [8].

The HP transformation is also applicable to the electromag-
netic transition rates. The selection rules are inferred from the
lowest-order overlaps between the eigenstates of the algebraic
solution and the Fock space in the original HP bosons. Since
there have been observed many TSD bands in Lu and Hf
isotopes [9], whose angular momenta are not yet determined
experimentally, the approximate selection rules become useful
to identify the angular momenta and the precession quantum
numbers of these bands.

As is shown in I, the energy level scheme with the
rigid-body moments of inertia differs from that with the
hydrodynamical moments of inertia even when the sign of γ is
so chosen as to reproduce the length of three axes in the same
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order as in the rigid-body. The purpose of the present paper is,
at first, to derive the selection rules for the electromagnetic
transitions from the viewpoints of the quantum numbers
classifying yrast and yrare favored and unfavored bands, and
of their energy level schemes depending on the models.

The second purpose of the present paper is to reproduce the
detailed behavior of energy levels, that is represented by the
excitation energy relative to a reference, i.e., E∗ − aI (I + 1)
with a = 0.0075 MeV. Increase of the dynamical moments of
inertia even at larger I in the TSD bands is attributed to the
gradual collapse of the pairing in the rotating core moments of
inertia. We simulate the decrease of pairing effect by a gradual
increase of the core moments of inertia as a function of I , and
apply the formula to both positive and negative parity TSD
bands in Lu isotopes, i.e., 161Lu [10], 163Lu [2,3,9], 165Lu [4],
and 167Lu [5].

In Sec. II, we briefly review our algebraic formalism [1], and
discuss the difference in the level order between the rigid-body
moments of inertia and the hydrodynamical moments of inertia
based on the quantum numbers introduced by the algebraic
solution. In Sec. III, the selection rules are derived from the
approximate algebraic expressions of the matrix elements for
the interband and intraband transitions. In Sec. IV, the the-
oretical results including an angular momentum dependence
for moments of inertia are compared with experimental energy
levels relative to a reference. In Sec. V, the paper is concluded.

II. FORMALISM

The particle-rotor Hamiltonian is given by

H = Hrot + Hsp (1)

with

Hrot =
∑

k=x,y,z

Ak(Ik − jk)2, (2a)

Hsp = V

j (j + 1)

[
cos γ

(
3j 2

z − �j 2
) −

√
3 sin γ

(
j 2
x − j 2

y

)]
,

(2b)

0556-2813/2008/77(6)/064318(11) 064318-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.77.064318


KOSAI TANABE AND KAZUKO SUGAWARA-TANABE PHYSICAL REVIEW C 77, 064318 (2008)

where Ak = 1/(2Jk) (k = 1, 2, 3 or x, y, z). We adopt the
rigid-body model in Lund convention,

J rig
k = J0

1 + ( 5
16π

)1/2β2

[
1 −

(
5

4π

)1/2

β2 cos

(
γ + 2

3
πk

)]
,

(3)

where (β2, γ ) are the deformation parameters describing
ellipsoidal shape of the rotor. The maximum moment of inertia
is about x-axis and the relation J rig

x �J rig
y �J rig

z holds in the
range of 0 � γ � 2π/3. The sign of γ in Hsp is chosen so
that the oscillator strength is the largest in the x-direction
in consistent with the largest J rig

x . For comparison we
adopt the hydrodynamical moments of inertia in Copenhagen
convention [12], where J hyd

x �J hyd
y �J hyd

z holds in the range
of 0 � γ � π/3,

J hyd
k = 4

3
J0 sin2

(
γ − 2

3
πk

)
. (4)

The factors in Eqs. (3) and (4) are chosen so that J hyd
x =

J rig
x = J0 at γ = 0. Note that a common value of the scaling

factor s = J0V yields the same physical contents except for
energy scale.

We must pay special attention to the important symmetry
properties of the nuclear Hamiltonian and the nuclear state,
i.e., D2 symmetry group and Bohr symmetry group [7,12] (the
invariance under both symmetry operations will be referred to
simply as the D2-invariance, hereafter). Now we consider the
case where x-axis is chosen as a quantization axis, and then a
complete set of the D2-invariant basis is given by[√

2I + 1

16π2

[
DI

MK (θi)φ
j

� + (−1)I−jDI
M−K (θi)φ

j

−�

]
;

|K − �| = even, � > 0

]
, (5)

where K and � denote eigenvalues of Ix and jx , respectively.
The wave function φ

j

� stands for spherical basis for the single-
particle state, andDI

MK (θi) WignerD-function. The magnitude
R of the rotor angular momentum �R = �I + (−�j ) is restricted
to R = |I − j |, |I − j | + 1, . . . , I + j − 1, or I + j , so that
an integer nβ ′ defined by R = I − j + nβ ′ ranges as

nβ ′ = 0, 1, 2, . . . , 2j − 1, or 2j. (6)

Since Rx runs from R to −R, and Rx = Ix − jx = K − � =
even, an integer nα′ defined by the relation Rx = R − nα′

ranges as

nα′ = 0, 2, 4, . . . , or 2R, for R = even,
(7)

nα′ = 1, 3, 5, . . . , or 2R − 1, for R = odd.

Thus, for a physical state which is described by a set of
non-negative integers (nα′ , nβ ′ ), the magnitude of rotor angular
momentum R and its x-component Rx are given by R =
I − j + nβ ′ and Rx = I − j + nβ ′ − nα′ as a result of the
D2-invariance requirement.

As shown by the present authors 37 years ago [6], the higher
order terms in the HP boson expansion should be included

to reproduce the rotational spectra of the triaxially deformed
rotor of an even nucleus. This is also the case for the odd-A
nucleus which is discussed explicitly in I in association with
the recovery of the D2-invariance. Since the moments of inertia
Jx is the largest, and therefore the coefficient of I 2

x and j 2
x are

the smallest among the other coefficients in Eqs. (2a) and (2b),
the total energy is expected to be the lowest when both angular
momentum vectors �I and �j are aligned to the x-direction.
Thus, we choose diagonal forms for the components Ix and jx

in the HP boson representation as follows:

I+ = I
†
− = Iy + iIz = −â†√2I − n̂a,

Ix = I − n̂a with n̂a = â†â; (8a)

j+ = j
†
− = jy + ijz =

√
2j − n̂bb̂,

jx = j − n̂b with n̂b = b̂†b̂. (8b)

