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SUMMARY In this paper, a new bits truncation adaptive
pyramid (BTAP) algorithm for motion estimation is presented.
The method employs bits truncation of the gray level from 8 bits
to much less bits in the searching algorithm. Compared with
conventional fast block matching algorithms, this method drasti-
cally improves speed for motion estimation on reduced gray-level
images and preserves reasonable performance and algorithm reli-
ability. Bits truncation concept is well combined with hierarchi-
cal pyramid algorithm in order to truncate adaptively according
to image characteristics. The computation complexity is much
less than that of pyramid algorithm and 3-Step motion estima-
tion algorithm because of bit-truncated search and low overhead
adaptation. Nevertheless, the PSNR property is also comparable
with these two algorithms for various video sequences.

key words:  bits truncation, adaptive, pyramid, motion estima-
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1. Introduction

Motion estimation is the most time consuming task in
encoding video of today’s hybrid video coding stan-
dards such as MPEG2. In real time video coding appli-
cations, such as HDTYV, the reduction of high computa-
tion complexity of motion estimation algorithm while
preserving reasonable performance is always of great
concern. Many fast algorithms as well as some real time
hardware designs have been proposed[1],[2],[4],[6].
However, in order to be a general purpose standard such
as MPEG?2, its High Level standards (HP@HL and
MP@HL) are being frustrated by the drastic compu-
tation complexity incurred by motion estimation. This
is because the video is of image size 1920 x 1152 with
frame rate 60 frame/s. The required number of opera-
tions per second is more than 5.7 BOP if a search range
of 60 in both direction is required (as in HDTYV).
Recently, many hardware implementations for
MPEG?2 are proposed. But most of them are restricted
to the Main Level standard[5]-[7]. High Level stan-
dard implementation is still viewed as a difficulty and
dedicated design is considered as a cost efficient solu-
tion. In [4], a single chip dedicated implementation of
motion estimation for MP @ HL is presented, which uses
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256 PEs, and 12.7 mm x 13.7 mm of area. This exam-
ple, indicates the difficulties in the design of MPEG2
HL standard. Firstly, the PE size may be very large.
256 PE’s array will occupy very large area[4]. Sec-
ondly, to increase PE speed, pipeline stages are usually
inserted into PE. Thus, the increased new latency will
decrease the number of search points and degrade the
performance. Hence, it is still quite necessary to de-
velop faster motion estimation algorithm and to reduce
the hardware size, to increase the cost-efficiency.

In order to overcome such difficulties, we exploit
another level of hierarchy, that is the gray-level hierar-
chy. We enjoy extreme fast search on images of reduced
gray levels. By bits truncation, the hardware is corre-
spondently reduced and critical signal path is greatly
shorten. To avoid uniform bits truncation scheme, we
combined bits truncation with pyramid algorithm to
adaptively adjust truncation threshold value. It is de-
rived from information of data distribution between
pyramid levels. The algorithm has the advantages such
as high speed, and excellent performance and high reli-
ability.

2. Basic Idea

Here, we shall describe a new motion estimation algo-
rithm which aims at further reduction of the computa-
tion complexity of motion estimation at less expense of
video quality. Our method is to perform motion estima-
tion for bits truncated image while preserving algorithm
reliability as well as image quality. We combine it with
pyramid algorithm[1] adaptively to find a better bits
truncation for every macroblock matching.

The widely used mean absolute difference (MAD)
criterion is written as

N N
S(m,n) = Z

i=1j

j=
dij(mvn) = |fk(lv.7)—fk—l(7'+m7]+n)| (2)

where N is the macroblock size in one dimension.
(m,n) is the distance in coordinates between a refer-
ence block and candidate blocks. fj is the pixel value
of current frame. f;_; is the pixel value of previous
frame. S(m,n) is calculated for every candidate mac-
roblock within the search window. The (m,n) with
minimum S(m,n) is chosen as a motion vector. Here,

dij(m, Tl) (H
1
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Fig. 1 Distribution of d;;(m,n).

d;j(m,n)s are represented by the same number of bits
as the original image pixels. For 8-bit image case, it is
also 8 bit.

