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SUMMARY  We present two estimation methods for camera
rotation from two images obtained by the active camera before
and after rotation. Based on the representation of the projected
rotation group, quasi moment features are constructed. Camera
rotation can be estimated by applying the singular value decom-
position (SVD) or Newton’s method to tensor quasi moment fea-
tures. In both cases, we can estimate 3D rotation of the active
camera from only two projected images. We also give some ex-
periments for the estimation of the actual active camera rotation
to show the effectiveness of these methods.
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1. Introduction

Recently the active camera has been popular in various
fields, because it is getting lower in cost and higher in
its performance. It is quite important to estimate the
camera rotation from two images obtained by itself be-
fore and after rotation for the self-calibration problem
of the active camera and the control of a robot with
vision system, etc.

Usually the estimation method for the camera ro-
tation is based on the point matching [8] and/or mo-
ment features [9]. However, the point matching method
has two problems, one is the difficulty of selecting the
collateral points and the other is the unstableness un-
der noises. The method based on moment features
doesn’t have these problems because they are the in-
tegral quantities. However the moment features have
also two problems. One is that marginal regions of the
screen contribute dominantly rather than the center of
the screen. It causes the loss of the important image
information because the target image is usually located
at the center of the screen. The other is that, it is
more serious, moment features can only estimate the
rotation around 7 axis along the light axis of the lens.
Thus, they cannot estimate the rotation included pan
and/or tilt, this is because pan and tilt can be rep-
resented by 3D rotations. Ordinally, moment features
don’t take the projection from 3D space onto 2D plane
into consideration.
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However, quasi moment features, which is pre-
sented by Tanaka [6] ([7] also gives the equal features
up to the second order), could resolve these four prob-
lems. They are invariant or covariant under the pro-
jected rotation group, because they are constructed
based on the representation of the projected rotation
group. The projected rotation group consists of two
successive transformations, projection and 3D rotation
[3], [4]. Then the features would be quite useful to char-
acterize an object under the projected rotation, like a
camera rotation.

In this paper, we give two estimation methods
with quasi moment features for the camera rotation.
One is the method using by singular value decomposi-
tion (SVD) and the other is the method with Newton’s
method. We also show the effectiveness of two methods
through some experiments.

This paper is organized as follows: in Sect.2, the
representation of the projected rotation group is given
briefly. In Sect.3, we consider the quasi moment fea-
tures based on the representation of the projected ro-
tation group. In Sect.4, two estimation methods of
camera rotation using tensor quasi moment features are
considered. In Sect. 5, some experiments are given for
the estimation of the camera rotation under both an
ideal pin-hole camera and an actual active camera.

2. Representation of the Projected Rotation
Group

In this section, we give the representation of the pro-
jected rotation group.

The projected rotation group consists of two suc-
cessive transformations, that is, the projection and 3D
rotation. The basis function of the representation of
the projected rotation group are known as the spher-
ical harmonics Y;™ [3],[4], which is well known in the
context of Quantum Physics [1].

Assume the image function F(z,y) is obtained
through a projection of an object onto 2D plane Z = f
(see Fig.1). In these coordinate system, we obtain the
following basis function of the representation of the pro-
jected rotation group

21 .2
Y, | tan~! 967—’_y,tan_1 g7, (1)
f x
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Fig.1 The world coordinate system (X,Y,Z) and the screen
coordinate system (x,y): The origin O is the center of the camera
lens, f is a focal length of the camera and a plane Z = f is
the screen which is assigned xy-coordinate system. The point
P(X,Y,Z) in the 3D space is projected onto the point p(z,y) in
the screen.

Note that, if ¢; # /5, the projected rotation
group cannot mix the space S; and the space S,
where the space S is constructed by {Y,™ },,——¢, .0,
and the space S, is constructed by {Y22 2} = —tn,.. -
This representation is called irreducible representation.
When the finite transformation is needed, we have to
make successive infinitesimal transformations in order

to get the finite projected rotation.
3. Quasi Moment Features

In the previous section, we gave the representation of
the projected rotation group. The obtained represen-
tation is irreducible, that is, the linear spaces associ-
ated with {Y;"}(¢ = 0,1,2,...) are completely sepa-
rated each other with respect to ¢. This means that
all invariant and covariant quantities under the pro-
jected rotation group can be obtained for every index /.
Therefore some quantities constructed with the linear
combinations of the representation of the projected ro-
tation group with the same index ¢ are invariant and/or
covariant under the projected rotation group, too. In
the following, the quasi moment features are defined
by the linear combinations of the spherical harmonics
with the same index ¢ in order to make invariant and
covariant quantities into more familiar form.

