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SUMMARY  One of the ways to execute a processing algo-
rithm in high speed is parallel processing on multiple computing
resources such as processors and functional units. To identify
the minimum number of computing resources, the most impor-
tant is the scheduling to determine when each operation in the
processing algorithm is executed. Among feasible schedules sat-
isfying all the data dependencies in the processing algorithm, an
overlapped schedule can achieve the fastest execution speed for
an iterative processing algorithm. In the case of processing algo-
rithms with operations which are executed on some conditions,
computing resources can be shared by those conditional oper-
ations. In this paper, we propose a scheduling method which
derives an overlapped schedule where the required number of
computing resources is minimized by considering the sharing by
conditional operations.

key words:  scheduling, high-level synthesis, digital signal pro-
cessing, conditional branch, overlapped schedule '

1. Introduction

One of the ways to execute a processing algorithm in
high speed is parallel processing on multiple computing
resources such as processors and functional units. The
number of computing resources must be no less than
the maximum number of operations in the processing
algorithm to be executed concurrently. Therefore the
required number of computing resources may vary de-
pending on when each operation is executed. Schedul-
ing in high-level synthesis is to determine when oper-
ations are executed for either of the following targets.
One target is to minimize the required number of com-
puting resources for a specified time limit to complete
the processing algorithm. The other target is to mini-
mizing the required time to complete the processing al-
gorithm for a specified maximum number of computing
resources. These are called time-constrained schedul-
ing and resource-constrained scheduling, respectively. In
this paper, we concentrate on time-constrained schedul-
ing.

An iterative processing algorithm performs an
identical processing repeatedly on each of an indefi-
nitely continuing series of input data. An example of it-
erative processing algorithm is digital signal processing.
Each repetition of the iterative processing algorithm is
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called an iferation. In a static execution of the iterative
processing algorithm, if the input data arrive periodi-
cally, then an iteration must also be initiated periodi-
cally on each arrival of input data. However, it does
not mean that all the operations in an iteration are to
be completed within the period. We can postpone some
operations to be executed in parallel to the operations
of the next iteration. Hence several iterations can be
executed in parallel so that iterations overlap with each
other. Such a schedule is called a overlapped sched-
ule. By overlapped scheduling, a shorter period can be
achieved than the longest operations in the processing
algorithm. Therefore higher speed processing can be
realized by overlapped scheduling.

Operations in a processing algorithm may vary de-
pending on the input data or intermediate results of
the processing algorithm. In that case, some operations
are executed only when a certain condition holds. The
operation whose execution depends on a condition is
called a conditional operation. If one conditional oper-
ation is executed when a condition holds and another
conditional operations is executed when the condition
does not hold, then these two operations can be sched-
uled to be executed at the same time on an identical
computing resource since these operations are executed
mutually exclusively. We should consider sharing a
computing resource by mutually exclusive operations
in scheduling a processing algorithm containing condi-
tional operations.

For scheduling processing algorithms with condi-
tional operations, some scheduling methods have been
proposed [1]-[4]. Modeling scheduling as a binary in-
teger nonlinear programming and using binary decision
diagram (BDD) to solve it is proposed in [2]. Although
this approach derives an optimal schedule, the problem
size is limited by a BDD package used. A heuristic
scheduling method for relatively large processing algo-
rithm is proposed in [3]. This method hierarchically
schedules blocks of operations and hence can efficiently
schedule large scale processing algorithms. However,
conditional operations are always executed mutually ex-
clusively after the condition is resolved. Hence the lower
bound of the iteration period is rather large and it does
not suit for the target of overlapped scheduling. In[4], a
heuristic scheduling algorithm is proposed where condi-
tional operations may be executed before the condition
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is resolved if necessarily. All of these scheduling meth-
ods do not take into account the overlapped scheduling
and therefore the minimum iteration period might not
be achieved. '

In this paper, we propose a scheduling method to
derive an overlapped schedule for a given iterative pro-
cessing algorithm with conditional operations. The rest
of this paper is as follows. In Sect. 2, sharing computing
resources by conditional operations is discussed. Data-
flow graph to represent processing algorithm is intro-
duced in Sect. 3. The overlapped schedule is revisited in
Sect. 4. Precedence constraints which must be satisfied
in any schedules are also discussed in this section. The
range-chart-guided scheduling method proposed in [5]
is briefly reviewed in Sect.5. The proposed scheduling
method is described and its computational complexity
is analyzed in Sect.6. Some experimental results are
shown in Sect. 7.

