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NONLINEAR DYNAMIC BEHAVIOR OF PILE FOUNDATIONS:
EFFECTS OF SEPARATION AT THE SOIL-PILE INTERFACE

B. K. MAHESHWARIY and H. WATANABEY

ABSTRACT

During strong ground motion, pile foundations are subjected to two special effects. First, behavior of the soil
surrounding the piles is nonlinear. Second, large inertial forces are generated in the soil around the pile heads, causing
separation between the soil and pile. In this paper, a new approach is presented to overcome material nonlinearity of
the soil as well as geometrical nonlinearity arising due to separation. The analysis is performed in two steps. To
account for material nonlinearity, equivalent linearization is used in conjunction with a hyperbolic model of the soil.
The hyperbolic model defines the nonlinear stress-strain relationship of the soil. To deal with separation, a Winkler soil
model is used. The dynamic stiffness reproduced by the soil model is changed according to the degree of separation.
Depending on the level of excitation, different cases of separation arise which are investigated with skeleton curves. It
has been found that due to separation, dynamic response of the soil-pile system increases whereas the dynamic stiffness
decreases significantly.

Key words: dynamic analysis, dynamic stiffness, nonlinear response, pile foundations, separation, soil-pile interface,
Winkler soil model (IGC: H1)

soil as well as geometrical nonlinearity. In this paper both
INTRODUCTION of these nonlinearities are introduced for the dynamic
In the broad area of pile dynamics, research is primari-  analyses of pile foundations for lateral loading. Method
ly focused on linear dynamic analysis. Substantial proposed herein has practical significance in the earth-
research efforts have been made on the linear analysis of  quake resistant design of pile foundations and supported
single pile and pile groups in the frequency domain, as  structures.
shown by many researchers such as Novak (1974), Blaney During strong ground motion or dynamic excitation
et al. (1976), Novak and Nogami (1977), Kaynia and from the pile cap (or foundation structure), caused by
Kausel (1982), Gazetas (1984), Dobry and Gazetas (1988) machine excitations or wind induced vibration forces,
and Makris and Gazetas (1992). Few researchers large inertial forces are generated in the soil around the
performed the time domain analyses. Matlock et al. pile heads causing the phenomena of slippage and separa-
(1978) developed a unit load transfer curve approach, tion. Due to the complexity of the modeling involved,
also known as p-y curves, for the time domain nonlinear most of the existing theories, dealing with the dynamic
analysis. Additionally based on plane strain medium behavior of soil-pile systems, assume perfect contact
assumption in the frequency domain (Novak et al., 1978), between the pile and soil. However this is not valid for
Nogami and Konagai (1986), and (1988) have developed such large excitations. The focus in recent years has shift-
time domain analysis methods for axial and lateral ed to incorporate the nonlinear behavior of soil media in
response of single piles, respectively. Their analyses are the analysis. Using the finite element method in the
based on the assumptions of the Winkler soil model. frequency domain, Angelides and Roesset (1981) per-
For a rational and safe design of structures supported formed a nonlinear analysis. Nogami and Konagai (1987)
on piles, it is important that supporting pile foundations and Nogami et al. (1992) extended their earlier developed
are designed adequately considering the behavior of soil time domain models to incorporate geometrical non-
surrounding the piles. During strong ground motions, linearity for axial and lateral response, respectively.
behavior of soil becomes nonlinear and due to large Based on the Winkler hypothesis, El Naggar and Novak
inertial forces, slippage and separation may occur at the (1996) presented a nonlinear analysis for pile groups in
soil-pile interface. A rational design of pile foundations the time domain.
should take into account the material nonlinearity of the Here a simple and computationally efficient approach
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Fig. 1. Idealization of soil-pile system: division into a number of slices

is presented to deal with material nonlinearity of soil and
separation at the soil-pile interface. When excitation is of
such level that shear strains in the soil media fall in the
medium range (i.e. approximately 105 to 1073) then the
hyperbolic model of soil has proved to be quite promising
to deal with material nonlinearity, Ishihara (1996). For
such cases the shear modulus and damping ratio, both of
which depend on the level of shear strain, are the key
parameters to model the soil medium. In this paper,
equivalent linearization in conjunction with a hyperbolic
model is used to deal with material nonlinearity.
Methodology is briefly described here, and further detail
can be found in Maheshwari and Watanabe (1998).

Once material nonlinearity of the soil media is modeled
appropriately, the existing time domain Winkler soil
model is used to deal with separation. The model
proposed by Nogami and Konagai (1988) is used for the
linear analysis and a new method is proposed to deal with
separation. The methodology presented herein is simple
and computationally more efficient as it deals with sepa-
ration in a rational manner.