Applying these HP representations to the Hamiltonian (1), we
expand

√
2I − n̂a and

√
2j − n̂b into series in n̂a/(2I ) and

n̂b/(2j ), and retain up to the next to leading order. We obtain

HB = H0 + H2 + H4, (9)

where H0 denotes a constant which collects all the terms
independent of boson operators, H2 the bilinear forms of boson
operators, and H4 the fourth order terms. The explicit definition
of these terms are given in I. Diagonalization of H2 is attained
by the boson Bogoliubov transformation connecting boson
operators (â, b̂, â†, b̂†) to quasiboson operators (α, β, α†, β†).
Thus, the particle-rotor Hamiltonian is approximately ex-
pressed in terms of two kinds of quantum numbers as

HB = H0 + ωα + ωβ + C0 + (2ωα + Cα)n̂α

+ (2ωβ + Cβ)n̂β + Cααn̂2
α + Cββn̂2

β + Cαβn̂αn̂β,

(10)

where we introduce number operators in the new quasiparticle
picture,

n̂α = α†α and n̂β = β†β. (11)

When there is no single-particle potential, i.e., V = 0 in
Eq. (1), the formula (10) is reduced to a simple expression of
the rotational energy with two quantum numbers, nα and nβ ,
which are the eigenvalues of n̂α and n̂β ,

Erot(I, nα, nβ)

= AxR(R + 1) − p + q

2
n2

α

+
(

2R
√

pq + √
pq − p + q

2

) (
nα + 1

2

)
, (12)

where p = Ay − Ax, q = Az − Ax and R = I − j + nβ .
Since, in the symmetric limit of Ay = Az, the formula (12)
goes to well-known expression Erot(I, nα, nβ ) = AzR(R +
1) − (Az − Ax)(R − nα)2, the eigenvalue R can be regarded
as an effective magnitude of the rotor angular momentum, and
R − nα as its x-component Rx . It turns out that these nα and
nβ are the same integers nα′ and nβ ′ as defined in Eqs. (6)
and (7). This allows us to interpret the quantum number nα as
the “precession” of �R (so-called “wobbling” in the text book
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of Bohr and Mottelson (BM) [12]) because of Rx = R − nα ,
and the quantum number nβ is interpreted as the “precession”
of �j about the intrinsic x-axis because of Eq. (8b). Due to
the mixing of bosons â and b̂, the physical contents of n̂α

and n̂β change, but they keep the same eigenvalues as in
the symmetric limit whole through the adiabatic change of
interaction parameter V and deformation parameters (β2, γ ).
Thus, the rotational bands can be classified in terms of a
pair of quantum numbers (nα, nβ ) which is restricted by the
D2-invariance as in Eqs. (6) and (7). Here we comment that
Eq. (12) has physical meaning except for the limit of γ = 0
(i.e., p = 0), where the transformation coefficients from the
(α, β) picture to the (a, b) picture diverge [see Eq. (44c) in I].

The expression of Eq. (12) is useful to get a rough idea of
the relative position in energy among different TSD bands. For
instance, a contrast between J rig and J hyd for the case of large
s is found in the difference between yrast energies of (I, 0, 0)
and (I − 1, 1, 0):

Erot(I − 1, 1, 0) − Erot(I, 0, 0)

= 2(I − j )(
√

pq − Ax) − 2
√

pq − (p + q). (13)

In the limit of γ = 0 where Ax = Ay , Eq. (13) reduces to
−2(I − j )Ax − (Az − Ax), which is negative, and Erot(I −
1, 1, 0) is smaller than Erot(I, 0, 0). On the other hand, in the
limit where Ay = Az, which appears at γ = 30◦ for J hyd and
at γ = 60◦ forJ rig, Eq. (13) reduces to 2(I − j )(Az − 2Ax) −
4(Az − Ax), which becomes positive under the conditions of
I � j and Az > 2Ax . As J hyd changes more rapidly with
γ than J rig, the condition of Az > 2Ax is satisfied by J hyd

around γ ∼ 20◦. Thus, the energy level of (I − 1, 1, 0) is
located higher than the one of (I, 0, 0) for J hyd. On the other
hand, around the region of γ ∼ 20◦ which is far from 60◦,J rig

gives negative value of
√

pq − Ax , consequently the level of
(I − 1, 1, 0) is located lower than the one of (I, 0, 0). This
situation is not altered in the exact results (see Figs. 3 and 4
in I). Experimental data over Lu isotopes supports the levels
with I − 1 in TSD2 band is lower than those with I in TSD1
band for I > 45/2.

Now we compare the energy difference between yrare band
level of (I, 2, 0) and the yrast band level of (I, 0, 0) (	E2) to
the energy difference between the average of levels of (I −
1, 1, 0) and (I + 1, 1, 0) and the yrast band of (I, 0, 0) (	E1):

	E2 = Erot(I, 2, 0) − Erot(I, 0, 0)

= 4(I − j )
√

pq + 2
√

pq − 3(p + q), (14a)

	E1 = Erot(I + 1, 1, 0) + Erot(I − 1, 1, 0)

2
− Erot(I, 0, 0)

= 2(I − j )
√

pq + √
pq − (p + q) + Ax. (14b)

It is seen from Eq. (14) that 2	E1 − 	E2 = Ay + Az, which
gives a measure of what is called anharmonicity, i.e., the
deviation from the simple phonon approximation.

III. THE SELECTION RULES OF E2 AND M1
TRANSITION RATES

Diagonalization of H in Eq. (1) is carried out on the
complete set of D2-invariant bases with the same form as
given by Eq. (5), but K and � denote the eigenvalues of Iz

and jz, respectively. The E2 and M1 transition operators are
given by

M(E2, µ) =
√

5

16π
e
[
Q0D2

µ0 + Q2
(
D2

µ2 + D2
µ−2

)]
,

M(M1, µ) =
√

3

4π
µN

∑
ν=0,±1

[
(g� − gR)jν

+(gs − g�)sν + gRIν

]
D1

µν, (15)

where µN = eh̄/(2Mc), g� is the orbital g-factor, gs the spin
g-factor, gR the effective g-factor for the rotational motion.
The components of the intrinsic quadrupole moments, i.e., Q0

and Q2 are related with the deformation parameter γ through
the relation,

Q2

Q0
= − tan γ√

2
, (16)

which is consistent with the definition of J rig and Hsp in
Eqs. (3) and (2b).

