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Abstract

Magnetic dynamic processes for micromagnetic clusters with local disorder of crystal structure were simulated by pseudo-non-
equilibrial Monte Carlo method. The magnetic field dependence of magnetization showed a little dip at zero magnetic fields. The dip
becomes larger as the number of dislocations increase. Simulated Barkhausen noise at the dip was stronger than ordinal-simulated
Barkhausen noise around coercivity. The snapshot of spins shows a magnetic fluctuation around dislocations. The result suggests a
possibility of a new measurement with high sensitivity, to detect the deformation of micromagnetic clusters.
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1. Introduction

Recently a number of experimental studies have been
made on magnetic dynamic processes for micromagnetic
clusters such as magnetic nanowire or quantum dots [1-4].
For thin film type magnetic cluster, real-time measure-
ments of magnetic domain wall movements have been tried
mainly using magneto-optical Kerr effect [5,6]. On the
other hand, other simulations for magnetic clusters like
nanowires are dealing with magnetic dynamic process,
especially hysteresis loops [7-10]. The information is
becoming useful for developing high-density magnetic
memories or micromagnetic devices. The influence of local
disorder of crystal structure on dynamic magnetic proper-
ties, however, has not been considered sufficiently. The
local disorder of crystals such as impurity, defects or
dislocations is possible to exist even for a well-controlled
grown cluster. The rate of disorder will increase as the size
of the cluster decreases, and then it will be important to
estimate its effect on the magnetic processes.
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We have simulated the magnetic dynamic process using
pseudo-non-equilibrial Monte Carlo (MC) method [11-14].
In this paper we will present the properties of the magnetic
dynamic process for magnetic clusters with local disorder
in the crystal structure.

2. Numerical method

It is not usual to simulate dynamic magnetic process,
because the behavior of a spin system under continuously
changing magnetic field has not yet been established. We
have been trying to apply MC simulation for the dynamic
magnetic process, especially like a Barkhausen noise (BN).
The results showed good correspondence with experimen-
tal results, especially temperature dependences of BN.
Moreover, the results suggested the possibility that closer
observation of a magnetic dynamic process, such as BN,
provide the information for the state of magnetic materials.
The same method is applied in the following for plane type
magnetic clusters which include dislocation loops.

In general, MC method deals with the thermal equili-
brium state. The conventional process is as below, i.e. (i) at
first an initial spin arrangement is set; (i) then a spin is



focused in the spin cluster; (iii) next a trial spin-flip is
executed for the focused spin; (iv) the local Hamiltonian of
the focused spin is calculated for the state before and after
spin-flip; (v) each spin state for the focused spin is decided
by making a comparison between their energies, including
thermal fluctuation effects. One MC step (1 MCS) means
scanning up to the total cell a number of times for the
process from (ii) to (v). Usually MC steps are repeated until
one gets a stable state [15-21].

Now we stopped the repeat before getting a stable state,
because of dealing with the magnetic dynamic processes for
BN. Under the condition of constant magnetic field, the
total spin is in a non-equilibrium state and going to an
equilibrium state with progressing MC steps. The magnetic
field slightly increases before it comes to the equilibrium
state, then the total spin is kept under another non-
equilibrium state again, while proceeding to a new
equilibrium state. The operation is repeated until the final
magnetic field is achieved. Because the change of the
magnetic field is minute, it is regarded that a series of steps
is an approximately continuous process through a pseudo-
non-equilibrium state. Here we introduce an assumption
that magnetization intensity (M), namely the summation of
total spins (M = ) ;s;; 5; denotes the ith spin state), of each
MC step can reflect the magnetic dynamic process on the
magnetic hysteresis. Therefore, in this study, we differenti-
ate the magnetic process for applied magnetic field
(dM/d(MCS)) and deal with the discrete components of
dM/d(MCS) as simulated BN. Note that MCS on our
simulation varies with time (¢) on the real system.

Here, a spin system composed of 312 =961 cells
(0<x<30, 0<y<30) standing for a single square lattice
was prepared as a normal spin system. The lattice constant
is 1, and this is regarded as a criterion of length. Deformed
spin systems were made by introducing one or two
dislocation loops on the normal spin system, as shown in
Fig. 1.

A simple Hamiltonian (H) was used for the simulation as
shown below:

H=-) J;S;S;+BY S 4))
ij i

Here S; denotes the spin state of ith cell, and J;; stands
for the effective exchange energy for ith and jth spins. B
represents applied magnetic field. For simplicity, magnetic
anisotropy and magnetic dipole interaction were neglected.
This is justified because the cluster size was set small, and
the number of magnetic particles is small. Here, we adopt
the physical model of J;; as a step function 6, viz.

