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Abstract

When we measure the market risk of a portfolio with multiple of risk

factors, we, sometimes implicitly, deal with the risk factors’ joint distri-

bution. However, only a few methods are available to render tractable

forms of multivariate distributions for risk aggregation.

This paper discusses approximation techniques using the Hermite

expansion for marginal and joint density functions. These techniques

(or expansion methods) approximate probability density functions by a

sum of Hermite polynomials multiplied by the associated weight func-

tion. The advantage of the use of expansion methods is that they only

require the moments of the target distributions up to some finite degree,

assuming they exist.

The biggest shortcoming of the expansion methods is their poor ap-

proximation quality. This paper introduces techniques to redeem this

problem, and considers application to risk aggregation. We also ap-

proximate joint density functions and show that expansion methods

are applicable to approximating conditional expectations and copula

density functions. Numerical examples for bivariate cases show that

our approximations can capture characteristics of original observations.

Such techniques may facilitate the further investigation of non-linear

dependence structures among risk factors in the financial markets.

Keywords: Conditional expectations; Copulas; Hermite polynomials;

Orthogonal expansion; Smoothing methods.

1 Introduction

Handling the joint distributions of risk factors is a key step in market risk mea-

surement. Our portfolios are normally exposed to multiple of risk factors, and

it is a common process to aggregate these risks and obtain the distribution of

the profit or loss (PL) of the portfolio. This is because the PL distributions are

often considered to be vital for market risk measurement. For instance, the two

most commonly used risk measures, Value at Risk (VaR) and Expected Short-

fall (ES) are defined as a quantile of the PL distribution, and the expected loss
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given that the loss exceeds the VaR, respectively1. In reality, however, only a

few methods are available to render tractable forms of multivariate distribu-

tions for risk aggregation. Use of the multivariate Normal distribution is one

of the most common methods (Jorion, 2007; Malz, 2000). Among the many

advantages of this method is that it only requires the mean vector and the co-

variance matrix of the risk factors. Further, the portfolio value is expressed as

a Normal variable, as long as the PL of the portfolio is associated with the risk

factors in a linear form. The shortcomings corresponding to these advantages

are the ignorance of heavy tails and non-linear dependence structures, which

are often observed in the markets, and the difficulty in dealing with non-linear

risks.

As an alternative, the historical simulation (HS) method implicitly uses the

empirical distribution of risk factors (Jorion, 2007). The empirical distribution

is capable of capturing the characteristics of market observations such as heavy

tails or non-linear dependence structures among risk factors. Furthermore, the

measurement of non-linear risks is much easier with the HS method than with

the Normal-based methods; we can easily obtain the ‘virtual’ empirical distri-

bution of the PL from that of risk factors. However, discreteness, especially

in the tails where the observations are sparse, is an unfavourable feature of

the HS method. Also, the HS method does not render joint density functions,

which give comprehensive visual images of dependence structures2.

A less common method, which is becoming increasingly popular, is to use

a copula to describe the dependence structure among risk factors (Junker and

May, 2005; Natale, 2006). Although non-parametric copula estimation has

been proposed3, most copula-based methods require specification of the para-

metric copula function a priori.

Besides these methods, we discuss practical use of the Hermite expansion.

1See, for example, Jorion (2007), Mina and Xiao (2001) or Duffie and Pan (1997), for the

calculation of VaR.
2It is also pointed out that the HS method does not have a solution to the time aggregation

problem, which is concerned with measuring risks with time horizons longer than one day.

See, for instance, Marumo and Wolff (2007).
3See Capéraà et al. (1997) for example.
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The Hermite expansion expresses probability density functions (pdfs), by an

infinite sum of Hermite polynomials multiplied by an associated weight func-

tion, assuming the infinite sum converges4. We consider approximating pdfs

by a finite sum. We call such techniques expansion methods. One of the

advantages of expansion methods over other methods to approximate distri-

butions, such as those based on extreme value theory, is that the expansion

methods only require the moments (and cross-moments for the multivariate

case) of the target distribution up to some finite degree. Therefore, they have

a potential to be applied to a wide range of situations, including market risk

measurement.

One of the biggest drawbacks of expansion methods, however, is their poor

approximation quality. Due to the polynomials involved in the approximations,

they often exhibit negative density. Further, the infinite sum can be divergent,

or the convergence is often very slow, and therefore the approximation quality

can be sensitive to the choice of the order of expansion. Because of such

difficulties, application of expansion methods has been rather limited. For

instance, Marumo and Wolff (2007) apply univariate expansion methods to

approximating the pdfs of asset return distributions. Mauleón and Perote

(2000) consider a second-order multivariate approximation.

We introduce techniques to improve the approximation quality of expansion

methods. Numerical examples show that these techniques can be effective,

even with adverse cases.

We also discuss the application to market risk measurement. We show

that expansion methods can redeem the shortcomings of the Normal-based

methods.

Further, we extend the expansion methods more generally to multivariate

distributions. We also show that, using our expansion methods, conditional

moments and copula density functions can also be approximated. These also

provide a comprehensive view on dependence structures among risk factors.

4See Szegö (1975), Jackson (1963), Freud (1971) or Takahashi (2006) for theoretical

background of the Hermite expansion.
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The structure of this paper is as follows. In Section 2, we review the Her-

mite expansion for univariate cases and introduce techniques to improve the

approximation quality. Section 3 discusses the application to risk measure-

ment. In Section 4, we extend expansion techniques to multivariate density

functions and discuss further applications for dealing with conditional moments

and copula density functions. Numerical examples are also shown. Section 5

contains the closing discussion.

2 Hermite polynomials and expansion meth-

ods for univariate distributions

In this section, we review Hermite polynomials and expansion methods for uni-

variate cases, and introduce techniques to improve the approximation quality.

2.1 Hermite polynomials

The series of Hermite polynomials {Hek(x)} are defined as5

Hek(x) =
1√
k!

e
x2

2
dk

dxk
e−

x2

2 , k = 0, 1, 2, . . . . (1)

The most important property of this series is that it satisfies

∫ ∞
−∞

φ(x)Hek(x)Hel(x)dx =

0 (k 6= l)

1 (k = l)

, (2)

where φ(x) = e−x
2/2/
√

2π, the pdf of the standard Normal distribution, is

the associated weight function. This property is called orthonormality with

respect to φ.

2.2 Hermite expansion and expansion methods

Consider a pdf f . Assume that f satisfies∫ ∞
−∞

{f(u)− φ(u)
∑∞

k=0CkHek(u)}2

φ(u)
du = 0 (3)

5There are some variations for the definition of the Hermite polynomials, including

Hek(x) = ex
2 dk

dxk e−x
2

, which are orthogonal but may not be necessarily orthonormal.
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for some real coefficients C0, C1, . . .. Condition (3) is satisfied iff f is bounded

and

f(x) = φ(x)
∞∑
k=0

CkHek(x), (4)

for almost everywhere x. For such f that satisfies Equation (3), let us call the

expression in Equation (4) the Hermite expansion of f .