Figure 1 shows a typical example of the distribu-
tion of d;;(m,n) of the best and second best matched
macroblock. The vertical axis is the probability while
the horizontal axis is the gray-level. For the best
matched block, the grey levels to represent d;;(m,n)
is usually much less than 256. This is intuitively un-
derstood and has been demonstrated by computer sim-
ulations. If d;;(m,n) is represented by using less than
8 bits, then the summation of Eq. (2) becomes easier and
hence the motion estimation speeds up.

The bits truncation is the procedure to reduce the
number of bits to represent d;;(m,n) values. The sim-
plest bits truncation is just to ignore less significant
bits of d;;(m,n). However, such bits truncation may
lose important characteristics of the original d;;(m,n).
For example, d;;(m,n) can be bit-truncated to 1 if
dij(m,n) = 128, or 0 if d;;(m,n) < 128. In other
words, d;;(m, n) is bit-truncated to only one bit by us-
ing a threshold value of 128. In case when all the values
of d;j(m,n) are less than 128, there is no way to iden-
tify the motion vector (m, n) with the minimum S(m, n)
since all S(m,n) become zero. Therefore, an adaptive
algorithm is used to choose appropriate threshold val-
ues which preserve the characteristics of the d;;{m,n)
necessary to search the motion vector (m,n). How-
ever, the calculation of appropriate threshold values
directly requires the similar amount of computations
to conventional one. In order to reduce this computa-
tion overhead. Our algorithm combines bits truncation
with pyramid algorithm so as to get information of low
level threshold value from high pyramid level search.
We adjust the threshold value adaptively for every mac-
roblock.
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3. Bits Truncation Threshold

Now we consider the above idea from the viewpoint of
data distribution. d;;(m,n) is the absolute difference
value between pixels of candidate blocks and reference
block. Let the distribution function of d;;(m, n) of each
matching within search window be denoted as p,(m, n),
assuming szo pg(m,n) = N2. Let gray-level be de-
noted as g. Then, the mean absolute difference (MAD)
can be rewritten by using pg(m,n) as

255

S(m,n) = Zg-pg(m,n). 3)
g=0

For each matching in the search window, d;;(m,n)
distributes with mean and variance, denoted as u(m,n)
and o(m,n). They are defined by u(m,n) =
S(m,n)/N? and o(m,n) = E((d;;(m,n) — u(m,n))?)
with ensemble operation. According to our investi-
gation, the mean and variance play an important role
to derive the efficient separation threshold. Let uq, u;
and o,, 0, be the mean and variance of d;;(m,n) for
matched block and second matched block respectively.
Without loss of generality, u(m,n) of different candi-
date blocks have a relation in their magnitude as

U <ug <uUz.... 4)

Figure | shows a typical distribution of the first and
second matched block data and their separation. The
motion estimation 1s to find the vector of the minimum
mean, u; within search window. In other words, it is
to separate u; from all other u, or just from wus.

Equation (3) can also be expressed by four parts
or more parts according to the range of gray-level. In
2-bit approximation case, we rewrite it into four parts
as

sep;—1 sepp—1

S(m,n)= > g-pg(m,n)+ > g-py(m,n)
g=0 g=sep1
sepz—1 255
+ Y g pgmn)+ Y g-py(m,n)
g=sep2 g=sep3

where sepy, € [0,255], (k = 1,2,3), and sep; < sepy <
seps.

One of truncations of d;;(m,n) to 4 kinds of gray-
level is to approximate values within 0 < d;;(m,n) <
sepy as 0, within sep; < d;j(m,n) < sepy as 1,
within sep; < d;j(m,n) < seps as 2, and within
sepz < d;;(m,n) < 256 as 3. Magnitudes O, 1, 2, 3
of the approximated values are not important because
our main purpose is to compare MAD among all candi-
date blocks. In this case, S(m,n) can be approximated
to S5(m,n) as

sepr1—1

> pe(m,n) (5)

g=sepi

3
Sh(m,n) = Zk X
k=1
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where seps = 256.
In the same way, we use Sj(m,n) for 1-bit approx-
imation as
255
Si(m,n) = Y pg(m,n). (6)

g=sep

Thus, d;;(m,n) smaller than the threshold value
sep is approximated to 0, and larger d;;(m,n) become
1. The matched block will have more 0 while the un-
matched block will have more 1 in approximated val-
ues. Then, the block with the smallest $' will become
the matched block. Instead of S{m,n), Sj(m,n) and
S7(m,n) can be used as criterion to find motion vector.