2. Processor Sharing by Conditional Operations

Figure 1 (a) shows an example of a processing algorithm
including conditional operations. In this processing al-
gorithm, b is subtracted from a signal z if « is greater
than a (z > a), or c is added to x otherwise (z < a).
Operation 1 compares the input signal = with a con-
stant a. It determines if a condition holds and is called
a decision operation. If the condition holds, i.e., the
condition =z > a is true, then operation 2, that is a
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Fig. 1  Processor sharing by conditional operations. (a) A pro-
cessing algorithm. (b) A schedule for operations. (c) Operations
executed if the condition holds. (d) Operations executed if the
condition does not hold. (e) Another schedule where conditional
operations are executed before the decision operation.
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subtraction, is executed. On the other hand, if the con-
dition does not hold, i.e., the condition z > a is false,
then operation 3, that is an addition, is executed. Let
two operations each of which is executed on the con-
dition exactly opposite to the other be said mutually
exclusive to the other operation. For example, opera-
tion 3 is the mutually exclusive operation of operation
2. Since operations 2 and 3 are mutually exclusive to
each other, it is possible to schedule operations 2 and 3
be executed at the same time on an identical processor
as shown in Fig.1(b). After the operation 1, opera-
tion 2 is executed if the condition holds (Fig. 1 (c)), or
operation 3 is executed if the condition does not hold
(Fig. 1(d)).

In the rest of this paper, it is called two opera-
tions share a processor or processor sharing if these two
operations are mutually exclusive and it is possible to
schedule these operations to an identical time step on an
identical processor. By processor sharing, we need only
one processor for these conditional operations. The re-
quired number of processors to implement a processing
algorithm can be reduced.

It must be noted that processor sharing is possi-
ble only if the conditional operations are executed after
the condition is resolved. Hence, in order that the con-
ditional operations share a processor, conditional op-
erations must be scheduled after the complétion of the
decision operation which resolves the condition. For ex-
ample, in the schedule shown in Fig. 1 (b), conditional
operations 2 and 3 are scheduled after the decision op-
eration 1. In this case, either operation 2 or operation
3 is executed and a processor is shared.

It also must be noted that if processor sharing is
not necessary, the conditional operations can be ex-
ecuted before the decision operation. For example,
Fig. 1 (e) is another schedule for a processing algorithm
in Fig.1(a). In this schedule, both operation 2 and
operation 3 are executed and one of the results is se-
lected based on the condition resolved by the decision
operation 1. This is possible since there are no data
dependencies and therefore no precedence constraints
from the decision operation to the conditional opera-
tions. The drawback is that we have to execute both
conditional operations and may need more processors.
However, a schedule with shorter iteration period could
be derived. In addition, the number of processors could
be as minimum as the schedule with processor sharing
if processors are not fully utilized.

To minimize the required number of processors,
processor sharing is tried in the proposed scheduling
method. Moreover, executing conditional operations
on both the true and false sides before a decision oper-
ation is used in our scheduling method if it is necessary
to achieve the specified iteration period.

The conditions could be treated as ordinary com-
putational results. Hence, similar to ordinary compu-
tational data, conditions are transfered from one pro-
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cessor to processors requiring the conditions, and/or
stored in registers for controlling later operations in
both the current iteration and later iterations. Of course,
the data paths and registers should be optimized to 1 bit
width, since a condition can be represented by only
1 bit.

3. Data-Flow Graph

A processing algorithm is represented by a data-flow
graph (DFG) as shown in Fig.2. The processing algo-
rithm is periodically repeated on a series of input sig-
nals. In DFGs, data dependencies between operations
are mostly considered and therefore input signals to the
processing algorithm from outside and constants may
often be omitted.

A DFG consists of nodes and edges. A circle node
implies an operation and its functionality is shown as
a symbol in the circle. A thin solid edge represents a
data dependency from the tail node to the head node.
This edge is called a data dependency edge. A data
dependency edge is denoted as (z,7) where i is the tail
node and j the head node. For example, a data depen-
dency edge between nodes 1 and 2 in Fig.2 is denoted
as (1,2). A data dependency edge may have any number
of delays on it. The delays on edges imply data depen-
dencies over iteration cycles. If the number of delays is
d on a data dependency edge (4,7), then the execution
of operation j depends on the result of operation 7 in
the d-th previous iteration cycle.