In the practice of numerical analysis, the B(E2) and
B(M1) values for the intraband and interband transitions
among various TSD bands can be directly calculated from
the exact solutions to the Hamiltonian as already done in I.
Now, our interest is in the selection rules to pick up expected
linking transitions with stronger probabilities from various
allowed transition modes among the TSD bands, whose
relative positions in energy depend on either the rigid-body,
or the hydrodynamical model. For this purpose, we refer to
a pair of the quantum numbers (nα, nβ ) introduced by the
algebraic solution. We need the transformation coefficients
between two boson Fock spaces, i.e., the one is generated on
the quasivacuum |0〉α for quasibosons (α, β) and the other on
the vacuum |0〉a for HP bosons (â, b̂). Defining these overlaps
is an extension of the coefficient Gkl [6,13,14] to the case
with two kinds of boson. Such a set of the coefficients is
calculated by applying the extended form of the generalized
Wick theorem [15]. The eigenstates of HB in Eq. (9) are
expressed in terms of quasiboson numbers nα and nβ together
with I and j ,

|nαnβ, Ij 〉 = 1√
nα!nβ!

(α†)nα (β†)nβ |0〉α. (17)

Then, we consider the overlap between |nanb, Ij 〉 and
|nαnβ, Ij 〉,

GIj
na,nb ;nα,nβ

≡ a〈0|âna b̂nb (α†)nα (β†)nβ |0〉α
(na!nb!nα!nβ!)1/2

= a〈0|0〉α
(na!nb!nα!nβ!)1/2 a〈0|âna b̂nb (Ô)(α†)nα (β†)nβ |0〉α

(18)

with (Ô) ≡ 1/a〈0|0〉α . In this expression na(= I − K) and
nb(= j − �) stand for the eigenvalues of n̂a and n̂b,
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respectively. We notice that G
Ij
na,nb ;nα,nβ

is non-vanishing only
when an integral value of 	n ≡ na + nb − nα − nβ is even.
The value of G

Ij
na,nb ;nα,nβ

becomes 1 for na = nα and nb = nβ

only when, for the limit of I � j,Ay = Az forJ rig (γ = 60◦),
and an additional condition V = 0 is necessary for J hyd(γ =
30◦).

As discussed below Eq. (51) in I, an application of the
generalized Wick theorem reduces the expectation value of
the r.h.s. of Eq. (18) to a sum over (na + nb + nα + nβ − 1)!!
terms, which are products of (na + nb + nα + nβ)/2 factors
from

Aµν ≡ a〈0|(Ô)α†
µα†

ν |0〉α, Bµν ≡ a〈0|âµâν(Ô)|0〉α,
(19)

Cµν ≡ a〈0|âµ(Ô)α†
ν |0〉α,

where the operator âµ represents either â1 ≡ â or â2 ≡ b̂, and
α̂1 ≡ α̂ or α̂2 ≡ β̂. When the boson Bogoliubov transformation
is in the vicinity of an identity transformation, the matrix C

in Eq. (19) has finite diagonal elements, while elements of the
other matrices A and B are vanishingly small. Therefore, in
the realistic case, the matrix elements of A and B are expected
to be smaller in comparison with those of C. For the case of
	n �= 0,G

Ij
na,nb ;nα,nβ

gains A and/or B as extra factors. For
simplicity, we employ an asymptotic estimation by assuming
that I is large enough and the difference in the I -dependence of
G

Ij
na,nb ;nα,nβ

between the initial and the final states is negligible.

We drop indices I and j from G
Ij
na,nb ;nα,nβ

, and employ its
abbreviation as Gnanbnαnβ

.
In order to investigate how the Coriolis coupling affects the

wave function, we derive an explicit expression of Gnanbnαnβ

for the case of V = 0 from the algebraic solution leading to
the energy expression Eq. (12) in the last section. Then, the
Bogoliubov transformation connecting HP boson operators
(â, b̂, â†, b̂†) to quasiboson operators (α, β, α†, β†) expressed
in the form of Eq. (C1) in I is given by




α

β

α†

β†


 =

(
K N

M L

) 


â

b̂

â†

b̂†


 , (20)

where the submatrices are

K = L =




(
I

I−j

)1/2
η+ −

(
j

I−j

)1/2
η−

0
(

I
I−j

)1/2


 , (21a)

M = N =


−

(
I

I−j

)1/2
η−

(
j

I−j

)1/2
η+(

j

I−j

)1/2
0


 (21b)

with

η± =
{

1
sgn(p − q)

}[
1

2

(
p + q

2
√

pq
± 1

)]1/2

. (22)

Hence, the matrices defined in Eq. (19) become

A = MK−1 =




− η−
η+

(
j

I

)1/2
1
η+(

j

I

)1/2
1
η+

j

I

η−
η+


 , (23a)

B = −K−1N =


 η−

η+
I−j

I
−

(
j

I

)1/2

−
(

j

I

)1/2
0


 , (23b)

C = K−1 =




(
I−j

I

)1/2
1
η+

(
I−j

I

)1/2(
j

I

)1/2
η−
η+

0
(

I−j

I

)1/2


 . (23c)

Using Eq. (23), we obtain, for example, 	n = 0 diagonal
elements of G

G0000 = 1√
detK

=
(I − j

I

)1/2 1

η+1/2
, (24a)

G1010 = G0000C11 = I − j

I

1

η
3/2
+

, (24b)

G2020 = G0000

2!
(A11B11 + 2C11C11)

=
(I − j

I

)3/2 1

η
5/2
+

(
1 − η2

−
2

)
; (24c)

and 	n = 0 nondiagonal elements

G1001 = G0000C12 = I − j

I

(j

I

)1/2 η−
η

3/2
+

, (25a)

G1120 = G0000√
2!

(A11B12 + 2C11C21)

=
(I − j

I

)1/2(j

I

)1/2 η−
η

3/2
+

. (25b)

As for |	n| = 2 elements we obtain, for example,

G2000 = G0000√
2!

B11 = 1√
2

(I − j

I

)3/2 η−
η+3/2

, (26a)

G1100 = G0000B12 = −
(I − j

I

)1/2(j

I

)1/2 1

η
1/2
+

, (26b)

G2101 = G0000√
2!