In the above, we have pointed out that the choice
of an appropriate threshold value is critical for an effec-
tive approximation of d;;(m, n) and separating u by S’.
Intuitively, as shown in Fig. 1, we select the threshold
value sep in between u; and us as

sep = (uy + uz)/2. (M

Let py(m1,n1) and py(ma, ng) denote the distribu-
tion of d;;(m, n) for matched block and second matched
block respectively. Under the condition of

Ug — Uy > 2(0%+0§)1/2, (8)
we can derive an inequality
255 255
Z pg(ma, n2) > Z Pg(ma, na). 9)
g=sep g=sep

This inequality means that the matched block can be
separated from the unmatched blocks by setting sep as
Eq. (7).

proof: If Z is random variable, with its mean as v, and
variance as o, Chebyshev’s Inequality

P(|Z —u,| 2 co) £1/c? (10)

holds. ¢ can be any number. |Z — u,| is the absolute
distance between Z and u,. The inequality describes
that the possibility of this distance larger than co is less
than 1/c2.

Considering d;;(m,n) as random variable, we de-
rive

1/c} 2 P(|dij(m1,n1) — u1| 2 c101) (1

1— P(|dz~j(m2,n2) - ’U,2| ; 6202) g 1-— 1/(,‘% (12)

As shown in Fig. 1, when c;o0; = sep — u; and
Ca09 = ug — sep, we obtain

P(|dij(my, 1) — u1| 2 c101)
1

255
2 Ng Z pg(mlanl) (13)
g=sep
1 — P(|dij(m2,n2) — ua| 2 c202)
1 255
< w7 O Polma,na). (14)

g=sep
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Under condition Eq.(8) and by selecting sep to be
in the middle of u; and u, as in Eq.(7), we obtain

1> % + é (15)
From above equations, we can finally get
255 255
Z Pg(ma,n2) > Z Pg(ma, n1) (16)
g=sep g=sep

or S{(mg, ng) > Si(m1,n1).

Therefore, if we set the threshold value in the mid-
dle of u; and us (not necessary condition), we can sep-
arate them.

The condition Eq. (8) implies that the larger us —u;
become, the better the separation is achieved. Accord-
ing to practical simulation results, most images satisfy
the inequality for the mean and variance. The variance
of d;j(m,n) becomes small for matched cases. In case
the image is not so plain, the us — uy is much larger
than w;. It is easier to estimate a motion vector. On
the contrary, in case the image is plain, uo —u; becomes
small. Thus, even condition Eq.(8) is not satisfied, the
estimation error will be also small.

4. Adaptive Threshold

We perform bits truncation to use less gray levels to
approximate d;;(m,n). However, the selection of sep
requires the probability density function of d;;(m,n)
for each matching. It can only be directly calculated
after motion estimation when we know u; and us. This
contradiction will make bits truncation no meaning at
all. Further more, every macroblock has different char-
acteristics. We should adaptively choose sep according
to statistic information of every macroblock.

Thus, our adaptive method combines bits trunca-
tion with pyramid search algorithm.

1. In the highest pyramid level, we perform search in
the same way as original algorithm using 8-bit cri-
terion. Since block size is quite small compared
with low level, the computation complexity be-
comes also low. We estimate the position for u,
and uq, and the sep for low level according to the
statistic information.

2. In the low level, we use derived sep to truncate
d;j(m,n) and perform search on these bit-truncated
dij (m,n)

We discuss herein how to decide adaptive thresh-
old sep in the mean pyramid algorithm and in simple
down-sampling algorithm.

4.1 Threshold for Mean Pyramid

The mean pyramidal images[1] are constructed by sim-
ply averaging four neighboring pixels of the lower level
to construct a pixel data in the higher level as
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Fig. 2 High level and low level of pyramid algorithm.

1 1
gr1(p,g) = [1/4> ) gL(@p+u,2¢+v)], (17)

u=0v=0

where gr11(p, q) represents the gray level at the posi-
tion (p,q) of the (L + 1)th level and g,(p,q) denotes
the original image. The number of pixels in the next
upper level is reduced one fourth as small as the lower
level. The means are denoted as uy and wuy, for higher
and lower level respectively. As shown in Fig.2, g, and
g. denote the pixel values of the reference block and
candidate blocks respectively.

Now we want to find relation between ug and uy.