A triangle node implies a beginning of conditional
branch and it is called a branch node. Each branch
node has one incoming data dependency edge and two
outgoing dashed edges. Dashed edges are branch edges

Fig. 2 An example data-flow graph.
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and imply the operations adjoint to the branch edges
are conditionally executed. The operation immediately
preceding the branch node by the data dependency edge
decides which branch edge is taken. This operation is
called the decision operation of the branch. For exam-
ple, in Fig.2, operation 2 is the decision operation of
branch b, and if the condition is true, the operations
3, 6, and so on are executed, and if the condition is
false, the operations 7, 10, 11, and so on are executed.
It must be noted that a branch edge does not imply data
dependencies from the branch node to the conditional
operations.

When the conditional part of the processing al-
gorithm is completed, the conditional operation flows
merge into a single operation flow. This is represented
by a merge node which is symbolized as a reverse tri-
angle in DFGs. The correspondence between a branch
and a merger is represented by a branch-merge edge,
which is shown as a thick solid edge in a DFG. For
example in Fig.2, two data flows which branch at the
branch node b, merge when either conditional opera-
tion 8 or conditional operation 16 is completed. It is
represented by the merge node my. A branch-merge
edge is introduced only to clarify the correspondence
between a branch node and a merge node. A branch-
merge edge does not imply any data dependencies but
it implicitly constrains precedence from a decision op-
eration to operations after a merge node.

4. QOverlapped Schedule and Precedence Constraints
4.1 Overlapped Schedule

A directed path of a data-flow graph is defined as a
series of connected and non-repeated data dependency
edges. The length of a directed path is the sum of ex-
ecution times of operations on the path. Among all
the directed paths which does not contain edges with
delays, there exists one with the longest length. That
directed path is called the critical path.

In the case of a non-overlapped schedule of a pro-
cessing algorithm, all the operations in an iteration
are scheduled to finish in the specified iteration period.
Therefore, the iteration period cannot be shorter than
the length of the critical path in a processing algorithm.

On the other hand, in an overlapped schedule, not
all the operations in an iteration finish in the itera-
tion period T' and those operations not finish in the
iteration are executed in parallel to the operations in
the subsequent iterations. Therefore, unlike to the non-
overlapped schedule, the lower bound of the iteration
period is not limited by the critical path length.

The lower bound of the iteration period, or the it-
eration lower bound, inherent to a processing algorithm
is limited not by the critical path but by the critical cy-
cle[6]—-[8]. In the case that the critical path length is
longer than the iteration lower bound, any schedule in
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Fig. 3 Overlap of iterations. (a) A schedule longer than the T'.
(b) Repetition of the schedule with the iteration period T'.

the non-overlapped manner cannot achieve the iteration
lower bound. Only the overlapped schedule can always
achieve the iteration lower bound. The technique to
compute the iteration lower bound for a given process-
ing algorithm can be found in [9]-[12].

Figure 3 (a) shows a schedule of some processing
algorithm. The duration to execute every operation in
the processing algorithm once is longer than the iter-
ation period 7. Operations o and b are scheduled to
start at time steps J and J + T, respectively. The sched-
ule is iteratively executed with the iteration period T.
The first iteration starts at time step 0 and the second
iteration starts at time step 7'. In general, n-th iteration
starts at time step (n — 1)T. Since the duration of an
iteration is longer than 7, iterations are executed so as
to overlap with each other as shown in Fig.3 (b).

In the n-th iteration, operation b is executed at time
step (n —1)T +J + T =nT + J. In the next iteration,
i.e., (n+ 1)-th iteration, operation a is executed at time
step nT + J. Therefore, operation b in the current iter-
ation and operation a in the next iteration are executed
in parallel.

Consequently, operations scheduled to start at time
steps J,J+T,...,J +nT,... are executed concurrently
in the overlapped schedule with the iteration period 7'.
Let time steps be divided into time classes. Each time
step, t, belongs to a time class denoted by ¢t — | % | T,
or t mod T'. Hence, time steps J,J +T1',...,J+nT,...
belong to the time class J. Operations in the same time
class are executed concurrently in the overlapped sched-
ule.

