《ミニノート》

トリフルオロメチルベンジル不斉骨格をもつ 強誘電性液晶の絶対構造と自発分極

A relationship between sponteneous polarization and the absolute configuration of a ferroelectric liquid crystalline compound having a trifluoromethylbenzyl asymmetric frame

工学部 応用化学科 青木 良夫、野平 博之

Department of Applied Chemistry, Faculty of Engineering Yoshio AOKI, Hiroyuki NOHIRA

Abstract : The single-crystal X-ray diffraction analysis of the 1:1 salt of (R)-(+)-1-(4-methylphenyl)ethylamine and 4,4,4-trifluoro-3-(4-methoxyphenyl)butanoic acid was carried out, and the absolute configuration of the acid was determined. A ferroelectric liquid crystal (FLC) was synthesized using the acid, a relationship between the structure of the FLC and its spontaneous polarization was discussed.

1. 導入

多くの優れた特性を持つ強誘電性液晶(FLC)は、次世代の平面型表示デバイスの材料として注目され ており、近年その実用化も始められている1-3。FLCディスプレイの重要な物性の一つである応答時間は、 その自発分極(Ps)に大きく依存しており、液晶の粘性が同じであれば、Psが大きいほど応答時間の短 縮化が可能であることがわかっている。そこで、より大きなPsを発現するFLC材料を開発することを目 的として多くの材料が合成されてきている。FLC分子は一般的にFigure 1に示すような構造をもってお り、分子中央部にコアと呼ばれる芳香環で構成された堅い部位と、その両端に柔らかいアルキル鎖をもって いる。また、強誘電性を発現するためには、分子中に不斉部位をもっていることが必要である。Psを大き くするためには、大きな分極構造をもつ不斉部位をできるだけ強固に固定することが必要であり、一般にフ ッ素などの極性基をコアに近づけることで、Psを増大させることができる。

^{chain} core chiral center Figure 1 Typical structure of FLC.

FLCのスイッチング過程については、まだ完全に はわかっていないが、ジグザグーモデルと呼ばれる簡 単なモデルで説明することができる。すなわち、 Figure 2のように液晶分子を単純化して、極性基が向 いている方向からPsの符号を考えるもので、このよ うな考え方からPsの符号と液晶の絶対構造が対応し ていることが経験的に確かめられている。特に、ベン ジル位に不斉な極性基をもつFLCについては、この 両者にはっきりとした相関性が確かめられており、P

sの符号を確かめることによってその絶対構造を求め Figure 2 Zigzag-model of FLC molecule. ることが可能であり、これは光学活性化合物の簡便な絶対構造決定法となることが報告されている4。今回、

トリフルオロメチル不斉構造をもつカルボン酸の単結晶X線構造解析からその絶対構造を求め、このカルボン酸から誘導されたFLCのPsの符号について調べたので報告する。

2. 実験

比旋光度の符号が(+)である4,4,4-トリフルオロ-3-(4-メトキシフェニル)ブタン酸と (R)-(+)-1-(4-メチルフェニル)エチルアミンの塩を作成し、これを水から数日かけて結晶を 成長させた。これを、マックサイエンス社製MXC3Kにて測定をおこない(CuK_a,50kV,40mA)、測定デ ータはCRYSTANにて解析をおこなった。また、4,4,4-トリフルオロ-3-(4-メトキシフェニル) ブタン酸から、**Figure 3**に示す構造をもつ強誘電性液晶を合成し、その物理特性を測定した⁵。

Figure 3 Structural formula of the FLC.

3. 結果と考察

単結晶X線構造解析の結果をTable 1に、オルテップ図をFigure 4に示す。

Tabl	le 1 Crystallographic	c data of the salt.
mol formula		C ₂₀ H ₂₄ O ₃ NF ₃
mol wt		383
crystal system		Monoclinic
space group		P2 ₁
a, Å		14.108(2)
b, Å		6.216(1)
c, Å		13.134(2)
V, Å ³		1045.7(3)
Z		2
Dcalc, $g \text{ cm}^{-3}$		1.216
radiation (λ , Å)		Cu-Ka, 1.54178
crystal dimens, mm		0.2x0.1x0.1
Rfln (hkl) limits		0 <h<17, -16<l<14<="" -7<k<0,="" td=""></h<17,>
total rflns measured		2337
unique rflns		1847
linear abs coeff, cm ⁻¹		8.136
rflns used in L.S.		1009
L. S. params		253
R		0.074
Rw	_	0.069
max peak in final Fourier	map, e Å ⁻³	0.28
min peak in final Fourier	map, e Å ⁻³	-0.22

- 23 -

Figure 4 ORTEP view of the salt.

単結晶X線構造解析では、測定点が比較的少ないながら収束し、結晶系は単斜晶系であり空間群はP2₁と 1つのらせん軸をもつことがわかった。

解析の結果、4,4,4-トリフルオロ-3-(4-メトキシフェニル)ブタン酸は(S)-(+)であ ることが判明した。(S)-(+)-4,4,4-トリフルオロ-3-(4-メトキシフェニル)ブタン酸 から誘導されたFLCのPsを測定したところ、Psの符号は(-)であり、ジグザグモデルから予想され る結果と一致した。このことからも、ジグザグ-モデルの有用性が確かめられた。Ps-(-)のFLCは、 **Figure 5**に示すように、紙面上方からの電場に対して左に傾いた配向をとり、逆の電場に対して右に傾い た配向をとる。

液晶分子は液晶相においてさまざまな運動をしており、分子長軸回りにも高速に回転していることがわかっている。しかしながら、ジグザグモデルのような単純な分子構造を想定することによって、Psの極性などの液晶の性質の予測ができることから、液晶分子は完全に自由運動をしているわけではなく、その構造に依存したかなり制約された運動をしていることが考えられる。すなわち、液晶は極めて多数の分子の集合体としてその性質を発現しているが、液晶の分子構造そのものを検討することによっても、そのマクロ構造からの性質を考えることができる。合成されたFLCのPsは最大で約100nCcm²程度と比較的大きな値を示したが、予想されたほどではなかった。これは、極性基として働いているトリフルオロメチル基の分極の方向が、完全にY軸方向沿ったものでないために、Psの有効な成分として働いている分極(Py)が小さくなっているためと、ベンジル位におけるトリフルオロメチル基の固定の効果が不十分であることが考えられる。さらにすぐれた強誘電性液晶材料を開発するために、ジグザグーモデルを有効に利用した分子設計が求められる。

Figure 5 Zigzag-model of the FLC molecule.

4. 文献

- 1) N. A. Clark, and S. T. Lagerwall, Appl. Phys. Lett., 36,899, 1980.
- J. W. Goodby, R. Blinc, N. A. Clark, S. T. Lagerwall, M. A. Osipov, S. A. Pikin, T. Sakurai, K. Yoshino, B. Zeks, Ferroelectric Liquid Crystal, 1992, Gordon and Breach Science Publishers.
- 3) P. J. Collings and M. Hird, Introduction to liquid crystals, 1997, Taylor & Francis.
- 4) T. Kusumoto, T. Hiyama, S. Takehara, Ferroelectrics, 148, 153, 1993.
- 5) Y. Aoki and H. Nohira, Liquid Crystals, **23**(1), 87-92, 1997.