One pixel’s absolute difference at high level is ex-
pressed by

1
dg = Z|(g300 = 9c00) + (9501 — geo1)

; (18)

which corresponds to four pixels difference in low level.
The corresponding sum of absolute difference is de-
scribed by

+ (gs10 — ge10) + (gs11 — Ge11)

1
dy = 1 (19500 = geoo| + |gs01 — geor |
+ |gs10 — gerol + [gs11 — ge11l)- (19)

Triangular inequality of |a + b| < |a| + |b| leads to
the relation, dy < dj,. Since these inequalities hold for
every pixel in the high level, ug < ujy holds for their
average.

Now, we compare 4d3; with d2 as,

1
4d3 = ~((gs00 — 9c00)* + (gso1 — geo1)*

4
+ (gs10 — 9c10)” + (gs11 — ge11)* + Ig)
1

di = 6 ({9500 = 9e00)® + (gs01 = geo1)?

+ (gs10 — 9e10)® + (gs11 — ge11)* + I¢)

IB =2 Z (gsijgsmn + GcijGemn
ijEmn
— 9smnGcij — gsijgcmn) (20)

Table 1
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Simulation results for ug and uy, relation.

Mean Pyramid

level3 — level2

level2 — levell

ugy Supy < 2up

95.7%

99.8%

uge S upg < 2upya

99.4%

99.9%

Simple Down-sampling

level3 — level2

level2 — levell

0.7Tum < urs < 1.3up, 66.8% 73.2%
0.7ups Sups £ 1.3uys 56.8% 58.7%
0.5uf; up; £ 1.5u, 84.1% 89.9%
0.5ugs < ups £ 1.5ugo 82.3% 84.9%

IC =2 Z (|gsz] - gczgl * |gs7nn - grmnl) (21)
ijfEmn
where ij, mn € (00, 01,10, 11).
From inequality a? + b? > 2ab, we obtain

(gsij - gcij)2 + (gsmn - gcmn)2
g 2(|gsij - gcij| * |gsmn - gcmnl) (22)

Thus, only if Iy = 0, we can get 4d%, > d2, or
2dy =2 dy,.

In order to show that I'y = 0 holds statistically, we
investigate E(Ig). As defined in [8], the correlation of
two pixels within one frame is called spatial correlation.
On the contrary, the correlation of two pixels of differ-
ent frames at the same position is called temporal cor-
relation. E(Ig) includes E(gsi;jGsmn) and E(geijgemn)s
E(gsijgemn) and F(geijgsmn). Since pixel pairs (gsij,
gsmn) and (geij, gemn ) belong to one frame, E(gsijgsmn)
and E(gc;ijgemn) are spatial correlation. However, pixel
pairs (gsmn, gcij) and (gsijs gcmn) are not Ol‘lly in
different frames but also at different pixels position.
Thus, E(gsijgemn) and E(gcijgsmn) have both certain
spatial distance as well as certain temporal distance.
This indicates that the correlation of E(gs;;jgcm»n) and
E(gcijgsmn) are smaller than E(gsijgsmn)s E(geijgemn)-
As a result,

E(Ig) 20 (23)

holds statistically. Therefore, we can show that statisti-
cally 2dg = dp, and thus 2uy = uy, holds.

From the above two points, we derive the inequality
as

ug Sup £ 2ugy. (24)

In order to confirm Eq.(24), we perform the computer
simulation for Flower Garden video sequences. In Ta-
ble 1, it is shown how many blocks among the total
of 1350 blocks of one frame (720 x 480) satisfies the
relation uy £ uy, £ 2upy for each pyramid hierarchy
level 4 — level (¢ — 1). uy; and ug; are corresponding
to matched block, while ugyo and up, are correspond-
ing to the second matched block. It is clear that more

_than 95-percent of blocks within one frame satisfy the

above relation. Also, we simulated Mobile & Calendar
video sequences and find 93-percent of blocks within
one frame satisfy this relation.
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From the statistic information we derive from high
pyramid level, we select a proper threshold value sep
for the low level as follows.