4.2 Precedence Constraint

A data dependency edge (7,7) from operation ¢ to op-
eration j implies that the execution of operation j re-
quires the result of operation 7. To achieve this data
dependency, the start of operation j must be after the
completion of operation ¢. Consequently, a data depen-
dency edge (4, 7) imposes a precedence constraint among
executions of operations.

Let ¢; denote the time step at which operation %
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Fig. 4 Precedence between conditional operations and the cor-
responding decision operation.

starts in a schedule. If a data dependency edge (i, j) ex-
ists between operation nodes ¢ and j, or a branch-merge
edge (¢,7) exists between a branch node 7 and a merge
node j, the start time steps ¢; and ¢; must satisfy

t; 2t + Qi — DyyTo, (1

where @; is the execution time of node 4, D;; the number
of delays on the edge (4, 5), and T the specified itera-
tion period. In the case of a branch node or a merge
node, the execution time Q; = 0.

The operation node immediately preceding a
branch node is the decision operation which resolves the
condition. Therefore, the start time step of the branch
node can be as early as the completion time step of the
decision operation. Let d; denote the decision oper-
ation immediately preceding the branch node b. If a
branch-merge edge (b, m) exists, then

ty = tdb + dea (2)
tm % ty — DmeO- (3)

Therefore, the following precedence constraint must be
satisfied;

tm 2 tg, + Qda, — DemTo- 4

For example, in Fig. 2, a branch-merge edge (b1, m1) ex-
ists and the operation node immediately preceding the
branch node b, is operation 2. Therefore,

iml 2 t2 + QQ (5)

must be satisfied.

As mentioned in Sect.2, conditional operations k
and [ can share a processor only when their start time
steps are not earlier than the completion of the decision
operation. In our scheduling method, it is assumed that
the conditional operations can share a processor even if
the execution times are different. It is also assumed that
the operation execution cannot be interrupted once the
execution is initiated. By taking these assumptions into
account, the precedence constraint

mil’l{tk, tl} % tdb + de (6)

must be satisfied as shown in Fig. 4 if conditional oper-
ations k and ! are to share a processor.

t|z| represents the largest integer less than or equal to
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On the other hand, also as mentioned in Sect. 2, the
precedence constraint (6) needs not be satisfied if con-
ditional operations k£ and [ do not share a processor.

5. Range-Chart-Guided Scheduling Method

Scheduling is to assign a start time step to each of the
operations so as not to violate any precedence con-
straint. In order to execute operations as scheduled, we
need as many processors as the maximum of required
number of processors over all the time classes. Hence, in
order to minimize the number of processors, we choose
start time steps of operations so that the maximum num-
ber of concurrent operations is minimized.

The range-chart-guided scheduling method [5] is
proposed as a heuristic scheduling method to minimize
the number of processors for unconditional processing
algorithms. Our proposed scheduling method is based
on the range-chart-guided (referred as RCG in the re-
maining of this paper) scheduling method. In this sec-
tion we briefly review RCG scheduling method.

The RCG scheduling method is summarized as fol-
lows.

1. Choose the reference operation and fix it to
time step O.

Compute scheduling ranges.

Select an operation.

2w

. Choose a start time step for the selected operation.

5. If all the operations are scheduled, then goto 6.
Otherwise, goto 2.

6. Allocate operations to processors.
5.1 Scheduling Range

The scheduling range of an operation is the set of time
steps at which the operation can start without violating
the precedence constraints described by inequality (1).
In order to minimize the number of processors required
to execute a schedule, the time step should be selected
within the scheduling range so that the number of con-
currently executed operations is minimized. Therefore,
the larger the scheduling ranges, the more possible to
lead to the optimal schedule.

The lower bound of the scheduling range can be de-
termined as as soon as possible (ASAP) schedule. This
is because, in ASAP schedule, each operation starts as
soon as its preceding operations finish and therefore the
start time step is the earliest which satisfies precedence
constraint. Similarly, the upper bound of the scheduling
range can be determined as as late as possible (ALLAP)
schedule.

By choosing one operation in the DFG as the ref-
erence operation, the ASAP schedule can be obtained
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as the length of the longest path from the reference
operation to other operations, where the weight of an
edge (i,7) is Q; — D;;T" and the longest path length to
the reference operation itself is defined as 0. On the
other hand, the ALAP schedule of an operation can
be obtained as the length of the shortest path from the
same reference operation to other operations, where the
weight of an edge (¢, 7) is —Q; + D;; T, the directions of
the edges are reversed, and the shortest path length to
the reference operation itself is defined as 0.