(B11C22 + 2B12C12)

= 1√
2

I − j

I

I − 3j

I

η−
η

3/2
+

. (26c)

The factors
√

(I − j )/I and
√

j/I arise from the effect
of the Coriolis terms and the recoil terms, which are not
included in the case of BM. The factors of

√
j/I and η−

together with the increasing power in
√

(I − j )/I reduce
the contributions to the transition rates from non-diagonal
elements of G with 	n = 0 and 	n �= 0 digits. This implies
that the “	n = 0” approximation works even better for the
TSD bands in odd-A nuclei than in even mass case. We
remark that, only if we put j = 0,Gnanbnαnβ

with the digits
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TABLE I. The B(E2) value for the transition from the initial state of I to the final state of I − 2 among the bands with quantum numbers
(nα, nβ ) within “	n = 0” approximation. The common factor of 5e2/(16π ) is abbreviated. The higher order contribution of 	n �= 0 is denoted
by “h.o.”, and “−” represents that there is no level in the final states due to D2-invariance. Further details are in the text.

Final I − 2 Initial I

(0, 0) (1, 0) (2, 0) (3, 0) (0, 1)

(0, 0) (Q′
2G0000

2)2 – 3
I2 (Q′

0G0000G2020)2 – –
(1, 0) – (Q′

2G1010
2)2 – 9

I2 (Q′
0G3030G1010)2 [Q′

2(G0101G0110 +
G1010G1001)]2

(2, 0) h.o. – (Q′
2G2020

2)2 – –
(3, 0) – h.o. – (Q′

2G3030
2)2 h.o.

(0, 1) – [Q′
2(G0101G0110 + G1010G1001)]2 – 3

I2 [Q′
0(

√
3G3030G1001 +

G0101G2130)]2
(Q′

2G0101
2)2

nb = nβ = 0 reduces to Gnanα
[6,13,14], which is comparable

with the case of “wobbling” in BM [12]. Needless to say
that M1 transition is beyond the scope of the BM formalism,
which does not include a valence nucleon coupled to the
core.

An approximation collecting only a few terms of Gnanbnαnβ

in the lowest order is useful to derive selection rules, and
to estimate the order of magnitude of the transition matrix
elements. Since our interest is in the TSD bands with small n’s,
we choose an approximation taking only terms with Gnanbnαnβ

whose digits satisfy 	n = 0. As an example of realistic
calculation, we have compared the “	n = 0” approximation
and the “	n = 2” approximation with the exact results for
the B(E2) and B(M1) values in Table I in I. We found
that the “	n = 0” approximation simulates the exact results
reasonably well.

Associated with the change of quantization axis from z-
to x-axis, the components of quadrupole moment must be
transformed to


Q0

Q2

→



Q′
0 = − 1

2Q0(1 + √
3 tan γ )

Q′
2 = 1

2
√

2
Q0(

√
3 − tan γ ),

(27)

where we have used Eq. (16). In the algebraic treatment,
Q0 and Q2 in Eq. (15) must be replaced by Q′

0 and Q′
2,

respectively, and the algebraic expressions for B(E2) and
B(M1) are given by Eqs. (57) and (58) in I.

The reduced E2 transition rates B(E2) are summarized in
Tables I to IV. Table I is for the transition from the initial
states of I to the final ones of I − 2, Table II is to the
final states of I − 1, and Table III is to the final states of I .
Similarly, the approximate reduced M1 transition rates B(M1)
are summarized in Table IV for the transition from the initial
states of I to the final ones of I − 1, and in Table V to the
final states of I . The precession quantum numbers (nα, nβ )
assigned to the initial states of I are given in the second row
starting from the second column, while those assigned to the
final states are given in the first column in each table. The bands
with (0, 0) and (1, 0) are the yrast bands, and those with (2, 0)
and (3, 0) are the yrare bands for the case of J rig, while those
with (2, 0) and (0, 1) are the yrare bands for the case of J hyd

with large s (see Figs. 3 and 4 in I). As for the positive parity
bands in Lu isotopes, the yrast favored band has (0, 0) and
the yrast unfavored band has (1, 0), as j = 13/2 is assumed.
In Tables I, II, and IV, “h.o.” represents that the dominant
contribution starts from the higher order terms of |	n| = 2, or
4. In all tables, “ − “ represents that no level exists in the final
state by the D2-invariance. For simplicity, we abbreviated the
common factors 5e2/(16π ) from B(E2) and 3(µNgeff)2/(16π )
with geff ≡ g� + (gs − g�)/(2j ) from B(M1). Needless to say,
the diagonal elements of B(E2) for 	I = 0 transitions in
Table III, and those of B(M1) in Table V are not transition
rates, but are related with the square of static moments. The
elements in the diagonal position in Table I are related with

TABLE II. The B(E2) value for the transition from the initial state of I to the final state of I − 1 among the bands with quantum numbers
(nα, nβ ) within “	n = 0” approximation. The common factor of 5e2/(16π ) is abbreviated. The symbols are the same as defined in Table I.

Final I − 1 Initial I

(0, 0) (1, 0) (2, 0) (3, 0) (0, 1)

(0, 0) – 3
I
(Q′

0G0000G1010)2 – 3
I3 (Q′

2G0000G3030)2 3
I
(Q′

0G0000G1001)2

(1, 0) 2
I
(Q′

2G0000G1010)2 – 6
I
(Q′

0G2020G1010)2 – –
(2, 0) – 4

I
(Q′

2G2020G1010)2 – 9
I
(Q′

0G2020G3030)2 2
I
[Q′

2(
√

2G2020G1001 +
G0101G1120)]2

(3, 0) h.o. – 6
I
(Q′

2G3030G2020)2 – –
(0, 1) 2

I
(Q′

2G0000G1001)2 – 3
I
[Q′

0(
√

2G2020G1001 +
G0101G1120)]2

– –
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TABLE III. The B(E2) value for the transition from the initial state of I to the final state of I among the bands with quantum numbers
(nα, nβ ) within “	n = 0” approximation. The common factor of 5e2/(16π ) is abbreviated. The symbols are the same as defined in Table I.
The diagonal matrix elements are not transition rates, but related with the static quadrupole moments.

Final I Initial I

(0, 0) (1, 0) (2, 0) (3, 0) (0, 1)

(0, 0) (Q′
0G0000

2)2 – 3
I2 (Q′

2G0000G2020)2 – –
(1, 0) – (Q′

0G1010
2)2 – 9

I2 (Q′
2G3030G1010)2 [Q′

0(G0101G0110 +
G1010G1001)]2

(2, 0) 3
I2 (Q′

2G2020G0000)2 – (Q′
0G2020

2)2 – –
(3, 0) – 9

I2 (Q′
2G3030G1010)2 – (Q′

0G3030
2)2 3

I2 [Q′
2(

√
3G3030G1001 +

G0101G2130)]2

(0, 1) – [Q′
0(G0101G0110 +
G1010G1001)]2

– 3
I2 [Q′

2(
√

3G3030G1001 +
G0101G2130)]2

(Q′
0G0101

2)2

intraband or inband transition B(E2)in. All the other transition
rates in nondiagonal positions in all Tables correspond to inter-
band or out-of-band transitions, i.e., B(E2)out and B(M1)out.

