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Abstract

We consider the Value at Risk (VaR) of a portfolio under stressed
conditions. In practice, the stressed VaR (sVaR) is commonly calculated
using the data set that includes the stressed period. It tells us how much
the risk amount increases if we use the stressed data set.

In this paper, we consider the VaR under stress scenarios. Tech-
nically, this can be done by deriving the distribution of profit or loss
conditioned on the value of risk factors. We use two methods; the one
that uses the linear model and the one that uses the Hermite expan-
sion discussed by Marumo and Wolff (2013, 2016). Numerical examples
shows that the method using the Hermite expansion is capable of cap-
turing the non-linear effects such as correlation collapse and volatility
clustering, which are often observed in the markets.
Keywords: Conditional distribution; Hermite expansion; Linear model;
Non-linear effect.

1 Introduction

Value at Risk (VaR) and stress test are common tools for measuring risk of a
portfolio and are used as the benchmark for the capital requirement in financial
institutions. In addition to these two, a risk measure called the stressed Value
at Risk (sVaR) is often discussed (Hong, 2017; Basel Committee on Banking
Supervision, 2013; European Banking Authority, 2012).

The sVaR considers the VaR under the stressed market conditions. In
practice, this is particularly done by using the market data from the period
that includes September to November 2008 financial crisis (Gibart, 2012). This
implies that the only difference between the VaR and sVaR is that we use the
data set with the larger volatility for calculation. Further, we usually use
around two years’ historical data for VaR calculations, while many financial
crises lasts only a few months. This means that the data set as a whole may
not represent the stressed market conditions.

In this paper, we consider the VaR under stress scenarios on risk factors.
This can be compared to the stress tests, which considers the loss under stress
scenarios. Technically, the VaR under a scenario can be calculated from the
distribution of profit or loss conditioned on the risk factor’s value. A näıve way
of deriving this conditional distribution is to use the linear model. This method
essentially uses only first and second moments, and is not capable of capturing
non-linear effects such as correlation collapse and volatility clustering, which
are often observed in the markets. We consider the application of the Hermite
expansion discussed by Marumo and Wolff (2013, 2016) to the calculation
of conditional VaR. The Hermite expansion approximates the target density
function by the Normal density multiplied by the linear combination of the
Hermite polynomials. It is capable of expressing the higher order moments,
and hence we suppose that it captures non-linear effects.

Compared to the VaR under stress scenarios, the stressed VaR can be
considered as the unconditional VaR, calculated using the data that includes
the stressed period. We expect that the VaR under stress scenarios which takes
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the non-linear effects into accounts can be more informative and contribute to
a better understanding on the risk of our portfolios under stressed market
conditions.

In the remainder of this paper, we review the theoretical background of the
methods used in the paper in Section 2, and show the numerical examples in
Section 3. Section 4 concludes.

2 Methodology

In this section we review theoretical background of the method used in this
paper.

2.1 VaR and sVaR

As we review later, the VaR is calculated directly from the profit or loss dis-
tribution of the portfolio. On the other hand, the sVaR is supposed to be the
hypothetical VaR calculated for the stressed market conditions. According to
Gibart (2012), this is usually done by estimating the profit or loss distribu-
tions using the data that include financial crisis periods, typically September
to November 2008. In this sense, the VaR calculated using a data set that
includes these two months is the sVaR.

In this paper, we use the data with crisis period, and we further try to
capture the risk under the stress by using the scenarios on risk factors.

2.2 VaR under scenario

Let R be the random variable which denotes the return on the portfolio, and
X = (X1, . . . , Xp)

′ be a random vector of the risk factors, such as the stock
index return or the interest rate change.

Let f(r,x), r ∈ R,x ∈ Rp be the joint density of R and X, and fX(x) be
the marginal density of X. Then, the density of R under the scenario X = x,
where x ∈ Rp, is given as the conditional density;

fR(r|X = x) =
f(r,x)

fX(x)
.

Hence, the lower α-quantile under the scenario is given as rα which satisfies

FR(rα|X = x) =

∫ rα

−∞
fR(r|X = x)dr = 1− α.

Then the 100α%-VaR of the portfolio is calculated as −S0(erα − 1) ' −S0rα,
where S0 is the present value of the portfolio.