First of all, we list the representation of the pro-
jected rotation group in our coordinate system, explic-
itly. For example, if £ = 0, we have

YOO = = (2)

vl = —i\/g@ —i—z%) (3)
1 [3f
w32k @

and if £ = 2,
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where k = y/x2 + y2 + f2. Note that for the negative

value of m, we always use the following identity
YT = (1) (®)

This identity makes it possible for us to consider only
the case of the positive m.

In general, the representation of the projected ro-
tation group, spherical harmonics, are known that they
can be written in suitable linear combinations of

()24 0

where «, 3 and  are non-negative integers. Therefore
we can also represent Eq. (9) in terms of the represen-
tation of the projected rotation group with noting that

2\ 2 s\ ? \2
(5)+ () - () - “O)
For example, if a + 3+ =0,
1= VERYY, (1)
ifat+p8+v=1,
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Because Eq.(9) can be considered more fundamental
than original spherical harmonics for its familiar form,
we can use Eq.(9) instead of spherical harmonics to
extract invariant and covariant features from a given
image.

Then the quasi moments of the order ¢ are defined

me= [ [(£)'(£) (£) Peepamt.on

F=VETET T, (22)

where £ = p+q+7 and p, ¢, r are non-negative integers,
f is the focal length, F(z,y) is an image obtained by
the camera and dm(x,y) is the invariant measure,

by

fdzdy

The order ¢ stands for the behavior of the spheri-
cal harmonics under the projected rotation. Therefore
quasi moments are called scalar if £ = 0, vector if £ = 1,
and tensor if £ = 2. They can be given as follows

dm(x, y) =

(23)

(i) the 0th order quasi moment

s= [ [ swwFepint.), (24)

S(z,y) =1, (25)

(i) the 1st order quasi moment

v [ [VenFepdney, @)

Vi) =1 2l (27)

(iii) the 2nd order quasi moment

- [ [1eyFayiney, @)

1 22 zy zf
T(z,y) = 5| vo v vl (29)
fx fy f?
= V(x,y)V(x,y)T, (30)
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and the trace of T'(x,y) is 1.

Note that the number of the independent ¢th order
quasi moments is 2¢ + 1.

Under the camera rotation matrix R in 3D such

as,
Ri1 Rip Rz
R=| Roi Ro Ros |, (31)
R31 R3x Rs3

these features have the following relations,

Sy =851, (32)
V,=RV,, (33)
Ty = RTR”, (34)

where S1, V1, T are the extracted features before the
camera rotation, scalar, vector and tensor, respectively
and Sy, Vo, T represent after the camera rotation.

4. Two Estimation Methods for Camera Rota-
tion

In this section, we consider two kinds of the estima-
tion methods for camera rotation with quasi moment
features.

4.1 Estimation through Singular Value Decomposi-
tion (SVD)

The relation of tensor features Ty and Ty is
T, = RT R". (35)

Then we solve the eigen equation with respect to
T, as follows

det(\E — T'3) = det ()\E - RTlRT)
= det (R()\E - Tl)RT)

= detR det(\E — T) detR”"
= det(A\E — T), (36)

where R is 3D rotation of the active camera, and
detR =1.

This result shows that T'; and T's have same eigen-
values. Furthermore, they are real symmetric matrices
as T'=TT. Therefore they are diagonalizable with or-
thogonal matrices U1 and Us, respectively. Thus we
have following relations

T,=U,D\U;, T, =U,D,U}, (37)

where D, and D5 are diagonal matrices, that is, their
diagonal elements are eigenvalues. Then the relation of
diagonal matrices is
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D, = D,. (38)

In this case, the relation between T’y and T'5 is rewrit-
ten as

Ty, = U, UTT, U, UL
= (UU)T(U-UT)T. (39)
Then the rotation matrix R is computed as
R=U,UT. (40)

All of the camera rotation in 3D can be represented
by one rotation axis n and one rotation angle . They
can be calculated from the rotation matrix R, such
that,

1

cosf = §(TrR - 1), (41)
Ro3 — R3o

n X R31 — R13 (42)
Riy — Ry

Note that Uy and Uq are constructed by arrang-
ing the eigenvector corresponding to the largest eigen-
value to the first column, the eigenvector corresponding
to the second largest eigenvalue to the second column
and the eigenvector corresponding to the third largest
eigenvalue to the third column.