Using the approximate formulas for the transition rates
given in Tables I and II, we show that the B(E2)out values
for the |	I | = 2 transition from TSD3 (2, 0) to TSD1 (0,0),
and for the |	I | = 1 transition to TSD1 (1,0) are reproduced
from the known |	I | = 1 transition from TSD2 (1,0) to
TSD1 (0,0) in 163Lu. Experimental B(E2)out/B(E2)in values
for the |	I | = 1 transition from TSD3 to TSD2 are around
0.51 ± 0.13 at I = 45/2, from TSD2 to TSD1 are around 0.2
for I = 37/2 ∼ 57/2, and |	I | = 2 transition from TSD3 to
TSD1 are around 0.02 for I = 37/2 ∼ 57/2 [3]. The |	I | = 1
transition from TSD2 (1,0) to TSD1 (0,0) are well explained
in terms of our model as demonstrated in I. The following
relations are derived from Tables I and II:

B(E2; I, 10 → I − 1, 00)

B(E2; I, 10 → I − 2, 10)
∼ 3

I

(
Q′

0G0000

Q′
2G1010

)2

, (28)

B(E2; I, 20 → I − 2, 00)

B(E2; I, 20 → I − 2, 20)
∼ 3

I 2

(
Q′

0G0000

Q′
2G2020

)2

, (29)

B(E2; I, 20 → I − 1, 10)

B(E2; I, 20 → I − 2, 20)
∼ 6

I

(
Q′

0G1010

Q′
2G2020

)2

. (30)

Thus, putting 0.2 in the l.h.s. of Eq. (28), we proceed with the
estimation as follows:

[r.h.s. of Eq. (29) = 1

I

(
G1010

G2020

)2

× [r.h.s. of Eq. (28)]

∼ 0.2

I
∼ 0.01, (31)

which is comparable with the experimental value of 0.02.
Similarly, we get

[r.h.s. of Eq. (30)] = 2

(
G1010

2

G0000G2020

)2

× [r.h.s. of Eq. (28)]

∼ 2 × 0.2 = 0.4, (32)

which is also comparable with the experimental value of
0.51 ± 0.13. Experimental B(M1)out/B(E2)in value from
TSD3 to TSD2 is around 0.006+0.006

−0.004(µ2
N/e2b2) at I = 51/2

[3]. This value is also related to the experimental value from
TSD2 to TSD1 for I = 35/2 ∼ 51/2, B(M1)out/B(E2)in ∼
0.006 [2], which is well explained in terms of our model as
presented in I. The following relations are derived from Tables I
and IV:

B(M1; I, 10 → I − 1, 00)

B(E2; I, 10 → I − 2, 10)
= 3(µNgeff )2

5(eQ′
2)2

4j 2

I

(
G0000

G1010

)2

,

(33)

TABLE IV. The B(M1) value for the transition from the initial state of I to the final state of I − 1 among the bands with quantum numbers
(nα, nβ ) within “	n = 0” approximation. The common factor of 3(µNgeff )2/(16π ) is abbreviated. The symbols are the same as defined in
Table I.

Final I − 1 Initial I

(0, 0) (1, 0) (2, 0) (3, 0) (0, 1)

(0, 0) – 4j2

I
(G0000G1010)2 – 2j

I2 (G0000G2130)2 4j2

I
(G0000G1001)2

(1, 0) 4j (G0000G0110)2 – 8j2

I
(G2020G1010)2 – –

(2, 0) – 4j (G1120G1010)2 – 12j2

I
(G2020G3030)2 8j (G0220G0101)2

(3, 0) h.o. – 4j (G2130G2020)2 – –

(0, 1) 4j (G0000G0101)2 – 4j2

I
(G2020G1001 +

G0101G1120)2
– –
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TABLE V. The B(M1) value for the transition from the initial state of I to the final state of I among the bands with quantum numbers
(nα, nβ ) within “	n = 0” approximation. The common factor of 3(µNgeff )2/(16π ) is abbreviated. The definition of the symbols is the same
as defined in Table I. The diagonal matrix elements are not transition rates, but related with the static magnetic moments.

Final I Initial I

(0, 0) (1, 0) (2, 0) (3, 0) (0, 1)

(0, 0) (2jG0000
2)2 – 4j

I
(G0000G1120)2 – –

(1, 0) – (2jG1010
2)2 – 8j

I
(G1010G2130)2 [2j (G1010G1001

+G0101G0110)]2

(2, 0) 4j

I
(G0000G1120)2 – (2jG2020

2)2 – –
(3, 0) – 8j

I
(G1010G2130)2 – (2jG3030

2)2 8j

I
(G0101G1230)2

(0, 1) – [2j (G1010G1001 – 8j

I
(G0101G1230)2 (2jG0101

2)2

+G0101G0110)]2

B(M1; I, 20 → I − 1, 10)

B(E2; I, 20 → I − 2, 20)
= 3(µNgeff )2

5(eQ′
2)2

8j 2

I

(
G1010

G2020

)2

.

(34)

Thus, putting 0.006 in the l.h.s. of Eq. (33), we proceed to the
estimation as follows:

[r.h.s. of Eq. (34)] = 2

(
G2

1010

G0000G2020

)2

× [r.h.s. of Eq. (33)]

∼ 2 × 0.006 = 0.012, (35)

which is comparable with the experimental value of
0.006+0.006

−0.004. In the above estimates, we have assumed the
diagonal elements of G as 1, i.e., Gmnm n ∼ 1. This approxi-
mation is well justified by the numerical analysis employing
J rig and the same set of parameters as in Figs. 1 to
4 (as for the parameters, see the subsequent paragraph).
The result gives G0000 ∼ 0.96,G1010 ∼ 0.92,G2020 ∼ 0.85
and G3030 ∼ 0.81 for I = 39/2 ∼ 59/2. For comparison, the
nondiagonal elements of G, which are referred to within
“	n = 0” approximation, are given by G1001 ∼ 0.09,G0110 ∼
−0.02,G1120 ∼ −0.05,G0220 ∼ −0.03, and G2130 ∼ 0.03,
whose magnitudes are much smaller than those of diagonal
elements. In addition, some |	n| = 2 values of G are given
by G2000 = 0.15,G3001 = 0.03,G1100 = −0.16 and G2101 =
0.12. These values are much smaller than the 	n = 0 diagonal
elements.