2.3 Methods for deriving conditional density

In the procedure outlined above, the key step is the derivation of the condi-
tional density. Here, we consider the following two methods; the use of linear
model and the use of Hermite expansion.
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The use of linear model is one of the simplest way. It essentially takes only
first and second moments into accounts, while the Hermite expansion uses the
higher order moments and is capable of capturing non-linear structures such
as the correlation collapse and volatility clustering which are often observed
in the markets under stress.

Use of linear model

We assume a linear relation between r and X of the form:

R = β0 +X ′β + ε,

where β0 and β = (β1, . . . , βp)
′ are the parameters which can be estimated, for

instance, by the OLS, and ε is a random variable which is uncorrelated with
X. It is often assumed that ε has the Normal distribution with mean 0 and
constant variance σ2.

Under this setting, the conditional distribution of R is simply the normal
distribution with mean β0 + x′β and variance σ2. Thus, there is no technical
challenge in calculating VaR under scenarios.

Use of Hermite expansion

We consider the application of the method introduced by Marumo and Wolff
(2013, 2016).

Let us consider smoothing the empirical distribution function given the his-
torical observations (R(i),X ′(i))′, i = 1, . . . , N , where i is the time step. We
are aware of the possible existence of the serial dependence structures; how-
ever, here we work on the unconditional distribution. This can be justified by
the popularity of the historical simulation (HS) method, which uses the uncon-
ditional empirical distribution, among the large majority of commercial banks
(Pérignon and Smith, 2010). We deal with the serial dependence structure
later in the numerical examples.

According to Marumo and Wolff (2013, 2016), the joint density function
can be estimated by smoothing the empirical distribution function using the
Hermite expansion as

f̂(r,x) = φ(r)φ(x1) · · ·φ(xp)

×
∑

kr+k1+···+kp≤n

ckr,k1,...,kpHekr(r)Hek1(x1) · · ·Hekp(xp), (1)

where φ(x) = e−x
2/2/
√

2π is the density function of the standard Normal
distribution,

Hek(x) =
1√
k!

1

φ(x)

dk

dxk
φ(x)
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are the modified Hermite polynomials, and ckr,k1,...,kp are the real coefficients
given by

ckr,k1,...,kp =
1

1 + s{kr(kr + 1) +
∑p

u=1 ku(ku + 1)}
c̃2+
kr,k1,...,kp

ĉkr,k1,...,kp
, (2)

ĉkr,k1,...,kp =
1

N

N∑
i=1

Hekr(R(i))Hek1(X1(i)) · · ·Hekp(Xp(i)),

b̂2
kr,k1,...,kp

=
1

N

N∑
i=1

He2
kr(R(i))He2

k1
(X1(i)) · · ·He2

kp(Xp(i)),

c̃2+
kr,k1,...,kp

= max((Nĉ2
kr,k1,...,kp

− b̂2
kr,k1,...,kp

)/(N − 1), 0),

where 0 < s ≤ ∞ is the parameter for smoothness and n ≥ 0 is the degree of
expansion. If ĉkr,k1,...,kp = 0 then ckr,k1,...,kp can be defined as 0. See Appendix
for conversion properties.

In practice, we can standardise the variables so that the sample means
equal to 0, sample variances to 1, and sample correlation coefficients to 0,
before applying the Hermite expansion, in order to obtain better approxima-
tion quality. See Marumo and Wolff (2013, 2016). It has also been shown by
Marumo and Wolff (2016) that the density in Equation (1) is convergent for
s 6= 0, and that the convergence is slower with smaller s.

The marginal density f̂X(x) can be estimated similarly, and hence the
density under the scenario X = x is given by

f̂R(r|X = x) =
f̂(r,x)

f̂X(x)
.

2.4 Case with scenario on one risk factor

For illustration, we discuss the case with scenario on one risk factor. This
is the simplest case where we deal with the joint distribution of (R,X1) and
consider the conditional distribution of R under the scenario X1 = x1.

For simplicity, we hereafter denote the risk factor by X instead of X1.

Use of linear model

The portfolio return under the scenario X = x can be expressed as

R = β0 + β1x+ ε,

a simple regression model. We can estimate β0, β1 and σ2 = V (ε), for instance,
by the OLS.