Each time an operation is scheduled, scheduling
ranges for other operations must be recomputed.

5.2 Operation Selection

Among operations not yet scheduled, an operation is
selected and a time step within its scheduling range is
assigned to the operation. In other words, the time step
at which the operation is executed is fixed. By fixing
the time step for the operation, the scheduling ranges of
other nodes are reduced in general. For example, if the
time step is the lower bound of the scheduling range,
then the scheduling ranges of the operations preceding
the fixed operation would be reduced from the upper
bound.

If an operation with the minimum scheduling range
is selected and is fixed, the reduction of scheduling
ranges of other operations would be minimum and the
possibility of processor sharing could be kept as large
as possible.

If more than one operations are the candidates to
be selected, an operation is selected based on the follow-
ing criteria in order of appearance: (1) the scheduling
range is the smallest; (2) either the upper bound or the
lower bound of the scheduling range is the fixed bound.
The upper (lower) bound of the scheduling range of
an operation is said fixed if all the operations immedi-
ately succeeding (preceding) the operation are already
scheduled.

5.3 Start Time Assignment

For the selected operation, a time step is chosen within
the operation’s scheduling range and it is assigned as
the start time step. Let P; denote the number of
concurrently executed operations in time class J €
[0,1,...,7 —1]. In each time class J, we need as many
processors as Py. Therefore the required number of pro-
cessors, P, to execute a schedule is the maximum of P;
over all the time classes J =0,1,...,7 — 1.

By assigning the selected operation to a start time
step in time class J, the required number of proces-
sors is increased from P; to P; = P; + 1 for time class
i=JJ+1,....,J 4+ Q — 1 where Q is the execution
time of the selected operation. Therefore, the time step
is chosen for the selected operation where max P! for
j=J,J+1,...,J+Q—1 is minimized so that max P}
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does not exceed P. If more than one time classes are
with the minimum ij, or there is no time step with-
out increasing P, then the time class closer to the fixed
bound is chosen.

5.4 Processor Allocation

In start time assignment, start time steps of operations
are determined to minimize the maximum of concur-
rently executed operations in time classes. To achieve
the minimum number of processors to execute the sched-
ule, it must be determined that on which particular pro-
cessor each operation is executed. This process is called
processor allocation.

First, give an index to each processors. If a num-
ber of P processors are used, the indices would be O to
P — 1. Then, from not yet allocated operations, choose
one with the longest execution time and allocate it to
the processor with the smallest index among processors
which can execute the operation. This is repeated until
all the operations are allocated.

6. Scheduling Method for Conditional Operations

In order to achieve processor sharing by conditional
operations, a conditional operation must be scheduled
in the same time step as the mutually exclusive opera-
tion. Therefore during the search for a start time step
of a conditional operation within the scheduling range,
each time step is checked if a mutually exclusive condi-
tional operation is scheduled in the time step. If such
a time step is found, then the conditional operation is
scheduled in the time step so as to share a processor. In
this way, processor sharing by conditional operations is
efficiently included in RCG scheduling method.

6.1 Scheduling Range

The scheduling range of an operation is determined
just the same as in the RCG scheduling method. As
mentioned in 4.2 branch edges impose precedence con-
straints described by inequality (6) only when mutu-
ally exclusive operations have been scheduled to share
a processor. Otherwise, branch edges are ignored in
determining the scheduling ranges.

6.2 Scheduling Range for Operation Selection

In RCG scheduling, an operation with the smallest
scheduling range is selected among operations not yet
scheduled and the selected operation is scheduled to
start at a time step within the scheduling range. How-
ever, the order of operations selected in this manner is
not always suitable to fully utilize processor sharing.
Figure 5 shows scheduling ranges of a decision op-
eration and a conditional operation. A grey rectangle
is the execution time of operation and it can start at
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Fig. 5 Dividing the scheduling range of a conditional opera-
tion into sharable and unsharable scheduling ranges.

any time step in the scheduling range which is repre-
sented by a white rectangle. Let a scheduling range of a
conditional operation be divided into sharable schedul-
ing range and unsharable scheduling range as shown
in Fig. 5. If the conditional operation is scheduled at a
time step in the unsharable scheduling range, the con-
ditional operation is executed before the decision oper-
ation. Hence processor sharing is impossible. On the
other hand, if the conditional operation is scheduled in
a time step in the sharable scheduling range, then a pro-
cessor could be shared if the decision operation would
be scheduled in an earlier time step than the conditional
operation.