In order to clarify the difference between the rigid-body
model and the hydrodynamical model, we show the approxi-
mate B(E2)out and B(M1)out values together with the energy
level scheme specific to each model. The order of energy
levels through low-lying four bands is based on the results of
the exact diagonalization of H in Eq. (1) with s = 120,J0 =
52.4 MeV−1, γ = 17◦ and β = 0.38 at I = 53/2 both for J rig

(Figs. 1 and 2), and J hyd (Figs. 3 and 4). The initial and the
final levels are specified by attached angular momenta, and
the quantum numbers (nα, nβ ) below each band. We show the
schematic figure of B(E2)out without the common factor of
5e2/(16π ) in Figs. 1 and 3, and B(M1)out transitions without
the common factor of 3(µNgeff)2/(16π ) in Figs. 2 and 4. Since
our interest is in comparing the orders of strength among
competing transitions, we have replaced the diagonal elements
Gm n m n by 1 in both B values in all figures. In Figs. 1 and 2,

we show a level of I belonging to the favored yrast band with
(0, 0), two levels of I ± 1 belonging to each of the unfavored
yrast band with (1,0) and the unfavored yrare band with (3,0),
and two levels of I and I + 2 belonging to the favored yrare
band with (2, 0). Similarly, in Figs. 3 and 4, we show a level
of I belonging to the favored yrast band with (0, 0), a level
of I belonging to the yrare band with (2, 0), and two levels
of I ± 1 belonging to each of the unfavored yrast band with
(1, 0) and the unfavored yrare bands with (0, 1).

FIG. 1. The E2 transition schemes with J rig and the B(E2)out

values estimated from “	n = 0” and “Gmn m n = 1” approximation.
The left panel is for |	I | = 1, and the right panel is for |	I | = 0
and 2 interband E2 transitions. In each panel, the quantum numbers
assigned to each band (nα, nβ ) are shown underneath the typical
band levels of I or I − 1. The energy scale in the vertical direction
is arbitrary, but the energy differences are proportional to the exact
results obtained from the total Hamiltonian. The B(E2)out values
without a common factor 5e2/(16π ) are given beside the lines of
allowed transitions. According to their strength, the transitions are
classified by strong (thick solid), less strong (thick dashed), weak
(thin solid) and weaker (thin dashed) lines. Further details are in the
text.
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FIG. 2. The M1 transition schemes with J rig and the B(M1)out

values estimated from “	n = 0” and “Gmnmn = 1” approximation.
The left panel is for |	I | = 1, and the right panel is for 	I = 0
interband M1 transitions. The definition of symbols and the energy
scale are the same as in Fig. 1. The B(M1)out values without a
common factor 3(µNgeff )2/(16π ) are shown beside the lines of
allowed transitions. The transitions are classified with the same kinds
of lines as in Fig. 1. Further details are in the text.

FIG. 3. The E2 transition schemes with J hyd and the B(E2)out

values estimated from “	n = 0” and “Gmn m n = 1” approximation.
The left panel is for |	I | = 1, and the right panel is for |	I | = 0
and 2 interband E2 transitions. The definition of symbols is the same
as employed in Fig. 1. The energy scale in the vertical direction
is arbitrary, but the energy differences are proportional to the exact
results obtained from the total Hamiltonian. According to the strength,
the transitions are classified by strong (thick solid), less strong
(thick dashed), weak (thin dashed), weaker (dot-dashed) and weakest
(double-dot-dashed) lines. Special transitions independent of the
factor 1/I are indicated by strong (double solid) and less strong
(double dashed) lines. Further details are in the text.

FIG. 4. The M1 transition schemes with J hyd and the B(M1)out

values estimated from “	n = 0” and “Gmnmn = 1” approximation.
The left panel is for |	I | = 1, and the right panel is for 	I = 0
interband M1 transitions. The definition of symbols and the energy
scale are the same as in Fig. 3. The B(M1)out values without a
common factor 3(µNgeff )2/(16π ) are shown beside the lines of
allowed transitions. According to their strength, the transition are
classified by strong (thick solid), less strong (dot-dashed), weak
(double-dot-dashed), weaker (thin solid) and weakest (thin dashed)
lines. A special transition independent of the factor 1/I and non-
diagonal element of G is indicated by double solid lines. Further
details are in the text.

As for the B(E2)out values in Figs. 1 and 3, their magnitudes
are controlled by three factors as follows. (1) All the B(E2)
values depend on either Q′

0 or Q′
2, and (Q′

0)2 is larger than
(Q′

2)2 for γ > 0◦ as is seen in Eqs. (27). (2) The magnitudes
of the nondiagonal elements |Gnanbnαnβ

|(na �= nα ,and/or nb �=
nβ) are much smaller than the diagonal elements Gmnmn(∼1).
(3) The B(E2)out values with a factor 1/I 2 is much smaller
than those with 1/I for large I . Based on these rules, the
strong transition rate (Q′

0)2/I is denoted by thick solid line,
the next (Q′

2)2/I by thick dashed line, the third (Q′
0/I )2 by

thin solid line and the last (Q′
2/I )2 is by thin dashed line. As is

seen in Fig. 1, for example, the transition rate from the excited
unfavored band level of (I + 1, 1, 0) to the favored band level
of (I, 0, 0) is 3(Q′

0)2/I and denoted by thick solid line. While
the transition from the favored band level of (I, 0, 0) to the
unfavored band level of (I − 1, 1, 0) is 2(Q′

2)2/I , which is
weaker than the former and denoted by thick dashed line. This
staggering behavior of the transition is seen in Fig. 8 in I. All
the transitions in the right panel is smaller than those in the
left panel due to the factor 1/I 2.

In Figs. 2 and 4, the B(M1)out values obey the rules: (1)
Compared with the order of j/I which is about 0.25, the
square of the non-diagonal elements of G’s are smaller, for
example, (G1001)2 ∼ 0.008 and (G0110)2 ∼ 0.0004.(2)1/I 2 is
smaller than 1/I . Based on these rules, the strong transition
j 2/I is denoted by thick solid line, the next j (G0110)2 by thin
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solid line, the third j (G0110)2/I by thin dashed line in Fig. 2.
As is seen in the left panel of Fig. 2, the transition from the
yrare unfavored band level of (I + 1, 1, 0) to the yrast favored
band level of (I, 0, 0) is denoted by thick solid line, while the
transition from (I, 0, 0) to (I − 1, 1, 0) is denoted by thin solid
line. This staggering is seen in Fig. 8 in I.