The distribution of R is given by N(β̂0 + β̂1x, σ̂
2), where the symbols with

ˆare the estimators. Here, the information added to the unconditional VaR is
the linear correlation coefficient between the portfolio return and risk factor.
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Use of Hermite expansion

Suppose that the historical observations {R(i)} and {X(i)}, are standardised
so that the sample means and variances are 0 and 1, respectively. Let ρ̂ be the
sample correlation coefficient between {R(i)} and {X(i)}. Then

Z(i) =
R(i)− ρ̂X(i)√

1− ρ̂2
, i = 1, . . . , N, (3)

are uncorrelated with {X(i)}.
By applying the Hermite expansion, we can estimate the joint density of

(Z,X) by

f̂Z(z, x) = φ(z)φ(x)
∑
k+l≤n

ck,lHek(z)Hel(x),

where ck,l are given by

ck,l =
1

1 + s{k(k + 1) + l(l + 1)}
c̃2+
k,l

ĉk,l

ĉk,l =
1

N

N∑
i=1

Hek(Z(i))Hel(X(i))

b̂2
k,l =

1

N

N∑
i=1

He2
k(Z(i))He2

l (X(i))

c̃2+
k,l = max((Nĉ2

k,l − b̂2
k,l)/(N − 1), 0),

for ĉk,l 6= 0, and ck,l = 0, otherwise.
The joint density of (R,X) is given by

f̂(r, x) =
1√

1− ρ̂2
f̂Z

(
r − ρ̂x√

1− ρ̂2
, x

)

and the marginal density function of X, by

f̂X(x) = φ(x)
n∑
l=0

c0,lHel(x).

Hence, the conditional density function of R is given by

f̂R(r|X = x) =
f̂(r, x)

f̂X(x)

=
1√

1− ρ̂2
φ

(
r − ρ̂x√

1− ρ̂2

)
n∑
k=0

ck(x)Hek

(
r − ρ̂x√

1− ρ̂2

)
,
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where

ck(x) =

∑n−k
l=0 ck,lHel(x)∑n
l=0 c0,lHel(x)

.

Using the identity ∫ t

−∞
φ(u)Hek(u)du =

1√
k
φ(t)Hek−1(t),

for k = 1, 2, . . ., and∫ t

−∞
φ(u)He0(x)du =

∫ t

−∞
φ(u)du = Φ(t),

the conditional distribution function is calculated as

F̂R(r|X = x) = Φ

(
r − ρ̂x√

1− ρ̂2

)
+ φ

(
r − ρ̂x√

1− ρ̂2

)
n∑
k=1

ck(x)√
k

Hek−1

(
r − ρ̂x√

1− ρ̂2

)
.

The lower α-quantile under the condition X = x can be found by solving
F̂R(r|X = x) = 1− α for r.

3 Numerical Examples

3.1 Data and parameters

As an example, we consider measuring the risk of the US Sovereign Bond
Portfolio, one of the Japanese investment trusts managed by Shinkin Asset
Management Co., Ltd., and use its daily reference price series. This fund
invests in the US sovereign bonds, and is yen-denominated. We thus expect
that it is affected by the US financial markets as well as foreign exchange
markets 1.

The observation period is from 1 August 2008 to 30 July 2010, which
includes the financial crisis in September to November 2008. In this sense, the
VaR calculated using the data from this observation period can be considered
as sVaR (see Section 2.1). The total number of observations is N = 484.

As for the risk factors, we consider the interest rate (log-difference of the
US ten years treasury constant maturity rate), foreign exchange rate (log-
difference of the USD/JPY exchange rate), and stock index (log-return on
S&P 500). See Table 1.

We consider the scenarios under which the risk factor takes the value in the
range ± three times the volatility (standard deviation of the log-difference),
and observe how the conditional quantiles are changed.

We use the smoothness parameter s = .4, which is large enough for the
approximation to be stable within the set of scenarios. As for the degree of
expansion, we set n = 100.

1 See http://www.skam.co.jp/fund/detail/id=327 for the detailed description and
source data. Since the investment trust is dynamically managed, investing in this trust is
not equivalent to investing in the US sovereign bond markets directly.

6



Mean Std. Dev. Skewness Kurtosis Cor. Coef.
(×10−4) (×10−2) (×10−1)

Portfolio Return -2.953 0.777 4.011 7.366 (1.000)
10Y TB -9.895 2.860 -5.900 6.791 0.084
USD/JPY -5.121 0.895 -7.640 7.360 0.543
SP500 -7.150 2.112 -4.596 7.113 0.391

Table 1: Summary statistics of the portfolio return and log-differences of the
risk factors. The Cor. Coef. column shows the sample correlation coefficient
between the portfolio return and the log-difference of the risk factor.