4.2 Estimation through Newton’s Method

We give another estimation method using Newton’s
method.

SVD is likely to increase the error because it
requires larger amount of calculation than Newton’s
method. Thus, Newton’s method seems to give more
acculate results. However, it is not so easy to get the
procedure of Newton’s method under the full 3D rota-
tion. Actually, when we use an actual active camera,
the camera doesn’t rotate around Z axis along the light
axis of its lens. Therefore, it doesn’t cause any prob-
lem in actual use to restrict the Newton’s method to
pan and tilt of camera. So Newton’s method is used
for the subset of the 3D rotation which consisits of the
rotations around X axis and/or Y axis.

In this case, the camera rotation R can be repre-
sented by

R = Ry Ry, (43)

where Ry is the rotation around X axis and Ry is the
rotation around Y axis, such that

1 0 0
Rx =] 0 cosfx —sinfx |, (44)
0 sinfxy cosfx
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costly 0 sinfy
Ry = 0 1 0 , (45)
—sinfy 0 cosfy

where fx is the angle of rotation around X axis and 0y

is the angle of rotation around Y axis. Then we want

to estimate x and 0y through Newton’s method.
From the relation of tensor Eq. (34), we have

T, = RT\R"
= (RyRx)T:1(Ry Rx)"
= RyRxT,RLRY. (46)
Thus we have
RLT;Ry = RxTR%. (47)
Let the energy function E be
E =||[RyT>:Ry — RxT RX|*. (48)

Then the problem becomes the minimization of the en-
ergy function F respect to 0x and €y. For minimizing
E, we should solve the following simultaneous equations

OF

f(0x,0y) = 0 0, (49)
oF

9(0x,0y) = by 0. (50)

The Newton’s method gives us the following procedures

o) =0 + Aby, (51)
o0t = 6 1 Ady, (52)
where
foL — gl
Ax =51 5y o7 25 (53)
00x 00y 00y 00x
of dg
955 — faos
Aby =——5r 5y — o7 95 (54)
39){ 39y 39Y an

Then we can estimate the rotation angle by using this
recursive procedure until satisfying a following condi-
tion

|Az]+|Ay| <e, (55)

where ¢ is a tolerance.
5. Experiments

In this section, we give some experiments for the esti-
mation of the camera rotation, angle and axis. Here we
consider both types of estimation methods, SVD and
Newton’s method.

First, we consider the estimation under the ideal
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Fig.2 Artificial images for the experiments: From top to bot-
tom, Moon, Star, Triangle and Tumulus. From left to right, the
original image is used as before camera rotation, the actual rota-
tion is 10° around X axis, 10° around Y axis, 10° around Z axis
and the successive 10° rotation around X,Y,Z axis in the order.

Table 1 The estimation results using SVD for the artificial
images: 10° rotation around X axis.
0 X Y Z
actual rotation 10.00 | 1.00 | 0.00 0.00
Moon 9.96 | 1.00 | 0.00 | -0.02
Star 9.98 | 1.00 | 0.00 | -0.01
Triangle 9.91 | 1.00 | 0.01 | -0.01
Tumulus 10.04 | 1.00 | 0.00 | -0.03

camera condition such as pin-hole camera. The arti-
ficial images used this experiment are made by ray-
tracing software POVRAY, and they are binary images
such as black and white (see Fig. 2). The considered im-
ages are all planar ones so that they have no thickness.
Then, it prevent from appearing the another aspect in
the image by the rotation. The object should be kept
within the screen in order to get the complete image
of the object. The coordinate system is that Z axis
is perpendicular to the screen, X axis is parallel to the
horizontal axis of the screen and Y axis is parallel to the
vertical axis of the screen. We made four types of im-
ages, Moon, Star, Triangle and Tumulus, and let each
image rotate 10° around X axis, 10° around Y axis, 10°
around 7Z axis and rotate successively 10° around X, Y,
7, axis in the order.