The infinite sum on the right hand side of Equation (4) is known to be

convergent if6 ∫ ∞
−∞

{f(u)}2

φ(u)
du <∞, (5)

that is, if f(x)/
√
φ(x) is square integrable. Roughly speaking, such f has to

be bounded and have ‘thin’ tails. Using Equations (2), (3) and (4), it can be

shown that, when the Condition (5) is satisfied, we have∫ ∞
−∞

{f(u)}2

φ(u)
du =

∞∑
k=0

C2
k <∞, (6)

which corresponds to the Perceval identity for the Hermite system.

For f ’s whose Hermite expansion is convergent, the coefficients {Ck} can

be determined, using Equation (2), as:

Ck =

∫ ∞
−∞

Hek(u)f(u)du, k = 0, 1, . . . . (7)

Note that He0(x) ≡ 1 and therefore C0 = 1 is required so that
∫∞
−∞ f(u)du = 1

is satisfied.

Let X be a random variable with pdf f . Then, from Equation (7) we have

Ck = E(Hek(X)), which is a linear combination of moments of X up to kth

order. This implies that, given the moments E(X), . . . ,E(Xn), Equation (4)

can be approximated by a sum up to finite n:

f(x) ' fn(x) = φ(x)
n∑
k=0

E(Hek(X))Hek(x). (8)

Let us call such approximation methods based on Equation (8) the expansion

methods7.
6See textbooks for Fourier Analysis such as Takahashi (2006).
7Besides using the Hermite expansion, the Laguerre expansion is sometimes applied to

densities with non-negative support. See Marumo and Wolff (2007) or Marumo (2007).
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2.3 Difficulties in applying expansion methods

One of the biggest drawbacks of the expansion methods is their poor approxi-

mation quality. It is pointed out by Gordy (2002) that naive use of the Hermite

expansion — plugging the moments of a risk factor into Equation (8) directly

— can result in a very poor approximation.

In fact, the expansion methods allow the approximations to take negative

values, and such negative density is often too large to ignore, especially in the

tails, where the pdf is close to 0.

For the cases where the Hermite expansion is convergent, and where the

convergence is reasonably fast, we might deal with this problem by increasing

the order of expansion n in Equation (8). The Hermite expansion, however,

is often divergent or, its convergence can be very slow. In such cases, the

approximation quality is sensitive to the order of the expansion. Marumo and

Wolff (2007) and Jaschke (2002) studies the relationship between the order

and the approximation quality; however, general criteria for determining an

optimal order of expansions have not been proposed as far as we can determine.

In the following Subsections, we firstly take a close look at these difficulties

using an example where we approximate the empirical distribution, and then

introduce techniques to deal with them.

2.4 Naive application to approximating empirical dis-

tributions

Assume that we have i.i.d. samples X(1), . . . , X(N) from a distribution with an

unknown pdf f . A naive idea would be to use the sample moments to obtain

the coefficients for the expansion. That is, we use the coefficients

Ĉk =
1

N

N∑
i=1

Hek(X
(i)), k = 0, . . . , n

to obtain the estimator of f ,

f̂n(x) = φ(x)
n∑
k=0

ĈkHek(x). (9)
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This approximation often results in a poor quality, as mentioned above. As

shown later, using the sample moments implicitly assumes that our target

distribution is the empirical distribution, whose pdf might be expressed using

the Dirac delta function δ as

fE(x) =
1

N

N∑
i=1

δ(x−X(i)).

Since fE(x)/
√
φ(x) is not square integrable, the expansion in Equation (9) is

divergent as n→∞. This means that
∑∞

k=0 Ĉ
2
k is also divergent.

To get a clearer view on this point, we consider the distribution function

(df), and verify that it has a converging Hermite expansion. Using Equations

(1) and (9), we have

F̂n(x) =

∫ x

−∞
f̂n(u)du = Φ(x) + φ(x)

n∑
k=1

Ĉk√
k

Hek−1(x), (10)

where Φ is the df of the standard Normal distribution8. This corresponds to

the naive approximation for the empirical df.

For the empirical distribution, we have

FE(x) =

∫ x

−∞
fE(u)du =

1

N

N∑
i=1

1{X(i)≤x},

where 1{} denotes the indicator function. It is easily shown9 that

I0 =

∫ ∞
−∞
{FE(u)− Φ(u)}2/φ(u)du <∞. (11)

This implies that FE(x) − Φ(x) has a converging Hermite expansion of the

form:

FE(x)− Φ(x) = φ(x)
∞∑
k=1

DkHek−1(x), (12)

8Note that C0 = 1 is used in Equation (10).
9Split the integral into three parts; (

∫ −a
−∞+

∫ a

−a +
∫∞
a

){FE(u)−Φ(u)}2/φ(u)du for some

large a. It is trivial to show that the second integral is bounded. For large enough a, we have

FE(x) = 0 for x ≤ −a. Since Φ(x) − φ(x) is decreasing for x ≤ −1 with limx→−∞(Φ(x) −

φ(x)) = 0, we have Φ(x) < φ(x) for x ≤ −1. Therefore,
∫ −a
−∞{0 − Φ(u)}2/φ(u)du <∫ −a

−∞ φ(u)du = Φ(−a) < ∞ for large a. This proves that the first integral is bounded. By

symmetry, the third integral can be shown to be bounded.

7



where {Dk} are real coefficients. We show that these coefficients are given by

Dk = Ĉk/
√
k as follows:

Consider the weighted integrated square difference (WISD) between left

and right hand sides of Equation (12),

I1 =

∫ ∞
−∞

{
φ(u)

∑∞
k=1DkHek−1(u)− FE(u) + Φ(u)

}2
φ(u)

du

=
∞∑
k=1

D2
k −

2

N

∞∑
k=1

Dk

N∑
i=1

∫ ∞
−∞

Hek−1(u)(1{X(i)≤u} − Φ(u))du+ I0

=
∞∑
k=1

D2
k − 2

∞∑
k=1

DkĈk√
k

+ I0, (13)

where we use the identity
∫

Hek−1(u)du = −Hek(u)/
√
k + constant, to obtain

the third equality. We have the following three facts:

• From Equation (12), {Dk} are the coefficients that let I1 = 0, and exis-

tence of such {Dk} is suggested by Condition (11),

• Since I1 is a integrated square, I1 ≥ 0, and

• From Equation (13), I1 is minimised when Dk = Ĉk/
√
k for k = 1, 2, . . ..