3.2 Conditional VaR

As reviewed in Section 2.2, VaR can be approximated by −S0rα, where rα is
the α-quantile of the portfolio return. In this Section, we exhibit the results
in terms of quantiles scaled by the volatility; that is, we have

VaR per currency unit of portfolio = −scaled quantile× 0.777× 10−2,

where 0.777× 10−2 is the volatility of the of the portfolio (see Table 1).

VaR under scenario on risk factor

Tables 2 to 4 and Figures 1 to 3 show the conditional quantiles of the portfolio
return for the scenarios.

.
From these Tables and Figures, we find that the conditional quantiles by the

Hermite expansion and the those by linear model agree within ± one volatility
change in the risk factor, while the quantiles by the Hermite expansion are
more conservative in the tail around two to three times the volatility. This is
consistent with the rule of thumb which claims that the correlation can collapse
in the tail events.

We also observe that the conditional quantiles are more conservative than
unconditional ones at around minus three times the volatility in all three cases.
This suggests that the unconditional VaR may not be conservative enough in
the stressed market conditions.
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X -3 -2 -1 0 1 2 3
Lower 99%tile
Hermite -2.893 -2.628 -2.452 -2.304 -2.238 -2.549 -2.724
Linear -2.573 -2.489 -2.405 -2.321 -2.237 -2.152 -2.068
Uncond. (HS) -2.725
Uncond. (Gaussian) -2.326

Lower 97.5%tile
Hermite -2.446 -2.207 -2.048 -1.912 -1.858 -2.037 -2.363
Linear -2.207 -2.123 -2.039 -1.955 -1.871 -1.787 -1.703
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 2: Scenarios on the change in the US ten years treasury constant matu-
rity rate and conditional quantiles of the portfolio. X corresponds to the value
of the risk factor, scaled by the standard deviation. For instance, the column
with X = −3 corresponds to the quantile of the portfolio return under the
condition that the risk factor is dropped by three times its volatility (the stan-
dard deviation shown in Table 1). The unconditional quantiles calculated by
the HS method and by Gaussian approximation are also shown. See Figure 1.
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Figure 1: Change in the US ten years treasury constant maturity rate and the
portfolio return. The axes are scaled by the corresponding volatilities. The
horizontal axis corresponds to the scenario on the risk factor.
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X -3 -2 -1 0 1 2 3
Lower 99%tile
Hermite -3.736 -3.536 -2.347 -2.023 -1.389 -1.521 -1.175
Linear -3.584 -3.042 -2.499 -1.956 -1.413 -0.870 -0.327
Uncond. (HS) -2.725
Uncond. (Gaussian) -2.326

Lower 97.5%tile
Hermite -3.586 -2.972 -2.076 -1.691 -1.045 -0.758 -0.902
Linear -3.276 -2.733 -2.191 -1.648 -1.105 -0.562 -0.019
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 3: Scenarios on the change in USD/JPY exchange rate and conditional
quantiles of the portfolio. X corresponds to the value of the risk factor, scaled
by the standard deviation. For instance, the column with X = −3 corresponds
to the quantile of the portfolio return under the condition that the risk factor
is dropped by three times its volatility (the standard deviation shown in Table
1). The unconditional quantiles calculated by the HS method and by Gaussian
approximation are also shown. See Figure 2.
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Figure 2: Change in the USD/JPY exchange rate and the portfolio return.
The axes are scaled by the corresponding volatilities. The horizontal axis
corresponds to the scenario on the risk factor.
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X -3 -2 -1 0 1 2 3
Lower 99%tile
Hermite -3.387 -3.075 -2.614 -2.126 -1.737 -1.721 -1.520
Linear -3.316 -2.925 -2.534 -2.144 -1.753 -1.362 -0.971
Uncond. (HS) -2.725
Uncond. (Gaussian) -2.326

Lower 97.5%tile
Hermite -3.164 -2.693 -2.231 -1.770 -1.374 -1.256 -1.197
Linear -2.978 -2.588 -2.197 -1.806 -1.415 -1.024 -0.634
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 4: Scenarios on the return on S&P 500 Index and conditional quantiles
of the portfolio. X corresponds to the value of the risk factor, scaled by the
standard deviation. For instance, the column with X = −3 corresponds to
the quantile of the portfolio return under the condition that the risk factor is
dropped by three times its volatility (the standard deviation shown in Table
1). The unconditional quantiles calculated by the HS method and by Gaussian
approximation are also shown. See Figure 3.
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Figure 3: Return on S&P 500 Index and the portfolio return. The axes are
scaled by the corresponding volatilities. The horizontal axis corresponds to
the scenario on the risk factor.