The estimation results using SVD are shown in Ta-
bles 1-4, where 6 is the rotation angle and XY and Z
are elements of rotation axis. From these tables, we see
that the rotations around any axes are well estimated
because the errors between the actual rotation angle
and the estimated angle are less than 2% of the actual
rotation angle.

The estimation results using Newton’s method are
shown in Table 5 and the corresponding rotation angle
and axis are given in Tables 6-8 in order to compare
with the results for SVD. From these tables, we see
that the errors of rotation angle are small, which less
than 3% of the actual rotation angle, and the rotation
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Table 2 The estimation results using SVD for the artificial
images: 10° rotation around Y axis.
0 X Y Z
actual rotation 10.00 | 0.00 | 1.00 0.00
Moon 10.03 | 0.00 | 1.00 0.01
Star 10.01 | 0.00 | 1.00 | -0.02
Triangle 10.08 | 0.01 | 1.00 | -0.01
Tumulus 9.95 | 0.00 | 1.00 | -0.03

Table 3 The estimation results using SVD for the artificial
images: 10° rotation around Z axis.

6 X Y Z
actual rotation 10.00 0.00 0.00 | 1.00
Moon 9.84 0.00 0.00 | 1.00
Star 9.93 0.00 0.00 | 1.00
Triangle 10.03 | -0.01 | -0.01 | 1.00
Tumulus 9.82 0.00 0.00 | 1.00

Table 4 The estimation results using SVD for the artificial
images: successive 10° rotation around X,Y,Z axis in the order.
0 X Y Z

actual rotation 16.79 | 0.54 | 0.64 | 0.54

Moon 16.82 | 0.54 | 0.64 | 0.54

Star 16.69 | 0.55 | 0.65 | 0.53

Triangle 16.83 | 0.54 | 0.65 | 0.54

Tumulus 16.65 | 0.55 | 0.65 | 0.53

Table 5 The estimation results using Newton’s method for
the artificial images: X10 shows 10° rotation around X axis, Y10
shows 10° rotation around Y axis and XY 10 shows successive 10°
rotation around X,Y axis in the order.

X10 Y10 XY10
actual 0x Oy 0x Oy Ox Oy

rotation 10.00 | 0.00 0.00 | 10.00 10.00 | 10.00
Moon 9.91 0.03 -0.01 | 10.02 9.76 10.29
Star 9.91 | -0.01 0.01 | 10.00 9.74 10.15
Triangle 9.76 | -0.19 0.14 | 10.07 9.60 9.98
Tumulus || 10.03 | -0.03 0.00 9.93 9.81 10.06

Table 6 The estimation results using Newton’s method for the
artificial images: 10° rotation around X axis.

(4 X Y Z
actual rotation 10.00 | 1.00 0.00 | 0.00
Moon 9.91 | 1.00 0.00 | 0.00
Star 9.91 | 1.00 0.00 | 0.00
Triangle 9.76 | 1.00 | -0.02 | 0.00
Tumulus 10.03 | 1.00 0.00 | 0.00

axis is estimated very accurately than that in the case
of SVD. One of the considerable reasons of this is that
the calculation amount of SVD routine is bigger than
that of Newton’s method.

Next, we give the estimation results for the actual
active camera. The camera used in these experiments
is SONY EVI-D30. EVI-D30 can rotate from —100°
to 100° for pan and from —25° to 25° for tilt through
RS232C interface. The prepared objects are planar Pi-
geon, Board in sponge, puppet of Cat and bottle of
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Table 7 The estimation results using Newton’s method for the
artificial images: 10° rotation around Y axis.
0 X Y Z
actual rotation 10.00 | 0.00 | 1.00 | 0.00
Moon 10.02 | 0.00 | 1.00 | 0.00
Star 10.00 | 0.00 | 1.00 | 0.00
Triangle 10.07 | 0.01 | 1.00 | 0.00
Tumulus 9.93 | 0.00 | 1.00 | 0.00

Table 8 The estimation results using Newton’s method for the
artificial images: successive 10° rotation around X,Y axis in the
order.