In Figs. 3 and 4, we show the case ofJ hyd, where the favored
yrast, yrare and unfavored yrast bands have the same quantum
numbers as in the case of J rig, but the yrare unfavored band
have the quantum numbers (0, 1) instead of (3, 0). Although
the quantum numbers of the yrast favored and the unfavored
bands are the same both for J rig and J hyd, a contrast between
them is seen in the level order, as is discussed based on Eq. (13)
in Sec. II. The yrast favored band level of (I, 0, 0) is located
lower than the yrast unfavored band level of (I − 1, 1, 0). Thus,
there appear the transitions not only from I to I − 1, but also
from I to I + 1, which do not appear in Figs. 1 and 2 for J rig.
For example, the level of (I, 2, 0) decays not only to the I − 1
level, but also to I + 1 levels with (1, 0) and with (0, 1), as
is seen in the left panel of Fig. 3. The |	I | = 2 transitions
between (0, 1) and (1, 0) bands appear without 1/I factor in
the right panel of Fig. 3. Thus, in addition to the transitions in
Fig. 1, new types of transitions appear, i.e., the transition rates
of (Q′

0G1001)2/I and [Q′
0(

√
2G1001 + G1120)]2/I denoted by

dot-dashed lines, and those of [Q′
2(

√
2G1001 + G1120)]2/I and

(Q′
2G1001)2/I by double-dot-dashed line. In the right panel

of Fig. 3, the transition of [Q′
0(G1001 + G0110)]2 is denoted

by double solid lines, and that of [Q′
2(G1001 + G1001)]2 by

double dashed lines. These transition rates do not have explicit
I -dependence, though the nondiagonal G’s depend weakly on
I , so that they keep almost constant even for large I . As is
shown in Fig. 3, the transition rate from the level of (I +
1, 1, 0) to the level of (I, 0, 0) is the same 3(Q′

0)2/I as in
Fig. 1, but the transition from the level of (I, 0, 0) to the level of
(I − 1, 1, 0) never exists in the deexcitation process, since the
level of (I − 1, 1, 0) is located higher than the level of (I, 0, 0).
As for the |	I | = 2 interband transitions, there is the transition
from (I + 2, 2, 0) to (I, 0, 0) with the same transition rate
3(Q′

0/I )2 as in the right panel of Fig. 1, though it is not shown
in the right panel of Fig. 3.

Similarly, new types of M1-transitions appear in Fig. 4,
because of the difference between the cases of J rig and J hyd.
As is seen in the right panel of Fig. 4, the 	I = 0 transition rate
between (0, 1) and (1, 0) bands is in the order of j 2 multiplied
by the square of nondiagonal G’s, so that it keeps almost
constant independent of I , which is denoted by dot-dashed
line. In the left panel of Fig. 4, the transitions from the level
of (I + 1, 0, 1) to (I, 0, 0), and from the level of (I, 2, 0) to
(I − 1, 0, 1) are denoted by double-dot-dashed lines, since
they gain an extra factor 1/I in comparison with the transition
denoted by dot-dashed line in the right panel. Another special
type of transition from (I − 1, 0, 1) to (I, 0, 0) is found in
the left panel of Fig. 4. Its transition rate is in the order of
4j independent of I , and is denoted by double solid line.
The transition rate from the level of (I + 1, 1, 0) to (I, 0, 0) is
4j 2/I which is the same as in Fig. 2, but the transition from the
level of (I, 0, 0) to (I − 1, 1, 0) never exists in the deexcitation
process because of the level order.

IV. ANGULAR MOMENTUM DEPENDENT MOMENTS OF
INERTIA

It is a hard task for the theoretical work to reproduce the
experimental excitation energy relative to a reference, E∗ −
aI (I + 1) with a = 0.0075 MeV−1. By using Eq. (12) for E∗,
we can make a crude estimation of Ax and j from the gradient
of this curve as a function of I :

∂[Erot(I, 0, 0) − aI (I + 1)]

∂I

= 2(Ax − a)

(
I + 1

2

)
− 2Axj + √

pq. (36)

Most of the experimental curves shown by the dotted lines
in Figs. 5 to 8, decrease monotonically with I , but they
are a little bit convex upward. Therefore, regarding Ax − a

is negligibly small, we assume Ax ∼ a, and get a gradient
−2aj + √

pq. If j = 13/2, the contribution of the first term is
−2aj ∼ −0.097 MeV, but the gradient from the experimental
curves is about −0.025 MeV for the positive parity bands,
indicating

√
pq ∼ 0.072 MeV. Once the value of γ is fixed,

the gradient depends on the value of j , so that larger j gives
steeper gradient. The negative parity band TSD4 in 163Lu has a
steeper gradient than the other positive parity bands. If πj15/2

is adopted for j,−2aj + √
pq ∼ −0.11 + 0.072 ∼ −0.04,

which agrees with the experimental value of −0.05 for the
negative parity band TSD4 in 163Lu. In 163Lu, TSD4 band starts
from I = 47/2− up to 83/2−. If j = 15/2 and nβ = 0 (the
smallest value of nβ) are adopted, R(= I − j ) becomes even

10 20 30 40 50

I

0

0.5

1

1.5

2

2.5

TSD2

TSD1

expt.

theor.

TSD3

TSD4
163Lu

const.

TSD2

TSD3

E
*−

aI
(I

+1
)

FIG. 5. The comparison between the experimental and the
theoretical energy levels, E∗ − aI (I + 1) as functions of angular
momentum I for 163Lu. The vertical axis is in unit of MeV. For the
positive parity bands, filled squares connected with solid lines indicate
theoretical values, while filled triangles connected with dashed lines
indicate experimental values. The stars connected with solid lines
indicate the previous results with constant moments of inertia in I.
For the negative parity band, open diamonds connected with solid
lines indicate theoretical values, while open triangles connected with
dashed lines indicate experimental values. The experimental data are
from Refs. [2,3].
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FIG. 6. The comparison between the experimental and the
theoretical energy levels, E∗ − aI (I + 1) as functions of angular
momentum I for 165Lu. The vertical axis is in unit of MeV. The
meanings of the curves are as defined in Fig. 5. The experimental
data are from Ref. [4].

and nα takes an even value (see Eqs. (6) and (7)). Thus, TSD4
has precession quantum numbers (0,0). As for the negative
parity band TSD3 in 167Lu, we choose πh11/2, as TSD3 in
167Lu has a gradient similar to the other positive parity bands.
In 167Lu, TSD3 band starts from I = 27/2− up to 83/2−, and
R(= I − j ) becomes even for nβ = 0, consequently TSD3
also has precession quantum numbers (0,0).