10



Scenario on previous day change

Volatility clustering is frequently observed in the financial markets. Loosely
speaking, volatility clustering claims that large changes are likely to be fol-
lowed by large changes, regardless of the directions. Thus, we expect that the
conditioning on the previous day return can alter the distribution of next day
return. We investigate such non-linear dependence structure using the same
data. The auto-covariance for the observed period is −0.1370.

Table 5 and Figure 4 show the quantiles conditioned on the previous day
return. We observe that the quantiles calculated by the Hermite expansion
are more conservative than those by the linear model. This is consistent with
volatility clustering frequently observed in the markets.

X -3 -2 -1 0 1 2 3
Lower 99%tile
Hermite -2.140 -2.416 -2.326 -2.268 -2.348 -2.636 -2.833
Linear -1.896 -2.033 -2.170 -2.307 -2.444 -2.581 -2.718
Uncond. (HS) -2.725
Uncond. (Gaussian) -2.326

Lower 97.5%tile
Hermite -1.891 -2.002 -1.894 -1.885 -1.977 -2.281 -2.542
Linear -1.532 -1.669 -1.807 -1.944 -2.081 -2.218 -2.355
Uncond. (HS) -1.952
Uncond. (Gaussian) -1.960

Table 5: Scenarios on the previous day’s return and conditional quantiles of
the portfolio. X corresponds to the value of the risk factor, scaled by the
standard deviation. For instance, the column with X = −3 corresponds to
the quantile of the portfolio return under the condition that the risk factor is
dropped by three times its volatility (the standard deviation shown in Table
1). The unconditional quantiles calculated by the HS method and by Gaussian
approximation are also shown. See Figure 4.
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Figure 4: Previous day change and the portfolio return. The axes are scaled by
the corresponding volatilities. The horizontal axis corresponds to the scenario
on the previous day return.

12



4 Conclusion

We considered the application of the Hermite expansion to the calculation of
the conditional VaRs, or equivalently for this case, conditional sVaRs, and
compared it with those by the linear model. The numerical examples demon-
strated that the sVaRs by two methods agreed with each other at the body
of the distribution, while the sVaR by the Hermite expansion was more con-
servative than that by the linear model in the tails. This suggests that the
Hermite expansion is capable of capturing the correlation collapse, which is
often observed under the stressed market conditions.

We also applied the methods to the sVaR with conditions on the previous
day return of the portfolio, and investigated how these methods capture the
serial dependence structure. It was observed that the sVaR by the Hermite
expansion was more conservative than that by the linear model. This suggests
that the Hermite expansion is capable of capturing the volatility clustering
which refers to the phenomenon observed in the market that large changes are
likely to be followed by large changes.

The sVaRs by the Hermite expansion under the condition that the risk
factor is around three times its volatility were more conservative than uncon-
ditional ones. This suggests that the unconditional sVaR may not be conser-
vative enough under the stressed conditions.

By construction, the sVaR by the Hermite expansion depends on the pa-
rameters, the smoothness weight s in Equation (2), and the degree of expansion
n in Equation (1). The convergence property has been discussed in Marumo
and Wolff (2016), and it has been shown that the density function is uniformly
convergent for s 6= 0 as n → ∞ (see Appendix). Hence, we might choose
reasonably large number. With regard to the smoothness weight, however, the
criteria for choosing an appropriate value has not been proposed. This is our
future work.
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A Convergence of Hermite expansion

We outline the proof of the convergence of the Hermite expansion in Equa-
tion (1). Although we use the bivariate case here, the general multivariate case
can be shown similarly.

A.1 Hermite expansion of unit step function

It has been shown by Marumo and Wolff (2016) that the unit step function
has the convergent Hermite expansion of the form

1{X≤x} = Φ(x) + φ(x)
∞∑
k=1

Hek(X)√
k

Hek−1(x), a. e. x.

Since the bivariate unit step function is the product of two univariate ones,

1{X≤x,Y≤y} = 1{X≤x}1{Y≤y},

it has the convergent Hermite expansion of the form

1{X≤x,Y≤y} = Φ(x)Φ(y)

+ Φ(x)φ(y)
∞∑
l=1

Hel(Y )√
l

Hel−1(y) + φ(x)Φ(y)
∞∑
k=1

Hek(X)√
k

Hek−1(x)

+ φ(x)φ(y)
∞∑
k=1

∞∑
l=1

Hek(X)Hel(Y )√
kl

Hek−1(x)Hel−1(y), a. e. x, y.