If a decision operation is selected before the condi-
tional operations and is assigned to a late time step, then
the sharable scheduling range becomes small and hence
the possibility of processor sharing becomes small.
Therefore, to maximize the possibility of processor shar-
ing, it is preferable that conditional operations are first
assigned to start time steps and then the decision oper-
ation is assigned to such a start time step that is earlier
than the conditional operations.

In order that conditional operations are selected
prior to decision operations in RCG scheduling,
scheduling range for operation selection is introduced
here. For a conditional operation with the sharable
scheduling range, the scheduling range for operation
selection is the same as the sharable scheduling range.
For any other conditional operations without sharable
scheduling ranges and unconditional operations, the
scheduling range for operation selection is the same
as the original scheduling range. For example, in
Fig. 6 (a), operation a is a decision operation and op-
erations b, ¢, d are the conditional operations. Fig-
ure 6(b) shows scheduling ranges of the operations.
It is assumed that the lower bound of the decision
operation a is time step 2 and operation e has been
scheduled at time step 5. The conditional operations
¢ and d have sharable scheduling ranges as shown in
Fig.6(c). Furthermore, by considering precedence con-
straints, scheduling ranges for operation selection is de-
rived as shown in Fig. 6 (d).

Now conditional operations have smaller schedul-
ing ranges for operation selection than the decision
operation. Thus conditional operations are selected
prior to the decision operation. Of course there can be
the case that scheduling range of decision operation is



ITO and KAWASAKI: OVERLAPPED SCHEDULING METHOD FOR CONDITIONAL OPERATIONS

435

N =)
_
[ e
w
- - A
wn
-:..‘.
\H

(2) (b)

Fig. 6

© @

Scheduling range for operation selection. (a) A sample DFG. (b) Ordinary

scheduling range. (c) The lower bound of scheduling range for processor sharing. (d)
The lower bound of scheduling range by precedence constraints.

smaller than the conditional operations. In that case the
decision operation is selected prior to the conditional
operations.

Scheduling ranges for operation selection are com-
puted as follows. At first, compute the scheduling
ranges and unmark all the operations. Then, do a depth
first search, starting from already scheduled operation,
on the DFG where the directions of edges are reversed.

If a not yet scheduled conditional operation c is
unmarked, and has the sharable scheduling range, then
mark c, span an imaginary edge from the corresponding
branch node to ¢, and recompute the scheduling ranges.
The imaginary edge implies only the precedence con-
straint from the branch node to the conditional oper-
ation. Resumed the depth first search from the begin-
ning. When all the unscheduled conditional operations
are marked, the recomputed scheduling ranges are the
scheduling ranges for operation selection.

6.3 Operation Selection

In order to maximize processor sharing by conditional
operations, we modify the criteria to select an opera-
tion which is not yet scheduled and to be assigned a
start time step.

The primary criterion is that it is a conditional
operation and the mutually exclusive operation has al-
ready been scheduled. If such a conditional operation
is selected and could be scheduled in the same start time
step as the already scheduled mutually exclusive opera-
tion, a processor is shared and the number of explicitly
concurrent operations is not increased.

If two or more conditional operations satisfy the
primary criterion, select an operation based on the fol-
lowing secondary criteria in order of appearance: (1)
the scheduling range for operation selection is the small-
est; (2) the upper bound of the scheduling range is the
latest; (3) either the upper bound or the lower bound
of the scheduling range is the fixed bound. If the se-
lected operation is assigned to a late start time step,

then the reduction of scheduling ranges of the preced-
ing operations would be small. Hence the criterion (2)
is introduced.

If there are no conditional operations which satisfy
the primary criterion, then select an operation among
conditional and unconditional operations according to
the criteria (1), (2), and (3) described above.

6.4 Start Time Assignment

In the case that the selected operation is an uncondi-
tional operation, the start time is assigned just the same
way as described in 5.3.

In the case that the selected operation is a condi-
tional operation, it is checked whether the mutually ex-
clusive operation is already scheduled in each time class
within the scheduling range. If there is such a time class,
then the number of processors in the time class would
not be increased since a processor can be shared by
the selected operation and the mutually exclusive oper-
ation. Hence the selected operation is assigned to the
time class to share a processor. Otherwise, the number
of processors in the time class must be increased by one
just like the unconditional operations.