Depending on the level of excitation, there may be a
number of scenarios for separation. Three general cases
are identified, skeleton curves for all these cases are
derived and relevant formulation is presented. The linear
and nonlinear responses and dynamic stiffness of an
end-bearing single pile are compared. Using the
methodology proposed, it is possible to analyze floating
piles. Also the proposed methodology can be readily
extended for pile groups in a similar fashion as suggested
by El Naggar and Novak (1996).

MODELING OF THE SOIL-PILE SYSTEM

A model for the linear pile analysis in the time domain
as proposed by Nogami and Konagai (1988) is shown in
Figs. 1 and 2. It is assumed that a hard stratum exists
either at the pile tip or at some finite depth below the tip.
Thus, if a pile is not resting directly on the bedrock then
also it can be analyzed using the same methodology as

end bearing pile by assuming a fictitious pile (made of
soil) exists below the pile tip. As shown in Fig. 1, the soil-
pile system is divided into a number of layers. Properties
of the soil media may vary from layer to layer but
assumed to be constant in a particular layer. The load is
assumed to act at the pile head, which may be either due
to machine excitation or due to inertial forces generated
during seismic excitation. In this manuscript only
harmonic excitation is considered, though it is possible to
consider transient excitation.

TIME-DOMAIN WINKLER SOIL MODEL FOR
HORIZONTAL VIBRATION

Winkler’s hypothesis is used to analyze each layer of
the soil-pile system. According to this hypothesis, the
soil-pile interaction force at one level is related to the
displacement at that level only. Thus a separate Winkler
model is used for each layer, which is uncoupled from
that used in other layers. As shown in Fig. 2, each unit of
Winkler soil model consists of three Voigt models and a
mass connected in series. This model is developed from
the frequency domain plane strain solution (Novak et al.,
1978). Brief details of the development of this model,
emphasizing on its physical meaning, are described
below:

Consider an infinitely long vertical massless circular
cylinder embedded in an infinite elastic medium and
subjected to lateral harmonic excitations. Under the
conditions considered, strains do not vary in the axial
direction of the cylinder (and displacement w in vertical
direction is zero), and thus a plane strain condition exists.
The expression of the response of the cylinder is obtained
by solving two wave equations of the medium involving
displacements u (in radial direction) and v (in tangential
direction).

The complex horizontal stiffness related to a unit
length of the cylinder is given by (Novak et al., 1978):

Sy=nG(as )
4K (b))K (ai) + as K1(bF)Ko(ai) + b Ko(bd)K (i)
bi Ko(b3)Ky(ai) + as Ky(b§)Ko(ad) + b as Ko(bF)Ko(ai)
(1a)

where in the absence of material damping
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b() ’7 ’ ’7 (1 _2v) ( )
and
ag =aol; ap=wre/vy; i=4-—1 (Ic)

where a,=dimensionless frequency; ro=radius of the
cylinder; v,=shear wave velocity=./G/p; G =shear
modulus of the medium; p = mass density of the medium;
w = frequency of harmonic excitation; v=the Poisson’s
ratio; K;=second kind modified Bessel function of order
Js

Taking the limit v—0.5, 7= oc; and b¢ =0; Eq. (1a) is
simplified to:

S, = nG(at): [ 4K\(@) 1]

as Ko(ay)

Kl(a(’)k)
=4nGa}
nUay Ko(a(:)k)

+ nG(al)? (2a)

Substituting value of af in second term, this equation is
simplified to

Sy, =28, — pnriw?® (2b)
where
K 1(‘75k )
S, =2nGa¢ 2
o Ko(a(?{ ) (2c)

The first term in Eq. (2b), S, is identical to that for the
vertical stiffness (Novak et al., 1978) and the second term
corresponds to an inertia effect of a vertical mass equal to
the volume of the cylinder. It can be shown that the
lateral stiffness of the medium with Poisson’s ratio other
than 0.5 can be approximately expressed in the same form
as that in Eq. (2b) with a small modification (Nogami and
Konagai, 1988) i.e.

S¢= &S, = EuWpnrie’ €))

where functions &(v) and &,(v) depend only on Poisson’s
ratio. Values of these functions are given in Table 1.