0 X Y Z
actual rotation 14.13 | 0.71 | 0.71 | -0.06
Moon 14.17 | 0.69 | 0.72 | -0.06
Star 14.06 | 0.69 | 0.72 | -0.06
Triangle 13.84 | 0.69 | 0.72 | -0.06
Tumulus 14.04 | 0.70 | 0.71 | -0.06

Fig.3 The original images obtained by an active camera: From
left to right, Pigeon, Board, Cat, Coffee.

Fig.4 Images without background for the experiments: From
top to bottom, Pigeon, Board, Cat and Coffee. From left to right,
original image used as before camera rotation, the actual rotation
is 10° around X axis, 10° around Y axis and the successive 10°
rotation around X,Y axis.

Coffee (see Fig.3). They put on the blue background
and at 60 centimeter distant from the camera. The
original images are taken in color. Then the blue back-
ground is removed from each image and the images are
transformed into gray scale images. They are rotated
10° around X axis, 10° around Y axis and rotated suc-
cessively 10° around X, Y in the order. Each image is
shown in Fig. 4.
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Table 9 The estimation results using SVD for the actual active
camera: 10° rotation around X axis.
0 X Y Z
actual rotation 10.00 | 1.00 | 0.00 0.00
Pigeon 9.98 1.00 | 0.00 0.07
Board 9.89 1.00 | -0.01 | -0.09
Cat 9.79 | 093 | -0.01 | -0.37
Coffee 9.76 | 0.99 | -0.01 | -0.11

Table 10 The estimation results using SVD for the actual
active camera: 10° rotation around Y axis.
6 X Y 7
actual rotation 10.00 0.00 1.00 0.00
Pigeon 9.88 -0.01 | 0.97 | 0.26
Board 9.82 0.01 1.00 | -0.02
Cat 9.51 -0.01 | 1.00 | -0.05
Coffee 9.83 0.00 1.00 | 0.09

Table 11  The estimation results using SVD for the actual ac-
tive camera: successive 10° rotation around X,Y axis in the order.

6 X Y Z
actual rotation 14.13 | 0.71 | 0.71 | -0.06
Pigeon 13.91 | 0.71 | 0.69 | 0.08
Board 13.81 | 0.69 | 0.71 0.12
Cat 13.66 | 0.69 | 0.68 | -0.25
Coffee 13.78 | 0.71 | 0.71 0.02

The estimation results for SVD are shown in Ta-
bles 9-11. From these tables, we see that the errors are
very small and rotations around any axes are well esti-
mated for the actual active camera, because the errors
between the actual rotation angle and the estimated
angle are less than 5% of the actual rotation angle,
though the center of rotation does not coincide with
the center of lens. The estimation of Cat’s rotation is
a little worse against others. It seems that the change
of illumination of Cat depending on the rotation angle
affects on this result, because Cat is susceptible of the
lighting condition as it has a complex form. Generally
speaking, the method based on SVD is sensitive against
noise because it requires the large amount calculations
than Newton’s method.

The estimation results for Newton’s method are
shown in Table 12 and the corresponding rotation angle
and axis are given in Tables 13-15 in order to compare
with the results for SVD. From these tables, we see that
the errors of rotation angle are small and the rotation
axis is estimated more accurately than that in the case
of SVD.

Now, we consider the effect of noise.  Sup-
pose to the case that each pixel of an image is
blurred by the additive Gaussian noise N(0,0). In
Eq.(21), the image F(z,y) is changed into F(z,y),
where F(z,y) = F(x,y) + Ny 4(0,0). The change of
quasi moment features by noise my is represented by
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Table 12 The estimation results using Newton’s method for
the actual active camera: X10 shows 10° rotation around X axis,
Y10 shows 10° rotation around Y axis and XY10 shows successive
10° rotation around X,Y axis in the order.