6.5 Reference Operation

In our proposed scheduling method, the selected op-
eration is scheduled in the time step close to the fixed
bound. If an operation immediately succeeding a merge
node is chosen as the reference operation, then the last
operation in the conditional flow has the fixed upper
bound. Then the operation would be scheduled as late
as possible and hence the scheduling ranges of other op-
erations are not much reduced. Consequently, the op-
eration immediately succeeding the merge node of the
outer most conditional branch is chosen as the reference
operation.

If there exist two or more such operations, then
choose one with the latest upper bound as a reference
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operation and execute the scheduling method, or repeat
the scheduling method by assuming each operation as a
reference operation and choose the best schedule.

6.6 Algorithm Summary

Processor allocation for conditional operations is just
the same as described in 5.4 by treating mutually exclu-
sive operations as a single operation.

The scheduling method is summarized as follows.

1. Choose the reference operation and fix it to
time step 0.

2. Compute scheduling ranges.

3. Compute scheduling ranges for operation selection.
4. Select an operation by the criteria in Sect. 6.3.

5. Choose a start time step for the selected operation.

6. If all the operations are scheduled, then goto 7.
Otherwise, goto 2.

7. Allocate operations to processors.
6.7 Computational Complexity

The computational complexity of the proposed schedul-
ing method is as follows. In the following, n denotes
the number of operations, ¢ the number of edges, b the
number of conditions, p the number of computational
resources.

At first, it is registered for each operation that if
the operation depends on a condition, and if so, then
on which side of the condition, the true side or the false
side. This is performed by a depth first search and the
computational complexity is O(e).

1. Computing scheduling ranges. Scheduling ranges
are computed as the longest path lengths. Hence
the computational complexity is O(ne).

2. Computing scheduling ranges for operation selec-
tion. The sharable scheduling range is identified
by comparing the lower bound of a decision op-
eration and the upper bound of the conditional
operation. This is done in O(nb) time about all
the conditional operations. Then the longest path
lengths are computed again for each time an imag-
inary edge is added. The total computational com-
plexity is O(nb+n?e) = O(n?e) (it is assumed that
b < ne).

3. Selecting operation to be scheduled. For each of
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unscheduled operations (at most n), the possibil-
ity of processor sharing with already scheduled op-
erations (at most n) is checked. It imposes the
checking the mutually exclusiveness and the check-
ing if the start time is included in the scheduling
range. operation.. The mutually exclusiveness can
be checked in O(b). Hence the computational com-
plexity is O(n?b).

4. Start time assignment. For the selected operation,
the mutually exclusiveness of already scheduled op-
eration in every time class within the scheduling
range is checked. The number of already scheduled
operation is at most n and the mutually exclusive-
ness can be checked in O(b). The number of time
classes is the same as the iteration period 7'. Hence
the computational complexity is O(nbT).

The above steps from .1 to 4 are repeated until all the
operations are scheduled.

The computational complexity of processor alloca-
tion is O(nTp)[5]. Consequently the total computa-
tional complexity is O(e + n(ne + n%e + n?b + nbT) +
nTp) = O(nPe+n2bT +nTp) (it is assumed that b < e).

If the scheduling method is repeated by assuming
each operation which immediately succeeds a merge
node as a reference operation and choose the best sched-
ule, the computational complexity would be O(n®be +
n2b?T + nbT'p). ‘

7. Scheduling Results

The proposed scheduling method is implemented by us-
ing C programming language. Figure 7 shows the de-
rived schedule for the DFG in Fig.2 with the itera-
tion period T = 8 units of time (u.t.). It is assumed
that all types of operations are executed on a proces-
sor where a multiplication takes 2 u.t. and an addition
and a comparison take 1 u.t. Two processors, P1 and
P2, are necessary and are the minimum. Figure 7 (a)

8 7 -6 5 -4 3 -2 - 0 time
L 1 1 1 1 1 1 1 IV
2] [sl+] [s[v]
[ s | [o]¢s]
[ 7 | 11| | 10 [ 12 | 14 |