These verify

FE(x) = Φ(x) + φ(x)
∞∑
k=1

Ĉk√
k

Hek−1(x) = lim
n→∞

F̂n(x). (14)

Therefore, the naive approximation for the df in Equation (10) is convergent,

and we have

I0 =

∫ ∞
−∞

{
FE(u)− Φ(u)

}2
/φ(u)du =

∞∑
k=1

Ĉ2
k

k
<∞,

whereas
∑∞

k=0 Ĉ
2
k is divergent, as shown previously.

2.5 Techniques to improve the approximation quality

In the previous Subsection, we review naive approximations for empirical dis-

tributions and their convergence properties; the approximation for dfs is con-

vergent, while the approximation for pdfs is divergent. As we will see in the
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numerical examples, the convergence of the approximation for dfs, however, is

very slow and it may not be suitable for use in practice10.

The most popular way to redeem such fragility of the Hermite expansion

is to use the saddlepoint approximation, as suggested by Gordy (2002). This

is available for the cases where the cumulant generating function of the target

distribution is of a tractable form. This condition can significantly narrow the

scope of applicable cases.

Instead of using saddlepoint approximations, we introduce three techniques,

standardisation, smoothing, and optimisation, which, in combination with ex-

pansion methods, result in a better practical approximation quality in a wider

range of examples than investigated to date. Smoothing and optimisation have

not been considered in the literature as far as we can determine11. Standardi-

sation is a very common technique.

The advantage of our techniques over the saddlepoint approximations is

that they only require the moments of the target distribution up to some finite

degree.

Standardisation

We can view Equation (8) as approximating the target pdf by the pdf of the

standard Normal distribution along with correction terms involving polyno-

mials. If the target pdf is close to that of the standard Normal, then the

correction can be small and therefore we expect that the expansion method

provides a good approximation.

One obvious way to make the target pdf closer to that of standard Normal

is to standardise the variable so that the first and second moments of the target

pdf are equal to 0 and 1. Actually, this technique is used, sometimes implicitly,

in most existing applications.

Let µ = E(X), σ2 = E(X2) − µ2, X ′ = (X − µ)/σ and fX
′

be the pdf of

10An intuitive account for this slow convergence can be the large order of the polynomial

required to approximate functions with discontinuous points.
11A similar technique to optimisation for approximating a discrete distribution is found in

Hall (1983). He considers a case with a different expansion formula from the present paper.
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X ′. We apply the Hermite expansion in Equation (8) to X ′ to obtain its ap-

proximation fX
′

n . The pdf of X can be approximated by fn(x) = fX
′

n

(
x−µ
σ

)
1
σ
.

Note that C1 = C2 = 0 is assured by such standardisations.

We apply standardisation to all of the examples in this paper, and here-

after we call an expansion to which only standardisation is applied ‘a naive

expansion.’

Smoothing

As discussed above, a poor approximation quality can be due to the divergence

or slow convergence of the Hermite expansion. Instead of approximating the

target distribution itself, we aim a smooth function near the target, for which

the convergence of the Hermite expansion is expected to be faster.

One way is to use the curvature of the target function; that is, we can seek

for a function which is ‘near’ the target function and whose second derivative

is ‘small’ in some sense.

As an example, we consider smoothing the approximation for the empirical

distribution FE in Equation (14). Assume that a function F S is near FE, in

the sense that the WISD,∫ ∞
−∞

{
F S(u)− FE(u)

}2
/φ(u)du

is small, and has the converging Hermite expansion

F S(x) = Φ(x) + φ(x)
∞∑
k=1

Ck√
k

Hek−1(x),

for some real coefficients {Ck}. Uing Equation (1), the second derivative of

F S is given as

F S ′′(x) = φ(x)
∞∑
k=0

√
k + 1CkHek+1(x).

We can use the weighted integrated square curvature (WISC),∫ ∞
−∞

{
F S ′′(u)

}2

/φ(u)du

as a measure of curvature.
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In the two integrals, the WISD and WISC, the weight 1/φ works in two

ways. One is to put more importance on the difference and curvature in the

tail than those of the centre of the distribution. The other is that it makes the

integrals tractable. In fact, using the Perceval identity, we have

WISD =
∞∑
k=1

(Ck − Ĉk)2

k

WISC =
∞∑
k=0

(k + 1)C2
k .

Now, let us consider the average of two integrals, weighted by 0 ≤ q ≤ 1,

ISq = (1− q)WISD + qWISC

= (1− q)
∞∑
k=1

(Ck − Ĉk)2

k
+ q

∞∑
k=0

(k + 1)C2
k

=
∞∑
k=1

(
1− q + qk(k + 1)

k
C2
k − 2

1− q
k

CkĈk

)
+ (1− q)I0 + q,

where the weight q determines the relative importance of curvature over fi-

delity. This is minimised when

Ck = ĈS
k =

1− q
1− q + qk(k + 1)

Ĉk.

Thus, we might use the finite expansion

F̂ S
n (x) = Φ(x) + φ(x)

n∑
k=1

ĈS
k√
k

Hek−1(x),

as the smoothed approximation for FE.

Since ĈS
k has k(k+ 1) in the denominator, the convergence of the weighted

square integral, ∫ ∞
−∞

{
F̂ S
n (u)− Φ(u)

}2

/φ(u)du =
n∑
k=1

(ĈS
k )2

k

is much faster than that of F̂n; that is, the convergence F̂ S
n → F S is much

faster than that of F̂n → FE. Clearly, F S is not the target itself, but we

expect that it is a smooth function near FE, especially when q is small. Other

than its fast convergence, F̂ S
n has a favourable property. The derivative of F̂ S

n

is given by

d

dx
F̂ S
n (x) = f̂Sn (x) = φ(x)

n∑
k=0

ĈS
k Hek(x),
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and we have ∫ ∞
−∞

{f̂Sn (u)}2

φ(u)
du =

n∑
k=0

(ĈS
k )2. (15)

Since
∑∞

k=1 Ĉ
2
k/k is convergent, and from the fact that (ĈS

k )2 < Ĉ2
k/k for large

enough k,
∑∞

k=0(Ĉ
S
k )2 is also convergent. This suggests that the approximation

for the pdf is convergent.

In this example, we smooth the df, however, for the cases where the Hermite

expansion for the pdf is available, we can smooth the pdf in a similar manner.

An example is given later in optimisation with smoothing.

Optimisation12

Similarly to the previous example, consider a situation where we use i.i.d.

samples X(1), . . . , X(N) from the pdf f to obtain the natural estimators Ĉk =∑N
i=1 Hek(X

(i))/N . Also assume that f can be expanded as in Equation (4).