A.2 Hermite expansion of empirical distribution func-
tion

Given the data set {(X(1), Y (1)), . . . , (X(N), Y (N))}, the (joint) empirical
distribution function can be written as F̂ (x, y) = 1

N

∑N
i=1 1{X(i)≤x,Y (i)≤y}. Us-

ing the result from the previous Section, the Hermite expansion of F̂ can be
expressed as

F̂ (x, y) = Φ(x)Φ(y)

+ Φ(x)φ(y)
∞∑
l=1

ĉ0,l√
l
Hel−1(y) + φ(x)Φ(y)

∞∑
k=1

ĉk,0√
k

Hek−1(x)

+ φ(x)φ(y)
∞∑
k=1

∞∑
l=1

ĉk,l√
kl

Hek−1(x)Hel−1(y), a. e. x, y,

where

ĉk,l =
1

N

N∑
i=1

Hek(X(i))Hel(Y (i)).

15



This can be written as

F̂ (x, y) = Φ(x)F̂Y (y) + F̂X(x)Φ(y)− Φ(x)Φ(y)

+ φ(x)φ(y)
∞∑
k=1

∞∑
l=1

ĉk,l√
kl

Hek−1(x)Hel−1(y), a. e. x, y,

where F̂X and F̂Y are the empirical marginal distribution functions of X and
Y , respectively. Thus, we have∫ ∞

−∞

∫ ∞
−∞

{F̂ (x, y)− Φ(x)F̂Y (y)− F̂X(x)Φ(y) + Φ(x)Φ(y)}2

φ(x)φ(y)
dxdy

=
∞∑
k=1

∞∑
l=1

ĉ2
k,l

kl
.

We show that the integral in the left hand side is bounded. Let a be a large
enough constant. Split the integral by all combinations of x ≤ −a,−a <
x ≤ a, a < x, and y ≤ −a,−a < y ≤ a, a < y. For x ≤ −a, we have
F̂ (x, y) = F̂X(x) = 0, so the integral is

I1 =

∫ ∞
y=−∞

∫ −a
x=−∞

{−Φ(x)F̂Y (y) + Φ(x)Φ(y)}2

φ(x)φ(y)
dxdy

=

∫ −a
x=−∞

Φ2(x)

φ(x)
dx

∫ ∞
y=−∞

{F̂Y (y)− Φ(y)}2

φ(y)
dy.

Since Φ(x)−φ(x) is decreasing for x ≤ −1 with limx→−∞{Phi(x)−φ(x)} = 0,
we have 0 < Φ(x) < φ(x) for x ≤ −1. Therefore

∫ −a
−∞

Φ2

φ(x)
dx <

∫ −a
−∞ φ(x)dx =

Φ(−a) <∞. Hence we have

I1 < Φ(−a)

∫ ∞
y=−∞

{F̂Y (y)− Φ(y)}2

φ(y)
dy.

Now, split the integral with respect to y. For y ≤ −a, similarly to the case
with x ≤ −a, we have

∫ −a
−∞{F̂Y (y)−Φ(y)}2/φ(y)dy is bounded. By symmetry

the integral for a < y is also bounded. It is trivial to show that the integral
for −a < y ≤ a is bounded. Hence, I1 is bounded. By symmetry, the integral
for a < x is also bounded. The case with −a < x ≤ a can be shown similarly.

Thus, it has been shown that
∑∞

k=1

∑∞
l=1 ĉ

2
k,l/(kl) is bounded.

A.3 Convergence of Hermite expansion

As discussed in Marumo and Wolff (2013), the smoothed joint density function
is given by the form

fS(x, y) = φ(x)φ(y)
∞∑
k=0

∞∑
l=0

cSk,lHek(x)Hel(y),
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where

cSk,l =
ĉk,l

1 + s{k(k + 1) + l(l + 1)}
.

From the fact that (cSk,l)
2 < ĉ2

k,l/(kl) for large k and l, and the result from
the previous Section, we have that

∑∞
k=0

∑∞
l=0(cSk,l)

2 is bounded, which implies
that the infinite sum on the right hand side is convergent.

As for the expansion used in this paper, the coefficient is

1

1 + s{1 + k(k + 1) + l(l + 1)}
c̃2+
k,l

ĉk,l
,

which is smaller than N
N−1

cSk,l. This suggests that the Hermite expansion used
in this paper is also convergent.
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