The excitation energy relative to a reference decreases with
increasing I , and the dynamical moment of inertia increases
with increasing angular frequency. These experimental results
indicate there still remains the Coriolis antipairing (CAP)
effect in the rotating core even in the TSD bands. As an attempt
to reproduce the experimental energy curves, we simulate
the effect of decreasing pairing on the moments of inertia in
Eq. (3) simply by the replacement,

J0 → J0
I − 0.69

I + 23.5
. (37)
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E
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aI
(I

+1
)

FIG. 7. The comparison between the experimental and the
theoretical energy levels, E∗ − aI (I + 1) as functions of angular
momentum I for 167Lu. The vertical axis is in unit of MeV. The
meanings of the curves are as defined in Fig. 5. The experimental
data are from Ref. [5].
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FIG. 8. The comparison between the experimental and the
theoretical energy levels, E∗ − aI (I + 1) as functions of angular
momentum I for 161Lu. The vertical axis is in unit of MeV. The
meanings of the curves are as defined in Fig. 5. The experimental
data are from Ref. [10].

For the positive parity bands, πi13/2 orbital is assumed for the
single-particle angular momentum j , while for the negative
parity bands, πj15/2 is assumed for 163Lu and πh11/2 for 167Lu.
The value of J0 is assumed to be 77.6 MeV−1 for the positive
parity bands, and 81.6 MeV−1 for the negative parity bands.
As for the positive parity bands, only the band-head energy of
(0, 0) band is adjusted to the experimental band-head energy of
TSD1 in 163Lu, and nothing is adjusted over the isotopes. The
value of γ = 17◦ and V = 2.6MeV are fixed. Adopting these
parameters, we carried out exact diagonalization of the total
Hamiltonian with J rig on the D2-invariant basis in Eq. (5) to
obtain the energy levels for a given I . The precession quantum
numbers can be assigned without ambiguity to the theoretical
TSD bands in comparison with the algebraic solution, whose
accuracy has been demonstrated in I.

As for negative parity bands, the band-head energy of (0, 0)
band is adjusted to the experimental band-head energy in
each of 163,167Lu. In Figs. 5 to 8, we compare theoretical
energy levels of E∗ − aI (I + 1) with experimental ones. In
these figures, theoretical values are shown as filled squares for
positive-parity bands and open diamonds for negative-parity
bands connected by solid lines, while experimental values as
filled triangles for positive-parity bands and open triangles for
negative-parity bands connected by dashed lines. In Fig. 5,
for the sake of comparison, we add three curves for TSD1, 2
and 3 of 163Lu (the stars connected with solid lines), which
are calculated with the same constant moments of inertia as
adopted in I (J0 = 52.4 MeV−1 and s = 120). It is clearly seen
that the substantial improvement is attained by the inclusion of
angular momentum dependence for moments of inertia. Quite
good fits to the experimental data are obtained over isotopes.

By the crude estimation in Eqs. (14a) and (14b), we have
seen that (	E2 − 	E1) − 	E1 = −(Ay + Az) < 0. Thus,
	E2 − 	E1 corresponding to the energy difference between
TSD3 and TSD2 is expected to be less than the energy
difference between TSD2 and TSD1 (	E1). The exact results
also reproduce such an inequality, which is confirmed experi-
mentally as seen in Figs. 5 and 6. It is an interesting feature that
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all the positive parity TSD band levels are well reproduced in
terms of a common J rig over the isotopes 161,163,165,167Lu.
This suggests that additional pairs of neutron take part in
the superfluidity. Such a mechanism gives rise to the CAP
effect, which should be interpreted in terms of microscopic
formalism. As for the negative parity band, a larger J0 value is
needed to reproduce the experimental energy curve, implying
that the valence proton in different orbital may cause different
core polarization effect. This problem is also beyond a scope
of our macroscopic formalism.

V. CONCLUSION

The selection rules are inferred from the lowest order
overlaps between the original Holstein-Primakoff boson states
and the quasiboson states in which the total Hamiltonian is
diagonalized. The algebraic expressions for B values under the
“	n = 0” approximation are expressed in terms of the factor
1/I and the nondiagonal elements of the overlap coefficient G

depending on the precession quantum numbers. These simple
expressions for B values enable us to lead their relations
between the various transitions among TSD bands, which
are proved to be consistent with existing experimental data.
Such theoretical expressions for B values can help to identify
the observed TSD bands whose angular momenta are not yet
determined.

The algebraic formula for the simplified case of V = 0 is
useful to get crude physical ideas. For example, it provides the

energy level scheme over the TSD bands, predicting a measure
of anharmonicity, and contributes to guess the values of j and
Ax . It also elucidates the effect of Coriolis and recoil terms
caused by the valence nucleon on the transition rates through
the overlap coefficient G. Although the quantum numbers for
the yrast favored and unfavored bands are common both for
rigid-body and hydrodynamical moments of inertia, the level
scheme is different between two cases. Consequently, different
transition schemes come out.

We have extended the particle-rotor model including an
angular momentum dependence for moments of inertia,
which simulates the collapse of pairing correlation in the
rotating core. This method is applied to the odd-A iso-
topes 161,163,165,167Lu, as realistic examples. The particle-rotor
Hamiltonian with the rigid-body moments of inertia and with
only one set of parameters reproduces overall trends of the
energy spectra along the triaxial, strongly deformed (TSD)
rotational bands in four odd-A nuclei, i.e., TSD1, TSD2,
TSD3, and TSD4 in 163Lu; TSD1, TSD2, and TSD3 in 165Lu;
and TSD1 and TSD2 in 167Lu and 161Lu. As for the positive
parity bands, a valence proton occupies i13/2 orbital, while
for the negative parity bands the proton is assumed to occupy
j15/2 orbital in 163Lu and h11/2 orbital in 167Lu. Based on
the calculations with the rigid-body moments of inertia, we
find that preferable assignments of quantum numbers are
(nα, nβ ) = (0, 0) for TSD1 in 161,163,165,167Lu, (1, 0) for TSD2
in 161,163,165,167Lu, (2, 0) for TSD3 in 163,165Lu, and for the
negative parity band (0, 0) for TSD4 in 163Lu and TSD3 in
167Lu.
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