We consider a class of estimator

f̂On (x) = φ(x)
n∑
k=0

αkĈkHek(x), (16)

and search for the coefficients αk, k = 0, 1, . . . , n, so that the estimator of the

weighted mean integrated square error (WMISE)

E

∫ ∞
−∞

{
f̂On (u)− f(u)

}2

φ(u)
du

 (17)

is minimised13. The weight 1/φ in Expression (17) works in two ways, similarly

to the previous example; one is to put more importance on the error in the

tail than that of the centre of the distribution, and the other is that it makes

Expression (17) tractable. It can be shown by using the Perceval identity that

the WMISE in Expression (17) is equal to

n∑
k=0

α2
kE
(
Ĉ2
k

)
− 2

n∑
k=0

αkC
2
k +

∞∑
k=0

C2
k . (18)

12This method can be regarded as implicitly using the shrinkage estimators.
13Hall (1983) considers a different expansion formula, in which the MISE is not weighted.
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Now we estimate the WMISE in Expression (18). Obviously, Ĉ2
k is an unbiased

estimator of E
(
Ĉ2
k

)
. An unbiased estimator for C2

k is given by

NĈ2
k − B̂2

k

N − 1
,

where B̂2
k = N−1

∑N
i=1

{
Hek(X

(i))
}2

, however, this estimator can take a nega-

tive value, while the true value C2
k is non-negative. Therefore, we use a biased

(but considered to be better) estimator(
NĈ2

k − B̂2
k

)
+

N − 1
,

where (x)+ = max{x, 0}, instead.

Hence, an estimator for WMISE is given by

n∑
k=0

α2
kĈ

2
k − 2

n∑
k=0

αk

(
NĈ2

k − B̂2
k

)
+

N − 1
+
∞∑
k=0

(
NĈ2

k − B̂2
k

)
+

N − 1
. (19)

Now we consider {αk} which minimises Expression (19). Firstly, α0 = 1

is required so that
∫∞
−∞ f̂

O
n (u)du = 1 is satisfied. If the variable is already

standardised so that the first and second moments are identical to those of φ,

we have C1 = C2 = 0, and therefore we set α1 = α2 = 0. For k = 3, . . . , n,

Expression (19) is minimised when

αk =

(
NĈ2

k − B̂2
k

)
+

(N − 1)Ĉ2
k

.

Optimisation with smoothing

For the approximation in the form of Equation (16), the second derivative is

derived using Equation (1) as

f̂ ′′n(x) =
d2

dx2
f̂n(x) = φ(x)

n∑
k=0

√
(k + 1)(k + 2)αkĈkHek+2(x). (20)

We might define a weighted mean integrated square curvature (WMISC) by

E

∫ ∞
−∞

{
f̂ ′′n(u)

}2

φ(u)
du

 ,
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which can be simplified to

n∑
i=0

(k + 1)(k + 2)α2
kE(Ĉ2

k).

An unbiased estimator for this quantity is

n∑
i=0

(k + 1)(k + 2)α2
kĈ

2
k .

Then we search for {αk} which minimises

(1− q)WMISE + qWMISC =
n∑
k=0

α2
k{1− q + q(k + 1)(k + 2)}Ĉ2

k

− 2
n∑
k=0

αk

(
NĈ2

k − B̂2
k

)
+

N − 1

+
∞∑
k=0

(
NĈ2

k − B̂2
k

)
+

N − 1
, (21)

for some 0 ≤ q ≤ 1, where q determines the relative importance we put on

smoothness.

From a similar discussion to that in optimisation, we can set α0 = 1, α1 =

α2 = 0, and

αk =

(
NĈ2

k − B̂2
k

)
+

{1− q + q(k + 1)(k + 2)}(N − 1)Ĉ2
k

,

for k ≥ 3.

Since we have k2 term in the denominator of this smoothed αk, the sum

n∑
k=0

(αkĈk)
2 =

∫ ∞
−∞

{
f̂n(u)

}2

φ(u)
du (22)

converges much faster than that without smoothing, as n→∞.

Approximating distributions from parametric models

We often wish to obtain distributions from parametric models. However, this

is sometimes a tricky problem. For instance, a situation as common as deriving

the distribution of a call option premium using the plain Black and Scholes
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formula, and assuming that the risk factors have the log Normal distribution,

can be a trouble for which we might turn to Monte Carlo method or the first

order approximation14. Expansion methods have a potential to be applied to

such cases as long as the moments of the target distribution are available.

There can be, however, two types of situations where naive applications of

expansion methods do not work;

• the target function is not bounded, and

• the target function has thick tails.

For the first type, we might consider smoothing the target, as considered for

empirical distributions.

For the second type, for instance, we might truncate the tails at some

large but finite points, so that f(x)/
√
φ(x) is square integrable. One obvious

drawback of this method is the possible difficulty in deriving the truncated

moments.

Developing techniques for applying expansion methods in such situations

is our future issue.

Choice of order of expansion n

Suppose that

fn(x) = φ(x)
n∑
k=0

CkHek(x)

converges to f as n→∞. Since we have∫ ∞
−∞

{fn(u)− fn−1(u)}2

φ(u)
dx = C2

n,

we can view C2
n as ‘the amount of change in the shape of the function’ when

we increase the order from n− 1 to n. Therefore, we expect that C2
n converges

to 0 as fn converges to f .

Based on these facts, an obvious idea would be that we stop the expansion

at some n∗ for which
∑∞

k=n∗+1C
2
k is ‘much smaller’ than

∑n∗

k=0C
2
k . However,

14See Numerical examples in Section 2.6.
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this idea is not practical since it requires evaluating an infinite sum. As an

alternative, we observe the series C2
0 , . . . , C

2
N for some large N , and see if

C2
n+1, . . . , C

2
N are ‘small enough’ compared to C2

0 , . . . , C
2
n. We expect such n

can be easily found if the convergence is fast.

Choice of smoothness weight q

In the smoothing techniques introduced above, the weight for smoothness q is

an arbitrary parameter. Obviously, q = 0 is equivalent to not smoothing, and

q = 1 is equivalent to approximating the target by the Normal distribution. For

0 < q < 1, the approximation lies in-between these two cases. Considering the

fact that q determines the difference between the original target function and

the smoothed target, a smaller q might be more desirable, however, a general

criterion for choosing an optimum in some sense has not been developed.

As we see in the Numerical examples, q = 0.005 ∼ 0.01 can provide fair

approximation quality.

2.6 Numerical examples

From the discussion so far, it is obvious that approximations using the Her-

mite expansions are likely to perform well when the target distribution is close

to the Normal distribution. Here, we consider three adverse cases and see

how expansion methods work. The first and second cases apply the expan-

sion methods to empirical distributions. The third case applies the expansion

methods to approximating the Gamma density as an example of application

to a parametric model.

Random samples from the Gamma distribution

We take our first example from an empirical distribution generated from the

Gamma distribution, which is skewed and has heavy right tail and non-negative

support. The shape and scale parameters are set to be 7 and 1, respectively,

with a skewness of .756 and an excess kurtosis of .857. We generate a set of

1,000 pseudo-random samples from this Gamma distribution and apply the

16



expansion methods to its empirical distribution using the techniques described

above . The empirical distribution, which is the target of the approximation,

is fairly skewed (the sample skewness of .915), and heavily tailed (the sample

excess kurtosis of 1.447), compared to the Normal distribution. The order of

expansion is n = 10, and the weight for smoothness is q = .01, where used.