The relation (24) also holds for the first and second
matched blocks cases as

g Lupy £ 2up (25)
upo L urz £ 2upgs. (26)

The minimum mean difference of high level uy; may
move in the low level to u;;. However its moving range
is limited from upy, to 2ugy,. The same things applies
to ur» and ugs of the second matched block. For 1-bit
approximation, we select sep = (ur; + ur2)/2 for bits
truncation in the lower level. Since

(up1 + upa)/2 < sep < (ug1 + ug2) (27)
holds, we can set sep in the middle of this range as
sep = 0.75(uy1 + upa). (28)

It tells that the lower level bits truncation threshold is
decided by the average calculated in higher level anal-
ysis. In 2-bit approximation case, we select sep; =
0.75(uy1 + ugs), and sep; = 0.5seps, seps = 1.5sep;.

4.2 Threshold for Simple Down-Sampling

The simple down-sampling algorithm is just to select
one pixels from every four pixels of low level to con-
struct high level. Since no low pass filtering is per-
formed, it is sometimes suffered from noise effects. But,
due to its simplicity, it is also widely used.

When the image’s frequency is not so high and the
aliasing is small, dy and dj can be estimated to be
almost the same.

U, >2uy. (29)

This relation is inherited by average of the best matched
and the second best matched block as

Upl X UH] UL2 & UH2. (30)

So, sep can be selected as #1442 in |-bit approxima-

tion case. In 2-bit case, we select sepy = 0.5(ugy1 +ug2),
and sep; = 0.5seps, seps = 1.5sep;.

4.3 Threshold on 2’s Power

The above selections have given satisfactory results for
simulated video sequences. However, for further reduc-
tion of the computation complexity, we can select sep
on 2’s power as 2". This is shown in Fig. 3. Figure 3 (a)
shows the 1-bit approximation case. The example is for
sep = 4. When d;; < 4, d;; is converted to 0, other-
wise 1. Figure 3 (b) shows the 2-bit case with sepl = 2,
sep2 = 4 and sep3 = 6. When d;; < 2, it is converted
to 00, when 2 < d;; < 4, it is converted to 01, and so
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dij(m,n)

000000 00
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Fig. 3  Select sep from 2’s power.

on. In fact, no comparison is needed any more for this
threshold value. The computation complexity is greatly
reduced and the algorithm becomes a real bits trunca-
tion algorithm.

In this way, we have chosen threshold only on O,
2, 4, 8, 16, 32, 64, 128. The mapping of original arbi-
trary value sep to 2’s power should make original sep
around 2" symmetrically. For example, when original
sep equals to 3 or 4 or 5, we map them all to 4. When
original sep equals to 6, 7, 8, 9 or 10, it is mapped to
&, and so on. Thus, for small sep, the mapping error is
small. For large sep, mapping error becomes large but
the the distribution of d;;(m,n) is also sparse.

5. Bits Truncation Adaptive Hierarchical Search

Now we summarize the 3-level bit-truncated adaptive
algorithm as a whole with practical figures. The step is:

1. Construct the 3-level pyramidal search window and
macroblocks

2. At the highest pyramid level, the block size is 4
pixels by 4 pixels. Search motion vector with 8-bit
MAD criterion. Obtain ug; and ugz. Set sepy
according to the adaptive method.

3. At the middle level, the block size is 8 x 8. Search
motion vector using bit-truncated S’(m,n) crite-
rion. Get corresponding motion vectors and sepy
for lower level.

4. At the low level, the block size is 16 x 16. Search
motion vector using bit-truncated S’(m,n) crite-
rion.

5. Calculate the motion vector as mv = 22:1 muy, *
2"~1 where | is number of levels (1=3).

The ratio of the pixel number is 16 : 64 : 256 from
highest to lowest level of macroblock size 16 x 16. For
the highest level, we perform just the same search as
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original algorithm. This is quite necessary to keep im-
age quality because the top level determines the most im-
portant motion vector information. Computation com-
plexity is also quite low here compared with the other
two levels.

6. Performance Simulation Results

The proposed algorithm is applied to four video se-
quences of 50frames each to demonstrate the perfor-
mance properties of our algorithm. They are Flower
Garden, Mobile & Calendar, Claire of size 720 x 480
and Table Tennis of size 352 x 240. Satisfactory results
have been obtained. The performance is evaluated using
PSNR defined as

ImageSize x 2552
> pizel_error?