Using Eq. (3), frequency dependent complex stiffness
can be expressed as a stiffness of a system made of fre-
quency-independent springs, dashpots and mass. Thus
Winkler soil model for horizontal vibration consists of
three Voigt models (each consisting of a spring and a
dashpot connected in parallel) and a mass connected in
series as shown in Fig. 2. The model parameters are
(Nogami and Konagai, 1988):

me=En(V)pnr (4a)
k1 3.518
kot = E(V)G X {3.581 (4b)
ks 5.529
c Gx 113.097
o =& () 0% | 25.133 (4c)
¢ Vs 9.362

Using Eq. (4), the model parameters of Winkler soil
model can be found. Constant numerical values on the

Table 1. Functions £, (v) and &(v) (after Nogami and Konagai, 1988)

Poisson’s ratio (v) &) &)

” 050 ! 2.000 1.0000
0.49 1.940 07828
0.48 1.883 0.6420
0.47 1.831 0.5336
0.46 1.784 0.4464
0.45 1.741 0.3740
0.43 1.667 0.2628
040 1.580 0.1428
0.35 1.476 0.0352
0.25 1.351 0
0.20 1.311 0
0.10 1.252 0
0.00 1.213 0

right side of Eqgs. (4b) and (4c¢) are the same as that used
in the Winkler soil model for vertical vibration. These
values are found by best-fit curve method so that stiffness
and damping of the unit (Winkler model) match those for
a plane strain continuous medium given by Novak et al.
(1978). Even though parameters of the model are
frequency independent, the model can still reproduce the
dynamic response of a plane strain medium for a wide
frequency range except at very low frequencies (relative
to the fundamental frequency of the soil deposit). This is
a very important characteristic by virtue of which the
model can be used in the time domain analysis.

Physical meaning of the model can be understood that
all the three springs and dashpots (together) reproduce
the stiffness and damping of the dynamic stiffness of the
soil medium while the mass reproduces the inertial
effects. It shall be noted that each unit of a Winkler soil
model reproduces the dynamic stiffness of soil in one
layer around the pile (on both sides), as shown in Fig. 2.

Using this model, complex soil stiffness of the medium
for lateral vibration at a particular frequency w is given
by, as shown by Nogami et al. (1992) for the far-field
element model:

ko=k,— mw? (52)
where
3 1 -1
o= [E ea t iwcn)} (50)

Where the constants m, k, and ¢, are given by Eqs. (4a),
(4b) and (4c¢), respectively.

In Fig. 3, the complex soil stiffness (computed for a
steady-state harmonic motion) reproduced by the time-
domain Winkler soil model is compared with those
directly computed by a plane strain solution in the fre-
quency domain (Novak et al., 1978). It can be observed
that there is a good agreement between the two results for
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and time domain approaches

both real and imaginary parts. This validates the Winkler
model for lateral vibration. Further detailed verification
can be found in Maheshwari (1997).

In the proposed approach, skeleton curves for three
cases of separation are derived. The dynamic stiffness
reproduced by the Winkler soil model is varied according
to these skeleton curves, thus simulating effects of separa-
tion. This approach is described in detail in Possible
Cases of Separation.

FORMULATION FOR NONLINEAR ANALYSIS

The following sections describe the methodology
proposed for this complex problem. Skhear Strains in Soil
Media and Hyperbolic Model of Soil and Equivalent
Linearization briefly describe the methodology to deal
with material nonlinearity, while Governing Equation of
Motion in the Time Domain provides brief detail on the
equation of motion in the time domain. In Possible Cases
of Separation, different possible cases of separation are
formulated and skeleton curves are presented and dis-
cussed in detail.

Shear Strains in Soil Media

A rigorous three-dimensional approach, based on
Green’s function formulation and proposed by Kaynia
and Kausel (1982), is used to deal with linear pile analysis.
In this approach the force-displacement relationship is
expressed in terms of the degrees of freedom at the ends
of the pile (pile head and pile tip). Since the external
force(s) acting at pile head and the boundary condition(s)
at the pile tip are known, the displacements at the pile
ends can be found using the aforementioned force-
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5 R””’“i displacement relationship. Subsequently the forces at the
v=0.5 F-Domain pile-soil interface P can be computed with the known pile
4r /"4’7"__.\—. T-Domain end displacements, as shown by Maheshwari and
3 N L =53° . . Watanabe (1998). Once the force vector P is known, the
2 o e displacement at any point in the vicinity of the pile in all
g 2t ® the three directions can be computed using the relation:
gl U=FP ©)
0 . o = v o o where =F; denotes the soil-flexibility matrix derived for
o o1 ’ - o y ' ’ ' the distance at which displacements are desired when the
Iragmy:y"m * source of the disturbance is the axis of the pile. With the
8 . known displacements in all three directions, the shear
F-Domain strains for the planes perpendicular to the z axis (vertical)
< 8F T-Domain are computed by (Maheshwari and Watanabe, 1998):
g L ]
g Ury— Uy WiI— Wy
%4l o=y L0 7a
£ v Az Ax (72)
E 2L Vo—Vg Wi— Wy
= 7b
Yy Az Ay (7b)
% 0.1 02 03 04 05 0.6 where u, v and w are the displacements in the x, y and z
Frequency a = oryv, directions, respectively, and the subscript denotes the
location of points with subscript (;) for the point where
Fig. 3. Complex soil stiffness in horizontal vibration using frequency  gtrains are calculated. For computation, Ax=Ay=Az=