Figure 1 shows the shapes of the target pdf and df, and Table 1 compares the

risk measures of the target distribution and those of approximations15.
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Figure 1: The pdfs (left) and the magnified right tails of dfs (right): the naive

expansion (solid curves), the smoothed expansion (dashed curves), the opti-

mised expansion (dotted curves), and the optimised and smoothed expansion

(dot-dashed curves), respectively. The order of expansions is n = 10 and the

weight for smoothness is q = .01. The ‘+’ symbols show the 1,000 pseudo-

random samples from the gamma distribution with shape parameter 7 and

scale parameter 1. The thick gray curves show the pdf and df of the Normal

distribution.

We find from Figure 1 that the naive expansion is erratic and shows negative

density, while other expansions shows fair approximation quality even in the

tail part. This confirms that smoothing and optimising can redeem the fragility

of the naive expansion in an adverse example.

Table 1 shows that approximations underestimate the risk in most cases,

however, the relative errors are much smaller with expansion methods than

with the Normal approximations.

15See Section 3 for risk measures.
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Level 99% 99.5%

Measure VaR ES VaR ES

Empirical 15.16 16.10 15.78 17.35

Normal -12.84% -14.43% -12.04% -15.14%

Naive − − − −

Smoothed -5.03% -4.29% -2.82% -3.33%

Optimised -0.55% -2.59% 0.28% -3.58%

Opt+Smth -2.13% -3.73% -0.94% -4.50%

Table 1: The risk measures of the empirical distribution and relative errors

of the approximations. The order of expansion is n = 10 and the weight

for smoothness is q = .01. The minus signs indicate that the approximations

underestimate the risk. Fig 1 shows that the naive expansion exhibits negative

density at around x = 11 and is not reliable at 99% and 99.5%tile.
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Empirical distribution from market observations

From the real world example, we approximate the empirical distribution of

500 daily log-differences of the European call option implied volatility (three-

month, at-the-money, hereafter denoted IV) on the S&P 500. It has the sample

skewness of −.251 and the sample excess kurtosis of 1.782. Other summary

statistics are shown in Table 5. We apply the expansion methods to this em-

pirical distribution (Figure 2). Although, we are aware that the risk measures

of the IV itself do not so much sense, we calculate them to demonstrate the

performance of the approximations (Table 2) The order of expansion is n = 10

for all approximations, and the weight for smoothness is q = .01.
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Figure 2: The pdfs (upper) and the magnified left and right tails of dfs (lower):

the naive expansion (solid curves), the smoothed expansion (dashed curves),

the optimised expansion (dotted curves), and the optimised and smoothed

expansion (dot-dashed curves), respectively. The order of expansions is n = 10

and the weight for smoothness is q = .01. The ‘+’ symbols show the 500

samples of the daily log-difference of S&P 500 IV. The thick gray curves show

the pdf and df of the Normal distribution.

This example shows similar features to the previous one; the naive ex-

pansion shows negative density in the left tail, while others approximate the
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Level 0.5% 1%

Measure VaR ES VaR ES

Empirical (×− 10−1) 1.914 2.061 1.528 1.879

Normal -32.29% -29.42% -23.32% -28.64%

Naive − − − −

Smoothed -6.39% -2.78% -2.13% -2.77%

Optimised -12.44% -7.55% -10.15% -8.71%

Opt+Smth -17.04% -11.21% -14.40% -12.97%

Level 99% 99.5%

Measure VaR ES VaR ES

Empirical (×10−1) 1.169 1.428 1.526 1.654

Normal -0.64% -6.81% -15.69% -12.67%

Naive 4.20% 4.00% -7.47% 0.88%

Smoothed 3.63% 2.41% -8.43% -1.33%

Optimised 10.19% 10.12% -0.72% 6.15%

Opt+Smth 8.25% 6.84% -4.00% 2.62%

Table 2: The risk measures of the empirical distribution and relative errors of

the approximations. The risk is measured on the left (Levels 0.5% and 1%)

and right (Levels 99% and 99.5%) tails. The order of expansion is n = 10

and the weight for smoothness is q = .01. The minus signs indicate that the

approximations underestimate the risk. Fig 2 shows that the naive expansion

exhibits negative density at around x = −0.14 and is not reliable at 0.5% and

1%tile.

empirical distribution better than the Normal distribution.

In order to investigate the convergence property, we observe the series of

the squared coefficients of the expansions, {C2
n/n} for this example (Figure 3).

The left plots in the Figure 3 shows that the squared coefficients of naive

and optimised expansion does not seem to be converging toward 0, at least up
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Figure 3: Squared coefficients of the expansions up to order 100 (left) and 30

(right). The vertical axes are in a log scale with base 10. The symbols in the

left plots denote naive (n), smoothed (s), optimised (o), and optimised and

smoothed (+) expansions, respectively. The weight for smoothness is q = .01.

The symbols in the right plots denote q = .1 ( | ), .01 (−), .005 (∗), and 0 (n),

in the smoothed expansions, respectively.

to order 100, while those of smoothed expansions attenuate rather quickly. The

right plots shows that squared coefficients of expansions with larger q converges

faster. We might use such plots for determining the order of expansion. For

instance, we can stop increasing the order before the squared coefficients are

constantly below, say, 10−4. Since the first few large values are ∼ 10−2, the

relative importance of squared coefficients that are below 10−4 can be less than

1% of the large values. The order determined in such way is around 10 to 15

for smoothed expansions, however, the required order can be much larger for

naive and optimised expansions.

The Gamma pdf

As an example of an application to a parametric model, we consider approxi-

mating the pdf of the Gamma distribution. We set the shape parameter 7 and

the scale parameter 1, the same as the previous example where we approxi-

mate the empirical distribution. Due to the heavy right tail, this Gamma pdf

weighted by 1/
√
φ(x) is not square integrable, and therefore does not have a

converging Hermite expansion. As mentioned previously, one possible solution

to this problem is to truncate the tail so that the Hermite expansion is conver-

gent. In this example, we truncate the Gamma distribution at x = 30, which
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corresponds to 1 − 1.173 × 10−7 quantile. We consider this truncation point

to be reasonably far right. The truncated Gamma distribution still has ad-

verse features; It has a skewness of 0.75585 and an excess kurtosis of 0.85638,

which are close to those before truncation, a skewness of 0.75592 and an excess

kurtosis of 0.85714.