PSNR =10log

Table 2 shows the simulated results. For example,
2bitMean2™ means the proposed algorithm of 2-bit ap-
proximation with mean pyramid algorithm and sep is
set to 2’s power.

proposed 1 and proposed 2 are results of bits trun-
cation with mean pyramid algorithm. We can compare
them with Mean Pyramid item in Table 2. Though
the four video sequences are quite different in property,
our algorithm are always catching up the PSNR per-
formance with mean pyramid algorithm. Even when
1-bit approximation and sep sets to 2’s power, the per-
formances are still satisfactory. Also, if we comparing
with 3-step algorithm, we find its performance is simi-
lar'to us. The performance difference of our algorithm
with full search algorithm is related with the perfor-
mance difference of pyramid algorithm with full search
algorithm.

proposed 3 and proposed 4 are results of bits trun-
cation with simple down-sampling pyramid algorithm.
We can compare them with Simple Pyramid item.

When frames’spatial frequency is high and object’s
move is slow, ur and uy ’s relationship may fail for
some blocks and this results in search error. Also, high
spatial frequency means high penalty (pizel_error?) for
search error. We find that in the Mobile & Calendar
video sequences’ simulation, it is 0.43 dB for 2bitMean
algorithm and 0.56 dB for 1 bit M ean2™ algorithm worse
than Mean Pyramid algorithm, which is not as good
as Flower Garden’s case. But from the reconstructed
frames, we find most parts of image’s search have pre-
served the performance of Mean Pyramid algorithm,
Only in the calendar part, the “4” has vanished. But the
overall performance is still satisfactory.

The result of no adaption NoAdapt indicates the
necessity of the adaptation for keeping the reliability of
algorithm,
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Table 2  Average PSNR Property.

Conventional FlowerG | MobileC | TableT | Claire
FullSearch 26.23 24.06 27.92 45.78
MeanPyramid 25.58 23.52 27.49 45.66

3 — Step 25.29 23.21 27.32 45.72
SimplePyramid | 24.27 21.01 24.06 39.58
Proposed 1 FlowerG | MobileC | TableT | Claire
2bitMean 25.30 23.09 27.29 45.33
1bitMean 25.23 23.01 27.22 45.14
Proposed 2

2bitMean2™ 25.19 23.01 27.20 45.21

1 bitMean2” 25.11 22.96 27.08 45.04
Proposed 3

2 bitSim 23.91 20.65 23.78 39.27

1 bitSim 23.84 20.52 23.75 38.91
Proposed 4

2 bitSim2™ 23.82 20.58 23.76 39.02

1 bitSim?2™ 23.80 20.49 23.56 38.80

| NoAdapt [ 22.34 [ 17.59 [ 2143 | 3445 |

7. Computation Complexity

Since our algorithm is based on bits truncation, it is
convenient for us to compare the computation com-
plexity based on bit-serial operation. We compare how
many clock cycle needed for all operations. We assume
that the computation complexity of summation is lin-
ear to the number of bits. For example, the computation
complexity of 16-bit addition is twice as large as that of
8-bit addition and so on.

For the low level, the macroblock size is 16 x 16.
Thus, to calculate the 256 d};(m, n) of n-bit, we perform
128 n-bit additions, then 64 (n-+ 1)-bit additions, and so
on. As a result, the total number of additions becomes

128 x addition ( n )
64 x addition ( n+1 )
32 x addition ( n+2 )
16 x addition ( n+3 )
8 x addition ( n+4 )
4 x addition ( n+5 )
2 x addition ( n+6 )
1 x addition ( n+7 )

Sum ( n+8 )

The number of operations is scaled to 8-bit add/sub
operation. In our algorithm of 1bitMean2™ and
2bitMean2™, with sep setting on 2’s power, no com-
parison operation is needed, and we assume only 1/8
of operation is added to 8 bit subtraction of d;;(m,n) =
|fx(i,3) — f—1(i + m,j + n)|. For original algorithm,
the number of operation N;(b8) in the lowest level of
256 pixels becomes

0
N (b8) =256+ > _25(n+7-k)/8
k=7
= 256 + (255n 4 245)/8. (31
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In the middle level, the pixels is 64, the number of op-
eration N, (b8) is

0
N, (b8) =64+ > 2¥(n+5-k)/8
k=5
=64 + (63n + 57)/8. (32)

In the high level, the pixels is 16, the number of opera-
tion Ny (b8) becomes

1]
Ny (b8) =16+ > 2*(n+3—k)/8
k=3
=16+ (15n + 11)/8. (33)

The total number of operation N (b8) for all three levels
can be expressed as

N(b8) = 336 + (333n + 313)/8. (34)

Since n = 8, we have the number of operation is 542,
135, 33 from low to high level respectively, and the total
of operation is 709.