X10 Y10 XY10
actual 0x Oy 0x Oy Ox Oy
rotation 10.00 0.00 0.00 10.00 10.00 | 10.00
Pigeon 10.13 0.02 -0.29 9.78 10.21 9.69
Board 9.79 -0.05 0.09 9.80 9.64 9.76
Cat 10.05 0.00 -0.34 9.48 10.20 9.46
Coffee 10.26 0.01 -0.09 9.81 10.34 9.79

Table 13 The estimation results using Newton’s method for

the actual active camera: 10° rotation around X axis.
0 X Y VA

actual rotation 10.00 | 1.00 | 0.00 | 0.00

Pigeon 10.13 | 1.00 | 0.00 | 0.00

Board 9.79 | 1.00 | 0.00 | 0.00

Cat 10.05 | 1.00 | 0.00 | 0.00

Coffee 10.26 | 1.00 | 0.00 | 0.00

Table 14 The estimation results using Newton’s method for

the actual active camera: 10° rotation around Y axis.
[4 X Y Z

actual rotation 10.00 0.00 | 1.00 | 0.00

Pigeon 9.78 | -0.03 | 1.00 | 0.00

Board 9.80 0.01 | 1.00 | 0.00

Cat 9.49 | -0.04 | 1.00 | 0.00

Coffee 9.81 | -0.01 | 1.00 | 0.00

Table 15 The estimation results using Newton’s method for
the actual active camera: successive 10° rotation around X,Y
axis in the order.

0 X Y Z

actual rotation 14.13 | 0.71 | 0.71 | -0.06

Pigeon 14.07 | 0.72 | 0.69 | -0.06

Board 13.71 | 0.70 | 0.71 | -0.06

Cat 13.90 | 0.73 | 0.68 | -0.06

Coffee 14.23 | 0.72 | 0.69 | -0.06

p q T
e\ (y\ ([
my = — = = | Nz(0,0)dm(z,y).
(56)
Then, the expectation value of my is

E[my] =0, (57)

because each noise is added independently and they
are independent of the location. Thus, quasi moment
features are not affected by the independent Gaussian
noise with the mean 0.

The estimation results with noise are shown in
Figs. 5-6, Fig.5 is the estimation result by SVD and
Fig. 6 is the estimation result by Newton’s method. The
images used in the experiments are Tumulus (an ideal
camera condition) and Cat (an actual active camera).
The mean of Gaussian noise is 0 and its standard devi-
ation o is increased from 0 to 10. Each result is given
by the mean of 10 trials.
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Fig.5 The estimation results using SVD in the case where
the Gaussian noise is added to each image independently: From
top to bottom, the error of rotation angle for Tumulus (an ideal
camera condition), the cosine between actual rotation axis and
the estimated rotation axis for Tumulus, the error of rotation
angle for Cat (an actual active camera) and the cosine between
actual rotation axis and the estimeted rotation axis for Cat. The
holizontal axis is the standard deviation of Gaussian noise and
the vertical axis is the difference from the actual rotation angle
for the rotation angle estimation, or the cosine between actual
axis and the estimated axis for the rotation axis estimation.
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Fig.6 The estimation results using Newton’s method in the
case where the Gaussian noise added to each image indepen-
dently: From top to bottom, the error of rotation angle for Tu-
mulus (an ideal camera condition), the cosine between actual
rotation axis and the estimated rotation axis for Tumulus, the
error of rotation angle for Cat (an actual active camera) and the
cosine between actual rotation axis and the estimeted rotation
axis for Cat. The holizontal axis is the standard deviation of
Gaussian noise and the vertical axis is the difference from the
actual rotation angle for the rotation angle estimation, or the co-
sine between actual axis and the estimated axis for the rotation
axis estimation.
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From these results, we see that both methods
aren’t influenced by the noise seriously.

6. Conclusion

We have presented two kinds of estimation methods
for the active camera rotation from only two images
obtained before and after camera rotation. Some ex-
periments have been given to show the effectiveness of
these methods. First, the artificial images were consid-
ered. The estimation results show that the rotations
around any axes are well estimated shown in Tables 1—
4. Second, the images obtained from an actual active
camera were considered. We compared two estimation
method, one is based on SVD and the other is based
on Newton’s method. In both cases, the active camera
rotation is well estimated shown in Tables 5-7,9-11.

Then, we considered the effect of noise. From the
results in Figs. 5-6, we see that both methods aren’t
influenced by the noise seriously.
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