5 10 15 20

-0.05

0.05

0.10

0.15

0.20

n
nn

nnnnnnnnnnnnnnnn
n

n
n
nnn

nn
nnn

n

nnn

n

n
nn

n

nn
n
n

nn

n

nn
n
n
nn

n

nn

n

nn

s
s
s
ssssssssssssssss

s

s
s
sss

s
s
ss

s

s

sss

s

sss

s

ss
s
s

ss

s

ss
s
s
ss

s

ss

s
ss

10 20 30 40 50

-8

-6

-4

-2

2

Figure 4: The pdfs (left) and the squared coefficients {C2
k} up to order 60

(right). In the left plots, the truncated Gamma distribution (thick gray), naive

expansion (solid), the smoothed expansion (dashed), the Normal distribution

(dotted), are shown. The order of expansions is n = 30 and the weight for

smoothness is q = .005. In the right plots, the symbols ‘n’ denote the naive

expansion and the symbols ‘s’ denote the smoothed expansion, respectively.

The vertical axis in the right plots is in a log scale with base 10.

The left plots in Figure 4 shows that the approximation quality of the naive

expansion is very poor while smoothed expansion has much better quality, at

least for the order of expansion n = 30. From Table 3 we find that the relative

error of the risk measures with the smoothed expansion is at most 3.42%,

which is much smaller than those with the Normal approximations.

From the right plots in Figure 4, we find that the convergence of the naive

expansion is very slow, while the smoothed expansion converges much faster

with smoothness weight q = .005. This example suggests that truncating

and smoothing can make the expansion methods applicable to some adverse

cases. One obvious drawback is, as mentioned previously, that the truncated

moments may not be available for the cases where the pdf is not known.
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Level 99% 99.5%

Measure VaR ES VaR ES

Gamma 14.57 16.10 15.66 17.15

Normal -9.72% -12.27% -11.78% -14.55%

Naive − − − −

Smoothed -1.63% -2.75% -2.37% -3.42%

Table 3: The risk measures of the empirical distribution and relative errors

of the approximations. The order of expansion is n = 30 and the weight for

smoothness is q = .005. The minus signs indicate that the approximations

underestimate the risk. Fig 4 shows that the naive expansion exhibits erratic

shape and is not reliable.

3 Application to risk measurement

3.1 Risk measurement and risk aggregation

VaR and ES are very popular risk measures in practice16. As already men-

tioned, VaR is defined as a quantile of a PL distribution, and ES, as the

expected loss given that the loss exceeds VaR, respectively. Assume that a

random variable Z denote the PL of our portfolio, where the loss is denoted

as a negative profit. Then, the VaR with a confidence level of α is defined as

VaRα = − sup{z|P (Z ≤ z) ≤ 1− α},

and the corresponding ES is defined as

ESα = −E(Z|Z ≤ −VaRα).

For instance, if Z has a continuous df FZ and a pdf fZ , then the 99% VaR is

derived as −z that satisfies FZ(z) = 0.01, and the 99% ES is given by

−E(Z|Z ≤ −VaR0.99) = −
∫ −VaR0.99

−∞
ufZ(u)du/0.01. (23)

16See Basel Committee (2012).
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For the cases where Z denote the loss of the portfolio, the VaR and ES can

be defined as VaRα = inf{z|P (Z ≤ z) ≥ α} and ESα = E(Z|Z ≥ VaRα),

respectively17.

Thus, obtaining a PL distribution is vital for risk measurement. Theoret-

ically, the process of aggregating multiple of risk factors and deriving a PL

distribution can be described as follows: Assume that our portfolio is exposed

to K risk factors, X1, . . . , XK , in such a way that Z, the PL of our portfolio,

is expressed using a K variate function ψ as

Z = ψ(X1, . . . , XK).

Then, the PL distribution function is given by

FZ(z) = P (Z ≤ z) =

∫ z

−∞
dP (ψ(X1, . . . , XK) ≤ u).

Even in those cases where we have complete information on the risk factors’

joint distribution, however, calculating this integration can be a tricky task

when ψ is not a linear function, or when X1, . . . , XK do not have the K-

variate Normal distribution18. Further, it may be rather exceptional that the

risk factors’ joint distribution is completely known.

3.2 Applying expansion methods

We discuss how FZ can be approximated by the expansion methods. We

impose two assumptions:

• The function ψ can be approximated by a finite Taylor expansion; that

is, ψ has an approximation of a form:

ψ(x1, . . . , xK) '
∑

i1+···+iK≤n

ai1,...,iKx
i1
1 · · · x

iK
K ,

where {ai1,...,iK} are known constants.

17In the numerical examples, we used these definitions for the risk measures on the right

tails.
18See Jorion (2007) for how the current practice cope with these problems.
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• The cross-moments of the risk factors up to some finite order,

mi1,...,iK = E(X i1
1 · · ·X

iK
K )

exist and are available. We may or may not know the joint distribution

as long as the cross-moments are available.

Then, it is straightforward that the moments of Z can be approximated by lin-

ear combinations of risk factors’ cross-moments, and therefore Ck = E(Hek(Z))

can be approximated. Thus, we can use the formula

FZ(z) ' Fn(z) = Φ(z) + φ(z)
n∑
k=1

Ck√
k

Hek−1(z)

for calculating the VaR. The pdf can be approximated by

fZ(z) ' fn(z) = φ(z)
n∑
k=0

CkHek(x),

and further, using Equation (1), we have∫ z

−∞
ufn(u)du = −φ(z) + C1{φ(z)z − Φ(z)}

+ φ(z)
n∑
k=2

Ck√
k

{
zHek−1(z)− 1√

k − 1
Hek−2(z)

}
,

which can be used for calculating the ES (See Equation (23)).

3.3 The delta-gamma-vega-Normal model for an Euro-

pean call options

In order to see how the expansion methods can be applied to risk measurement,

we apply the expansion methods to a very common problem; approximating

the distribution of a change in the value (or ‘profit or loss’) of an European

call option, where we assume that the underlying asset value and the IV have

the log Normal distribution. The value of an European call option C can be

expressed using the plain Black and Scholes formula,

C(S, σI) = SΦ(d)−KeTΦ(d− σI
√
T ),

d =
log(S/K) + (r + σ2

I/2)T

σI
√
T

, (24)
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where S,K, r, σI , T are the value of the underlying asset, strike price, risk free

interest rate, IV, and time to maturity, respectively. Suppose that current asset

value and the IV are S0 and σI0, respectively. Assume that the asset value

and the IV in the time 0 < t(<< T ) ahead can be expressed as S0e
X , and

σI0e
Y , where (X, Y ) has the bivariate Normal distribution, whose parameters

are estimated from the historical observations. Then, the PL of the option can

be expressed as

∆C = C(S0e
X , σI0e

Y )− C(S0, σI0). (25)

Deriving the distribution of ∆C is a key problem in measuring the risk of the

option, however; this is a tricky task. Instead of deriving the distribution, in

practice, we often approximate it using the Taylor expansion. We define the

derivatives δ, γ and κ as

δ =
∂

∂S
C(S, σI0)