ro is taken, where 7y is equal to the radius of the pile. Out
of two shear strains computed from Eqgs. (7a) and (7b),
the maximum one is selected. Thus the maximum shear
strain in each layer of soil is found at a particular fre-
quency. This process is repeated for all the frequencies
under consideration to find the absolute maximum value
of shear strain in each layer.

Hyperbolic Model of Soil and Equivalent Linearization

The shear modulus and damping ratio, both of which
depend on the level of shear strain, are the key
parameters to model the soil medium. Therefore to
model nonlinear behavior of the soil a hyperbolic model
of soil is used. The governing equations for this model are
Hardin and Drnevich (1972)

G 1
= 8
Guax 19/ (82)
D y/n (8b)

Duex  1+7/7:

where G and D represent the shear modulus and damping
ratio (at a particular strain y) for soil, respectively; Guax
and Dy, represent the maximum values of G and D,
respectively; y, represents the reference strain for the
given soil media. Using Eqs. (8a) and (8b), new properties
of soil medium are found based on 2/3 of the absolute
maximum value of shear strain. Thus, iterations are
carried out until properties of soil get converged,
Watanabe (1978).

Governing Equation of Motion in the Time Domain

The loading time history is digitized at each time incre-
ment. Governing equation of motion for the flexural
response of the pile at r=¢, is:
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d“ui

dz

where u; and #; are lateral displacement and acceleration
of the pile respectively at the soil-pile interface at time #;
E,I'is the bending stiffness of the pile shaft; m, is the mass
per unit length of the pile; and p; is the soil-pile interac-
tion force at #. By expressing the acceleration #; in terms
of the displacement u;, and the known displacement,
velocity, acceleration at previous time step #.,, and
expressing the interaction force p; in terms of displace-
ment #; (such as shown later in Eq. (11a)) Eq. (9) is solved
for response u; of the soil-pile system. Further detail
on solution technique is given in SOLUTION OF
EQUATION OF MOTION AND SEISMIC ANALYSIS.

E,I

+ myii = — p; ©)

Possible Cases of Separation

As the level of the excitation (depending on the ampli-
tude and frequency contents) increases, the force at the
soil-pile interface increases. When this force exceeds a
certain threshold value(s), given by the confining pressure
and shear strength of the soil, separation occurs in a
particular way. Although there may be a number of cases
for this phenomenon but these may be classified in the
following four groups:

No Separation
In this case it is assumed that pile and soil remains in
perfect contact. This is expected to occur if

pi<p. where p.=2nr.o. 10)

Where as before p; is the soil-pile interaction force and
p. is the threshold value for the interaction force derived
from the confining pressure o. in the soil springs. As
shown by Nogami and Konagai (1988), for perfect
contact, p; (the soil-pile interaction force at time #,) can
be expressed in terms of displacement as follows:

Di= qi+ mis (11a)
where
q:=ku;+ d; (11b)
3 -1
k= [ ) Iu(At)] (110)
n=1
3 3
di: -k Z u1—1,n€_6"m—kpi71 Z Hn(Af) (lld)
n=1 n=1
Hi(AD)=— Sy VIR P ¥ (11e)
! ko | OnAt oAt
1 1 1
(A =—| [1-——] + -aat 11f
L(4n kn[(l Mz) 6aat© } (11H
5n=kn/cn (llg)

It shall be noted that k, in Eq. (5a) represents the
dynamic stiffness for Eq. (11a). However, the former is in
the frequency domain while the later is in the time
domain. In these equations, the constants m, k, and c,
are determined using Eqgs. (4a), (4b) and (4c), respectively

Fig. 4. Skeleton curve for separation on one face of the pile

with the converged properties of soil (obtained after
equivalent linearization), while A7 represents the time
step.