(@)
0 1 2 3 4 5 6 7 time class
{ 1 1 | 1 1 | 1 I -
P17 [ 11 | 4 [ 13 [3n3]
pi| 7 [ 1 | 2 [sn0]5m10] 6n2 | 914 ler14ang)

(b)

Fig. 7 A schedule for the DFG in Fig.2. (a) The start time
steps. (b) Processor allocation.
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Table 1  Scheduling result of the DFG in Fig.2.
Method | T Result CPU
Processor | [sec]
9 2 0.332
8 2 0.328
7 3 0.299
Ours ¢ 3 0.267
5 4 0.309
4 5 0.285

shows the start time steps of operations and Figure 7 (b)
shows the processor allocation. Operation 17 is chosen
as the reference operation and hence it is scheduled in
time step 0. In this schedule, the mutually exclusive
operations 5 and 10 are assigned to the identical time
step -5 and share processor P1. Although the execu-
tion times of operations 3 and 13 are different, these
operations are mutually exclusive and therefore share
processor P2. Moreover, in order to realize the spec-
ified iteration period, mutually exclusive operations 7
and 11 are assigned to earlier time steps than the deci-
sion operation 2 and therefore both operations 7 and 11
are executed unconditionally. In time class 7, mutually
exclusive operations 8 and 16 share processor P1. In
addition, either operation 8 or operation 16 also shares
the processor with the mutually exclusive operation 14.
Hence more than two operation can share a processor.

The iteration lower bound of the DFG is 4 u.t. For
the iteration periods smaller than 9 u.t., the proposed
scheduling method derives a schedule with the minimum
number of processors. The results are shown in Table 1.

When the iteration period is 6 w.t., we must execute
operations 3, 5, 7, 10, 11, 12, 13 before the decision op-
eration 2 to satisfy precedence constraints. Hence these
operations are always executed regardless of the condi-
tion b;. In addition, if by is False, we must execute op-
erations 1, 2, 4, 14, 15, and 17. The total execution time
of these operations is 17 u.t. Therefore, to execute these
operations with the iteration period of 6 u.t., we need
at least [2] T = 3 processors. The proposed scheduling
method achieves this lower bound (defined as computa-
tional processor bound in [5]) and therefore is optimal.
Also for any other examples, it can be shown that the
scheduling result achieves the processor bound.

The proposed scheduling method is compared with
the existing scheduling methods in [2] and [4]. Tables 2
and 3 show the comparison for DFGs in [3] and [1],
respectively. In this case, the functional units, such as
adder, subtracter, and comparator, are distinguished. In
these tables, BDD denotes the method in [2] and Match
denotes the method in [4]. Tables show: the name of
scheduling method; the specified iteration period 7T'; the
numbers of functional units; and the CPU time in sec-
onds to execute the scheduling method on a 70MHz
Sparc workstation.

For the same iteration period, all three scheduling
methods derive schedules with the minimum number of
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Table 2
Method

Scheduling result for the DFG in [3].

T Result CPU
Sub | C [sec]
NA
NA
NA
0.668
0.610
0.563
0.552
0.490
0.503
0.497
0.514

o

BDD
Match

Ours

D | o k| ot | o ot f | e o |

= DN R | NN A G0 O\ ~2i O
B[ B D] ot | | | ot | ok | ot | ot |t

whuNNNNHNI\)NE
[oN

Table 3 Scheduling result for the DFG in [1].

T Result CPU
Add | Sub | [sec]
BDD 2 NA
Match NA
0.371
0.343
0.336
0.342
0.331
0.321

Method

Ours

I PPN IENFNES
O\ W | 19| M| = o
| G| 1) W9 19| = | 10| o

functional units. In addition, our proposed scheduling
method can derive optimal schedules for the smaller it-
eration periods by considering overlapped scheduling.

8. Conclusions

In this paper, a scheduling method for an iterative
processing algorithm with conditional operations was
proposed. The proposed scheduling method is the
time-constrained scheduling and minimizes the required
number of processors or functional units by means of
resource sharing by conditional operations. By consid-
ering overlapped scheduling, the proposed scheduling
method derives a schedule for the specified iteration pe-
riod which can be as small as the iteration lower bound
of the processing algorithm.

Scheduling results show that the proposed schedul-
ing method can derive the same optimal schedules as the
existing scheduling methods with respect to the number
of computational resources. In addition, the proposed
method can produce optimal schedules for small itera-
tion periods which have not been handled by the other
existing scheduling methods.
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