∣∣∣∣
S=S0

= Φ(d),

γ =
∂2

∂S2
C(S, σI0)

∣∣∣∣
S=S0

=
φ(d)

S0σI
√
T
,

κ =
∂

∂σI
C(S0, σI)

∣∣∣∣
σI=σI0

= S0φ(d)
√
T ,

then the approximation of ∆C, or the delta-gamma-vega model is given by

∆C ' ∆Cδγκ = δS0X +
1

2
(δS0 + γS2

0)X2 + κσI0Y. (26)

Even with the aid from this Taylor approximation, deriving the distribu-

tion of ∆Cδγκ is not straightforward. However, the moments {E(∆Ck
δγκ)},

k = 0, 1, . . . , can be easily obtained using the assumption that X and Y has

bivariate Normal distribution. Therefore, we can apply the expansion meth-

ods to the distribution of ∆Cδγκ using its moments. Figure 5 and Table 4

show approximations for the PL distribution of an European call option (three

months, at-the-money) on S&P 500 (See Table 5 for summary statistics of the

data used). They show that the approximation by the naive expansion is very

close to the empirical distribution of the 20,000 pseudo-random samples from

∆C, and we find that the naive expansion is sufficient in this particular case.
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Figure 5: Magnified left and right tails of approximated dfs of ∆Cδγκ. The

solid curve shows the naive expansion with order n = 10, and the dashed curve

shows the Normal distribution. The ‘+’ symbols exhibit the distribution of ∆C

obtained by applying the Monte Carlo method with 20,000 trials to Equation

(25).
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Level 0.5% 1%

Measure VaR ES VaR ES

Empirical (×− 1) 9.676 10.806 8.777 9.998

Normal 12.11% 13.33% 11.00% 12.45%

Naive 0.91% 0.19% 1.24% 0.56%

Smoothed 1.92% 1.18% 2.15% 1.53%

Level 99% 99.5%

Measure VaR ES VaR ES

Empirical 11.679 13.838 13.077 15.355

Normal -7.03% -10.69% -8.53% -12.98%

Naive 0.18% -2.21% -0.36% -3.83%

Smoothed -0.35% -2.83% -0.94% -4.50%

Table 4: The risk measures of the empirical distribution from the Monte Carlo

method and relative errors of the approximations. The target of the approx-

imations is the distribution of ∆C, which is not available. We compare the

approximations with the empirical distribution obtained from the Monte Carlo

method in this Table. The risk is measured on the left (Levels 0.5% and 1%)

and right (Levels 99% and 99.5%) tails. The order of expansion is n = 10

and the weight for smoothness is q = .01. The minus signs indicate that the

approximations underestimate the risk.
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4 Expansion methods for multivariate distri-

butions

In this Section we discuss expansion methods applied to multivariate density

functions and their relationship with conditional expectations and copula func-

tions. We firstly deal with bivariate distributions in some numerical examples,

and then discuss the extension to general multivariate cases. The key finding

is that the product of orthogonal polynomials can be used to expand a joint

density function19.

4.1 Expanding a joint density function

Let X and Y have a joint density function f(x, y). Assume that the conditional

density can be expanded using Equation (4) as

f(x|Y = y) =
f(x, y)∫∞

−∞ f(u, y)du

= φ(x)
∞∑
k=0

∫ ∞
−∞

f(u|Y = y)Hek(u)du Hek(x).

By multiplying throughout by
∫∞
−∞ f(u, y)du, we have

f(x, y) = φ(x)
∞∑
k=0

∫ ∞
−∞

f(u, y)Hek(u)du Hek(x). (27)

Similarly, we can expand the density function with respect to y:

f(x, y) = φ(y)
∞∑
l=0

∫ ∞
−∞

f(x, v)Hel(v)dv Hel(y). (28)

19 Use of the multivariate orthogonal polynomials can also be a natural extension of the

univariate methods in Section 2 to multivariate ones. However, in this paper, we show

that the product of univariate orthogonal polynomials, which is much simpler than general

multivariate orthogonal polynomials, can still be of a great use. Multivariate orthogonal

polynomials are studied by, for example, Xu (1994) and Xu (1995). The fact that a product

of univariate orthogonal systems can be used as a multivariate orthogonal system is pointed

out by Hall (1983), for example.
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By plugging Equation (28) into the right hand side of Equation (27), we have

the expansion for a joint density function,

f(x, y) = φ(x)
∞∑
k=0

∫ ∞
u=−∞

φ(y)
∞∑
l=0

∫ ∞
v=−∞

f(u, v)Hel(v)dv Hel(y)

× Hek(u)du Hek(x)

= φ(x)φ(y)
∞∑

k,l=0

E(Hek(X)Hel(Y ))Hek(x)Hel(y). (29)

Since Hek are polynomials, E(Hek(X)Hel(Y )) are linear combinations of mo-

ments and cross-moments of X and Y , and therefore all the information from

X and Y which is used in the expansion is summarised in terms of their mo-

ments and cross-moments.

Based on Equation (29), given the moments and cross-moments ofX and Y ,

E(XsY t), s+t ≤ n, the joint density function of X and Y can be approximated

by

fn(x, y) = φ(x)φ(y)
∑
k+l≤n

E(Hek(X)Hel(Y ))Hek(x)Hel(y). (30)

The usual factorisation holds in the case of independence.

Properties of bivariate expansions

From the discussion in the previous Section and by the construction of the

bivariate expansion, it can be shown that a joint pdf f has a converging Her-

mite expansion of the form in Equation (29) if f(x, y)/
√
φ(x)φ(y) is square

integrable. In such cases, we have∫∫ ∞
u,v=−∞

{f(u, v)}2

φ(u)φ(v)
dudv =

∞∑
k,l=0

C2
k,l <∞,

where Ck,l = E(Hek(X)Hel(Y )).

The joint df is given by

F (x, y) =

∫ x

−∞

∫ y

−∞
f(u, v)dvdu

= −Φ(x)Φ(y) + Φ(x)FY (y) + FX(x)Φ(y)

+ φ(x)φ(y)
∞∑

k,l=1

Ck,l√
kl

Hek−1(x)Hel−1(y),
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where FX and FY are the marginal dfs;

FX(x) = Φ(x) + φ(x)
∞∑
k=1

Ck,0√
k

Hek−1(x),

FY (y) = Φ(y) + φ(y)
∞∑
l=1

C0,l√
l

Hel−1(y).