Separation on One Face of the Pile Only

For this case, it is assumed that at a time the soil
separates from one side of the pile only. In other words,
at all time there is a perfect contact between the soil and
pile on at least one side. This would be possible only, if
the gap formed on one side (until rebound occurs from
the other side) is less than the elastic displacement of the
soil. This will occur if

where pr=2nryo¢

(12)

where pr is the ultimate threshold value for the interaction
force derived from the compressive strength a; of the soil.
Since the soil resistance of both sides of the pile has been
modeled using a single Winkler model, when soil at one
side of the pile separates, the dynamic stiffness k, of the
model, is reduced to half for further loading. The dynam-
ic stiffness (including the effect of inertia) of the soil
model in the lateral direction is given by Eq. (5). It can be
seen from these equations that the dynamic stiffness will
be reduced to half, if value of each element of Winkler
soil model (i.e. all three springs and dashpots as well as
lumped mass of soil) is reduced to half. Thus when sepa-
ration occurs on one side of the pile only, Eqgs. (11) are
still valid provided the dynamic stiffness of the spring is
reduced to half by multiplying each parameter of Winkler
soil model by 50%.

The skeleton curve showing force-displacement
relationship of soil spring for this case is as shown in
Fig. 4. Conditions for separation and re-connection can
be derived from this figure. Since it is assumed here that
the force in the soil spring remains within the elastic limit,
under periodic loading, the displacement is recovered
during load reversal. Thus, as shown in Fig. 4, the stiff-
ness of the soil spring remains half until reconnection
between the soil and pile occurs at point A during reversal
of load. After reconnection the stiffness is restored to its

De=pDi=Ds
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Fig. 5. Skeleton curve for separation on one face and yielding on
other

full value.

Again the soil is separated on other side at point C
(Fig. 4), if the interaction force in the spring again
reaches its threshold value. For periodic loads this cycle
of separation and reconnection continues for subsequent
cycles of loading.

Separation on One Face While Yielding on Another
The skeleton curve for this case is shown in Fig. 5. Here
it is assumed that the soil on one side of the pile is
separated (point A) and, before reversal of the load
occurs, the force in the soil spring on other side reaches
its ultimate limit (point B). Thus, yielding of soil occurs
on the other side. Yielding occurs here but no permanent
gap in the soil is considered. Displacement up to separa-
tion (point A) will be referred to as elastic displacement
(u.) and the displacement during yielding (B-C) as a
plastic displacement (u,). Before reversal of the load
occurs (at point C), the interaction force reaches the
yielding value (at point B). For this case plastic displace-
ment (u,) should be less than two times of elastic displace-
ment (u.). Condition for this case can be formulated as

pi=p; (13)

Second condition in Eq. (13) can be derived by the geo-
metry of the Fig. 5§ for the limiting case when point D
touches the u axis. During yielding, the stiffness of soil
spring reduces to zero and displacement occurs at a con-
stant value of force equal to p; as shown in Fig. 5. During
yielding the equation of motion (Eq. (9)) can be solved di-
rectly setting p; = p;, and the right hand side does not de-
pend on u;.

During load reversal (C-D), the stiffness of soil spring
is half of the original value and at point D the pile again
comes in contact with the separated part (before the force
in the spring reaches a zero value). At point D the soil
spring attains its full original stiffness. This process is
repeated in another direction (D-E-F-G-H) in the same
way as (O-A-B-C-D) and this cycle continues.

and  u,<2u.

Fig. 6. Skeleton curve for separation on both faces

Separation on Both Faces (Delinking)

The skeleton curve for this case is shown in Fig. 6.
Steps OA and AB are the same as in the previous case but
it is assumed that in this case yielding (B-C) occurs for a
longer duration, and the condition for this case to exist is

pi=zpr and  u,=2u, 14)

As a result of longer yielding, during rebound (C-D),
the force in the spring that is not separated reaches a zero
value (point D) before the pile reconnects the soil on the
separated part (on another face). Since all the potential
energy is released, the soil separates from the other side
also. Thus, delinking of the soil and pile occurs, and the
pile moves freely to another side (D-E) until it comes in
contact with the soil again (point E). From point E to F
there is connection on one side only and then at point F
the force in the soil spring reaches the yield value again
and this process continue. During delinking, the right-
hand side of the equation of motion (Eq. (9)) is zero and
it is solved for free movement of the pile.

In the above three cases (Separation on One Face of the
Pile Only, Separation on One Face While Yielding on
Another and Separation on Both Faces (Delinking)) three
special terms, separation, yielding and delinking have
been used to define the different phenomena occurring.
The meaning of these terms in the present context are
summarized in Table 2.