For our algorithm, the number of operation N;(bt)
is calculated in low level as

0
Ny(bt) = 256(1+1/8) + ) _2(n+7—k)/8
k=7
= 288 + (255n 4 245)/8. (35)

In, the middle level as

0
Np(bt) = 64(1+1/8)+ > _2¥(n+5—k)/8
k=5

=72+ (63n + 57)/8. (36)

And in the high level the same as original algorithm.
Totally, the number of operation N(bt) becomes

N(bt) = 360 + (318n + 302)/8 + 33. (37)

The results of the number of operations are almost the
same in the function for n bit. Our algorithm usesn =1
or 2, while original algorithm uses n = 8. For 2 bits ap-
proximation, n = 2, and the number of operation is 383,
95 and 33 respectively from low to high level. The total
is 499. For 1 bit approximation, n = 1, and the number
of operation is 351, 87 and 33 respectively from low to
high level. The total number of operation becomes 471.

The calculation of sep has not been taken into con-
sideration in the comparison, since it is calculated only
once for the whole search area, this overhead is very low
(0.1-percent) and can be neglected.

In Table 3, we compared the number of operations
required for algorithms. It is assumed that the maxi-
mum motion vector is 7 in both direction and thus 9
points is searched for each step of 3-Step algorithm or
each pyramid level. Prep. means the preparation of
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Table 3 Number of operations.

Conventional | Prep. | First Second | Third Total
FS 121950
3 — Step 9 x 542 | 9 x 542 | 9 x 542 13550

Mean3level 240 9x33 | 9x135 | 9 x 542 6630
Proposed Prep. | First Second | Third Total
1 bitMean2™ | 240 9 x 33 9 x 87 9 x 352 4488
2 bitMean2™ 240 9 x 33 9 x 95 9 x 383 4839

higher pyramid levels for searching. The number of op-
eration is three times less than 3-Step algorithm, and
because the neighboring candidate block data within
search area can be reused during search [5], it may re-
quire less 1/O access than 3-step algorithm.

The computation complexity is two third of Mean
pyramid algorithm.

In fact, it is difficult to compare them only by num-
ber of operation.

As we have analyzed, the high level standards of
MPEG-2 requires the hardware running at very high
speed. The hardware’s critical signal path should be
quite short for such a purpose. In the above comparison,
we have assumed that the computation complexity of ad-
dition to be linear with the number of bits. This is only
true for CPA (carry-propagate-adder). When PE work-
ing at very high speed, CLA (carry-look ahead-adder)
may be required, or pipeline stage may be inserted. In
all cases, the computation complexity is not linear with
number of bits. From our practical investigation, we
find that when the clock frequency is high (for exam-
ple, 200 MHz), the area to realize a 16-bit adder may
require 3 times the area as a 8-bit adder.

More bits of operation usually means more bits
of saving. The intermediate saving are not taken into
consideration in the comparison yet. For the original
algorithm, the accumulator may require 16-bit register.
While in our case, it is much less. Since the registers
are prepared in every PE for array implementation, we
save these registers greatly. The hardware cost is once
more reduced in our case.

Furthermore, by taking advantage of the feature of
motion estimation, we can change the operations of ab-
solute difference (Eq. (2)) and comparison with sep into
two comparison

| fo — from1 | sep=>fro —sep < fr_1 < fr + sep

Note that f; + sep are operation with reference block
and need only to be calculated once for whole search
area. A PE thus contains only two comparators. One
comparator can be designed with 22 gates of 10 gate
delay, which results in critical signal path of only 10
gate delay. Comparing with conventional designs[4],
the critical single path is usually 40 gate delay when
CPA is used. We estimate our PE size will be 5 times
as small as or smaller than a conventional one.
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8. Conclusion

In this paper, a new bits truncation adaptive algorithm
for motion estimation is proposed. This method im-
proves speed of motion estimation by reducing the com-
putation complexity for searching motion vectors on re-
duced gray-level images, while it preserves reasonable
performance and algorithm reliability. Because of bit-
truncated search and low cost adaptation, the computa-
tion complexity is greatly reduced. The PSNR property
is also comparable with the other algorithms for the
tested video sequences.
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