L (<),
Jij = 9(1 - rij) = {0 (r;> 1). @

r; denotes the distance between ith and jth spins. Although
the exchange energy of this model is supposed to be
overestimated compared to real magnetic materials, it will
be allowed for the purpose to derive intrinsic effect of local
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Fig. 1. Model of micromagnetic cluster with residual strain including
(a) one dislocation loop and (b) two dislocation loops.
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Fig. 2. Magnetic hysteresis curves for magnetic clusters including (a) no
dislocation loop, (b) one dislocation loop and (c) two dislocation loops.
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Fig. 3. Simulated Barkhausen noise (BN) for magnetic clusters including
(a) no dislocation loop, (b) one dislocation loop and (c) two dislocation
loops.

disorder in the crystal structure for dynamic magnetic
process. For example, europium oxide (EuQ), which is well
known as a typical magnetic semiconductor, has a
dominant exchange energy J; represented as an exponen-
tial function of the distance between individual states due
to RKKY interaction. That is, the exchange interaction
decreases rapidly as the distance increases. When the lattice
deformation becomes large, the distribution of J; could be
regarded as a function similar to Eq. (2).

The simulation was carried out by the use of the super-
computer, ORIGIN 2000 in the Institute of Fluid Science,
Tohoku University.

3. Results and discussion

Fig. 2 shows the calculation results for magnetic field
dependence of magnetization (magnetic hysteresis curve)
for the magnetic clusters including (a) no dislocation
loop, (b) one dislocation loop and (c) two dislocation
loops when applied magnetic field (B) changes along
B=0->+1—->0—-> -1—-> 0— +1. Magnetization is
normalized by the number of sites in the cluster. All
hysteresis curves show the saturation magnetic field Bg
around 0.5. The curves for the spin systems with
dislocation loops have dips around zero magnetic field,
but the dip cannot be seen for the normal spin system.
Moreover, the dip depth increases as the number of
dislocation loops increases.

Fig. 3 shows simulated BNs under an applied magnetic
field of a triangular wave form for (a) no dislocation loop,
(b) one dislocation loop, and (c) two dislocation loops.
Large BN are clearly seen in the magnetic field across the
zero field when including (b) one dislocation loop and
(c) two dislocation loops. The change of magnetization
around the zero field is less than the one around coercivity.
Small BNs exist around coercivity for all cases. These are
supposed to be ordinal BNs which are produced by
discontinuous magnetic domain walls movements [22,23].

For investigating the origin of BN around the zero
magnetic field, let us follow the change of spins with
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Fig. 4. Snapshots for micromagnetic clusters including no dislocation
loop (left side) and one dislocation loop (right side) in a magnetic field
changing along (a)B=+1 -, (5)B=0-, (c)B=-0.3 -, (d)B =
—0.4 —, (e)B = —0.6 in Fig. 2.

triangular waveform magnetic field as time flows. Fig. 4
shows a series of snapshots for micromagnetic clusters
including one dislocation loop in magnetic field change
along (@B =+1—,(b)B=0—,(c)B=—0.3 —,(d)B=
—0.4 —,(e)B = —0.6 in Fig. 2. We clearly see the furious
spin disorders around the dislocation loop when the
magnetic field is about zero. Hence, the origin of large
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Fig. 5. (a) Magnetic hysteresis curve and (b) simulated BN for a three layer magnetic cluster including one dislocation loop on the intercalation middle

layer.

BNs in Fig. 3 will be mainly due to the existence of
dislocation. For ordinal magnetic materials, the rate of the
area of local disorders in the crystallized magnetic clusters
is very small and its effect could not be easily detected. In
fact, as shown in Fig. 5(a), the dips around zero magnetic
field on the hysteresis curves decrease rapidly when the
micromagnetic cluster, including one dislocation loop, viz.
a plane represented as Fig. 1(a), is intercalated between
double perfect-crystallized planes composed of 31% = 961
cells (0<x<30, 0<y<30) without any dislocation loops.
But the anomalous BN corresponding to the dip does
not decrease, as shown in Fig. 5(b), although indicating
that the anomalous BN is highly sensitive to such local
disorders.

Fig. 6 shows the calculation of the magnetic after-
effect under applied magnetic fields changing from B =1

to B = —1 as a step function of time, as shown below:

1 (t<0),
Bi=-260(-1=4 _, (t>0). 3

After changing the magnetic field to B= —1, the
magnetization for the cluster without any dislocation
loops gradually decreases and finally gets to the opposite
saturated magnetization. On the other hand, the magneti-
zation for the magnetic cluster including one disloca-
tion loop has a tiny dip right after the magnetic field
was switched. In this case it is also assumed that spin
fluctuation exists around the local disorder.

The above results suggest the high fluctuating and
stressful state of the spin system including local disorders.
Our model for the simulation may include some extreme



1000 T T T
Magnetic After effect along x direction
500 |- 7
[
(=]
-
8
s 0
[ =4
o
g reversal magnetic field
i —— one dislocation
s00F O\ &+ \t e non dislocation B
-1000 L L —
0 10 20 30 40x10°

time (MCS)

Fig. 6. Calculation of the magnetic after-effect under an applied magnetic field changing from B =1 to B = —1 as a step function of time for the clusters

without any dislocation loops and with one dislocation.

overestimation, especially about the exchange interaction
which has a sharp cut-off length. But the tendency will still
remain in some degree for the real system. Then we may
have a new measurement tool using BN which can detect
the local deformation in micromagnetic clusters.
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