SOLUTION OF EQUATION OF MOTION AND
SEISMIC ANALYSIS

Winkler soil model provides the dynamic stiffness of
the soil and when it is coupled with dynamic stiffness of
the pile it provides the dynamic stiffness of the system for
a single layer. Thus governing equation of motion for the
flexural response of the pile at a particular time step is
given by Eq. (9) (reproduced here for convenience):

4
EPI%+mpiii= —Di
where soil-pile interaction force p; on the right hand side
is defined in FORMULATION FOR NONLINEAR
ANALYSIS for a particular case of separation. For

(15)
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Table 2. Possible cases (considered) in separation
Criteria . .
Phenomena Definition (p;= Soil-pile Physical modeling

interaction force) (k, = Dynamic stiffness)

Perfect contact on both
faces of the pile

No separation

p=pg
(pe=27nr0.)

k2 % k2

P =Di=py;

Separation Separation at one face, k2 =0
perfect contact on other (py=2mryoy) HN\,—% MAR

Yielding Separation at one face, pi=Py k=0 k=0
yielding of soil on other 4—/\/\/\/% MA—R

(yielded)

Delinking Separation at both faces; If yielding occurs and k=0 :// k=0

free movement of the pile u,=2u,. +=WA- % MA—R
((p)ccurs when p;=0). 7

example for no separation, p; can be expressed in terms of
displacement u; (Eq. (11)). With this Eq. (15) is simplified
to a fourth order differential equation, solutions of which
will provide the displacement #; however the expression
becomes extremely complex after a few time steps. In
order to develop an approximate solution in a simple
form, the expression for the displacement u; is assumed to
be a polynomial form with least number of terms
required to define boundary conditions at the ends of the
pile segment. Unknown constants of this expression are
determined by satisfying boundary conditions at the ends
of the segment. Thus finally a relationship between dis-
placement (rotation) and shear force (moment) at the two
ends of the segment can be obtained. Next considering
the equilibrium and compatibility conditions between the
two adjacent segments, for all segments, leads to the
expression for the responses at the bottom of the nth
segment given by (Nogami and Konagai, 1988):

0 M, P\T (7] 0 M, P\
iy Uis 5 7 1~ & = n Ui, Ui, = =
“ P ET EI), EI E,

where the subscripts 0 indicates the pile head. Computa-
tion of matrices T, and Q, depend on the properties and
geometry of the soil-pile system, time interval A¢ and
known values (of displacement and rotation) at previous
time step, details can be found in the above cited refer-
ence.

Seismic analysis is performed for the vertically
propagating shear waves. Control point for seismic
excitation (where input motion is applied) is assumed at
the surface of the bedrock. For seismic analysis, shear
force (and moment) acting at the bedrock (n=N) is
known while displacement and rotation are zero at n=N.
Thus Eq. (16) can be solved to find the displacements
(including rotation) and forces (including moment) at pile
head due to seismic excitation. Once these values at pile
head are known, the same at any depth (72) can be found
from Eq. (16).

+{Q:} (16)

DATA USED IN COMPUTATION AND
VERIFICATION OF THE PROPOSED METHOD

The following initial properties for the soil and pile are
used in computation:

E,/E=800; p/p,=0.7;
or=200kPa; L/d=15;

g.= 100 kPa;
v=0.35;

where E, and E are Young’s modulus for the pile and soil
respectively. L and d are the length and diameter of the
pile, respectively, and p, is mass density of the pile. The
pile is assumed to be of concrete. The modulus as well as
the strength of the soil mentioned are those at the surface
and assumed to be linearly increasing with the depth. The
values of these parameters for bottom layer are assumed
to be twice of that for the top layer.

Since a rigorous method is used, its verification is
imperative. One of the illustrations for verification is
shown in Fig. 3 where complex soil stiffness computed by
proposed method is compared with plane stain solution.
It shall be noted that agreement between two methods is
good and results shown can be compared with those
presented by Nogami and Konagai (1988). Authors also
performed experimental verification (though for linear
case only) shown in the following section.

EXPERIMENTAL VERIFICATION

Small-scale tests for soil-pile system were conducted on
shake table at Saitama University. Tests were carried out
for a single pile as well as for a group of 5 piles for
sinusoidal excitation. Objective of tests were to verify the
theoretical model and algorithm used in the analysis.
Tests were conducted only for linear analysis (assuming
perfect bond between soil and pile). Here results of a
single pile system are presented.

Model used in experiments is shown in Fig. 7. A
synthetic resin i.e. acrylic material was used for the pile
and for the footing. Properties of the material (simulat-
ing pile) are:

E,=3.041 GPa; p,=1190Kg/m?
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Fig. 7. Model used in experiments for a single pile

For simulation of ground, a box (dimension of which
were very large as compared to footing) filled with silicon
putty is taken. Properties of this material (simulating
soil) are:

E=0.1894 MPa; p=945Kg/m3;, v=0.292

Authors would like to acknowledge that these proper-
ties of the material used to represent pile and soil are
significantly different than those of real material.
However still ratio E,/E = 16,000 is within practical range
(representing a very soft soil and a very stiff pile). Further
ratio p/p,=0.79 is very close to that used for real
materials and v is in practical range. It shall be noted that
for a soil-pile interaction analysis ratios (E,/E and p/p,)
are more important than the absolute values of Young’s
modulus and density (of soil and pile) as demonstrated by
other researchers.

In experiments, displacements were measured (using
strain gauges) at three different levels:

(i) Input harmonic displacement (amplitude u,) at
the bottom surface of the ground (box).

(ii) The free-field displacement (amplitude u,) at the
ground surface i.e. at a considerable distance
from the pile where there will be no influence of
piles.

(iii) At the centroid of the footing (amplitude uy).

Normalizing the latter two displacement amplitudes,
with respect to the amplitude of input motion, corre-
sponding magnification ratios are computed. Figure 8
shows the variation of these magnification ratios with

10
Ground (T)

Footing (T)

Ground (E)

.
Footing (E)

[&]

Magnification Ratio

a 10 20 30 40
Frequency (Hz}

Fig. 8. Comparison of theoretical (T) and experimental (E) results

frequency of excitation (f) in Hz. It can be observed that
theoretical and experimental results are in very good
agreement for both responses of ground and footing.
Also it can be observed that there is not a significant
difference in the response of ground and footing which is
justified from the fact that for experimental range of
frequency, parameter (@, = wro/v,<0.04) and for this low
value of dimensionless frequency ay, ratio (ur/u,) remains
near unity (Kaynia and Kausel, 1982). Thus this verifies
the model and algorithm used in the analysis.

EFFECTS OF NONLINEARITY

The effects of separation on the behavior of an end-
bearing single pile are examined for harmonic loading
using the time domain approach. The time history is
plotted, and then amplitude of interaction force and
displacement at the pile head are noted to infer various
results. Results are presented as follows:

Depth of Separation

To estimate the depth of the separation, the variation
of the maximum interaction force and the lateral dis-
placement with depth is plotted in Fig. 9 (assuming no
separation). In this figure the depth z is normalized with
the length L of the pile. It can be seen that both the force
and displacement have higher values around top of the
pile, and decrease rapidly at greater depth. From this
figure it can be seen that the soil strength is higher at
greater depth while the interaction force is lower. This
suggests that separation occurs only in some top layers
where interaction force is exceeding the resistance of the
soil.

Response for No Separation

Force and displacement time histories for top layer
assuming no separation are shown in Fig. 10 for a single
pile. The hysteresis loop for the force and displacement is
also shown in this figure. It can be observed that for a
steady-state harmonic motion, both displacement and
interaction force time histories represent steady-state
conditions. In addition, value of displacement amplitude
obtained was verified with those obtained by frequency
domain method (Kaynia and Kausel, 1982). This also
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verifies the proposed method.

Concept for the Phase Correction

The force-displacement time histories for separation
on one face are shown in Fig. 11. It can be observed that
it does not represent a steady state condition even for an
input harmonic excitation. The reason for this is investi-
gated and described as follows.

In case there is no damping in the soil, the load and
displacement will not have a time lag. Therefore the load
vs. displacement can be traced correctly on the hysteresis
curve. However, in the case of damping (which usually
exists), the time lag disturbs recognizing the trace of true
load corresponding to displacement (response) at the
point of reconnection on the hysteresis curve. Thus, if the
calculated load, corresponding to the displacement at the
point of reconnection is adopted, this is not the true load
on the hysteresis. Therefore, the time lag must be
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separation

removed to know correctly where load and displacement
are on the hysteresis curve. Due to this lag, the force and
displacement time histories do not attain a steady state
condition as shown in Fig. 11.

Since dual criteria have been used to define separation
(criteria is force) and reconnection (criteria is
displacement), and these two parameters have time lag, a
correction was required so that displacement was only
criterion for separation as well as for reconnection.
Figure 12 shows the process to remove this time lag, so
called phase correction. It can be seen that when there is
no damping, both force and displacement reaches its
maximum value simultaneously and no correction is
required. But in the case of damping, a phase correction
is required. The essence behind this phase correction is
that after separation (defined by the value of force),
reconnection should be at a time where one obtains the
same force as it was at the time of separation, after
accounting for the time lag as shown in Fig. 12. Thus with
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Fig. 12. Concept for the phase correction

damping, if separation occurs at point B then reconnec-
tion would be at point D as illustrated in second part of
Fig. 12.

Separation on One Face

After applying the phase correction, Fig. 13 shows the
force displacement relationship for the top layer. Due to
phase correction, both force and displacement time
histories become steady state. Comparison of Figs. 11
and 13 shows the effect of phase correction. Subsequent
results are derived with phase correction.

The responses for the linear (no separation) and non-
linear (separation on one face) cases are compared in
Fig. 14. As expected, separation increases the displace-
ment and decreases the force, i.e. the nonlinearity is
reducing the stiffness of the soil. It can be observed that
due to effect of separation, amplitude of displacement is
increased from about 5.5 cm to 8.0 cm i.e. an increase of
about 45%. Similarly second half of Fig. 14 shows that
due to nonlinearity, amplitude of force is reduced by
about 25%.

The dynamic stiffness of a single pile-soil system is
computed at different frequencies by the time domain
approach presented here. The results for linear and non-
linear cases are shown in Fig. 15. The frequency is
presented in dimensionless form using the radius of pile
and shear wave velocity of the soil. For the linear case,
results of both real and imaginary parts can be verified
with those obtained by the frequency domain solutions.
It can be observed that there is not much variation in real
part (stiffness) with frequency while imaginary part
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Fig. 13. Behavior of soil-pile interaction in top layer assuming

separation at one face (with phase correction)
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Fig. 14. Comparison of linear and nonlinear response of a single pile

(damping) is almost linearly increasing with frequency.
Trends of the results are similar to those shown by Kaynia
and Kausel (1982) and Maheshwari and Watanabe
(1998). This verifies the proposed method again.
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Also it can be observed in Fig. 15 that due to non-
linearity both the real and imaginary parts of the stiffness
are decreasing at all frequencies of excitation. Also effect
of nonlinearity is much sensitive to frequency of
excitation. In general, for the data used in the analysis,
effect was more at higher frequencies and relatively less at
low frequencies (around ay=0.1). Thus the difference
between linear and nonlinear stiffness is increasing with
frequency of excitation.

The results presented in Figs. 14 and 15 have similar
trends as those presented by Nogami et al. (1992) for
separation at the soil-pile interface thus validating
presented approach. Also similar effects of separation
were observed by Maheshwari et al. (2003) for a single
pile and Maheshwari et al. (2004) for pile group using a
three-dimensional finite element model.

Separation on Both Faces

Further results are derived for separation on both
faces, i.e. when a gap is formed. Figures 16 and 17 show
these results for two cycles of loading when there is no
damping in the soil media for two different levels of non-
linearity. Level of nonlinearity is defined by a factor R
given by
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Fig. 16. Behavior of soil-pile interaction in top layer assuming
separation on both faces, without damping for (R=0.3)
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Fig. 17. Behavior of soil-pile interaction in top layer assuming
separation on both faces, without damping for (R =0.35)
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R =Puaux/(pX L) an

where P is the amplitude of the force for harmonic
excitation, while p. is defined in Eq. (10).

From Figs. 16-17, it can be observed that as time
elapses, the amplitude of the displacement in both cases
increases, while the force remain limited due to yielding.
Duration for which force becomes zero (in Force-Time
history—top figure) corresponds to delinking. Compari-
son of Figs. 16 and 17 reveals that when the amplitude of
the excitation is increased (i.e. value of R is increased
from 0.3 to 0.35) the amount of gap between soil and pile
increases significantly. Also displacement is increased
significantly and hysteresis loop becomes wider.

CONCLUSIONS

A new approach is presented to perform the analysis
for separation (at the soil-pile interface), using the
existing time domain Winkler soil model. Material non-
linearity of soil is also accounted in the analysis. For
different possible cases of separation, skeleton curves are
shown and the constitutive relationships are formulated.
Also relevant formulation is developed. For dealing with
separation, a phase correction is necessary. A method to
estimate this correction is proposed.

It was observed that response of pile foundation
increases significantly due to geometrical nonlinearity
(separation). The dynamic stiffness of the soil-pile system
decreases considerably. The effect of separation on the
response and the dynamic stiffness is frequency depend-
ent and increases with the level of nonlinearity. As the
level of nonlinearity increases, separation becomes more
intense, heading towards yielding and delinking and thus
increasing the gap. Though the results derived in this
paper are for a single pile but the proposed methodology
can readily be extended for pile groups.

As the effect of separation on the response of pile
foundations was significant, the proposed method
assumes practical importance in the rational and safe
design of pile foundations for earthquake loading.
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