Thus, F has a converging Hermite expansion if FX and FY have convergent

Hermite expansions and if∫∫ ∞
u,v=−∞

{F (u, v) + Φ(u)Φ(v)− FX(u)Φ(v)− Φ(u)FY (v)}2

φ(u)φ(v)
dudv

=
∞∑

k,l=1

C2
k,l

kl
<∞

In order to measure the difference between two dfs, F1 and F2, we use the

WISD,
∫∞
−∞{F1(u)− F2(u)}2/φ(u)du, for univariate cases. In fact, we use the

Perceval identity in Equation (6) to relate the WISD with the coefficients in the

Hermite expansions. For the bivariate cases, however, the natural extension

of WISD,
∫∫∞

u,v=−∞{F1(u, v) − F2(u, v)}2/{φ(u)φ(v)}dudv, is not useful since

this quantity diverges unless they have common marginals. Instead, we might

consider a WISD with an adjustment for the marginals to obtain a tractable

form: ∫∫ ∞
u,v=−∞

{F1(u, v)− F2(u, v)− (F1X(u)− F2X(u))Φ(v)

− Φ(u)(F1Y (v)− F2Y (v))}2/{φ(u)φ(v)}dudv

=
∞∑

k,l=1

(C1 k,l − C2 k,l)
2

kl
,

where FiX and FiY are the marginal dfs of Fi, i = 1, 2, and Ci k,l/
√
kl are the

coefficients of their Hermite expansions. Then we consider the WISDs for the

two marginals as univariate distributions.

Similarly to univariate cases, it can be shown that the Hermite expansion

of a pdf of a empirical distribution is divergent, while that of a df is convergent;
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that is,

∞∑
k,l=0

Ĉ2
k,l =∞,

∞∑
k,l=1

Ĉ2
k,l

kl
+
∞∑
k=1

Ĉ2
k,0

k
+
∞∑
l=1

Ĉ2
0,l

l
<∞,

where Ĉk,l = N−1
∑N

i=1 Hek(X
(i))Hel(Y

(i)) are the natural estimators given N

i.i.d. samples (X(i), Y (i)).

4.2 Application and related techniques

As discussed in Section 2.5, we expect that a naive application of the Hermite

expansion can result in a poor approximation, and that the same techniques —

standardisation, smoothing and optimisation — may provide expansion meth-

ods with greater robustness. We discuss the application of these techniques in

the bivariate case and show numerical examples.

Standardisation

Similarly to the univariate case, we expect that matching first and second

moments of the variables to those of the weight function by standardisation

can improve the approximation quality. The difference from the univariate

case is that we now have the cross-moment term E(XY ). Our bivariate weight

function is φ(x)φ(y), which is the joint density function of two independent

Normal variables. This suggests that a transformation should be done so that

the covariance of the two variables is 0. For example, let Z = γX + Y , where

γ = −(E(XY ) − E(X)E(Y ))/(E(X2) − {E(X)}2), then the covariance of X

and Z is 0. This is merely a two-dimensional Cholesky decomposition.

Other moments can be matched to those of the weight function in the same

way as for the univariate case.

That is, let X ′ = (X − µX)/σX and Z ′ = (Z − µZ)/σZ , where µX = E(X),

σ2
X = E(X2) − {E(X)}2, µZ = E(Z) and σ2

Z = E(Z2) − {E(Z)}2, and apply
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the expansion to (X ′, Z ′) to obtain f̂X′Z′ . The approximation of f is given by

f̂(x, y) = f̂X′Z′

(
x− µX
σX

,
γx+ y − µZ

σZ

)
1

σXσZ
.

Smoothing

We firstly consider smoothing a joint pdf. Assume that a pdf f has a converging

Hermite expansion

f(x, y) = φ(x)φ(y)
∞∑

k,l=0

Ck,lHek(x)Hel(y),

and suppose that we wish to smooth f in order to improve its convergence

speed. Similarly to the univariate cases, we search for a smooth function

fS(x, y) = φ(x)φ(y)
∞∑

k,l=0

CS
k,lHek(x)Hel(y)

near f . The second derivatives are given by

∂2

∂x2
fS(x, y) = φ(x)φ(y)

∞∑
k,l=0

√
(k + 1)(k + 2)CS

k,lHek+2(x)Hel(y),

∂2

∂y2
fS(x, y) = φ(x)φ(y)

∞∑
k,l=0

√
(l + 1)(l + 2)CS

k,lHek(x)Hel+2(y),

and the WISC is given by20

∫∫ ∞
u,v=−∞

{
∂2

∂u2
fS(u, v)

}2

+
{

∂2

∂v2
fS(u, v)

}2

φ(u)φ(v)
dudv

=
∞∑

k,l=0

{(k + 1)(k + 2) + (l + 1)(l + 2)}
(
CS
k,l

)2
.

The WISD is given by∫∫ ∞
u,v=−∞

{fS(u, v)− f(u, v)}2

φ(u)φ(v)
dudv =

∞∑
k,l=0

(CS
k,l − Ck,l)2.

For 0 < q < 1, the coefficients that minimises (1− q)WISD + qWISC is given

by

CS
k,l =

1− q
1− q + q(k + 1)(k + 2) + q(l + 1)(l + 2)

Ck,l.

20 We can define WISC using other measures such as the Hessian determinants in a similar

manner, however, we demonstrate here the use of the second derivatives for simplicity.
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In order to smooth empirical distributions, we need to start with the joint

dfs, not the joint pdfs, since the joint pdfs of empirical distributions do not have

converging Hermite expansions. Smoothing joint dfs can be done similarly to

smoothing joint pdfs except that the WISD and WISC need to be adjusted

for the marginals, so that the integrations have finite values. That is, the

coefficients for a smoothed empirical distribution function is derived to be

ĈS
k,0 =

1− q
1− q + qk(k + 1)

Ĉk,0, k ≥ 1, l = 0,

ĈS
0,l =

1− q
1− q + ql(l + 1)

Ĉ0,l, k = 0, l ≥ 1,

ĈS
k,l =

1− q
1− q + qk(k + 1) + ql(l + 1)

Ĉk,l, k, l ≥ 1,

and ĈS
0,0 = 1.

Optimisation

We can make a parallel discussion to the univariate case in Section 2.5 as

follows. Consider the case where we observe i.i.d. samples (X(i), Y (i)), i =

1, . . . , N , from f , and f can be expanded as

f(x, y) = φ(x)φ(y)
∞∑

k,l=0

Ck,lHek(x)Hel(y).

Let Ĉk,l = N−1
∑N

i=1 Hek(X
(i))Hel(Y

(i)) then E(Ĉk,l) = Ck,l. We consider a

class of estimator

f̂On (x, y) = φ(x)φ(y)
∑
k+l≤n

αk,lĈk,lHek(x)Hel(y)

and optimise the coefficients αk,l, k + l ≤ n, so that the WMISE

E

∫∫ ∞
u,v=−∞

{
f̂On (u, v)− f(u, v)

}2

φ(u)φ(v)
dudv

 (31)

is minimised. Thus Expression (31) is equal to

∑
k+l≤n

α2
k,lE

(
Ĉ2
k,l

)
− 2

∑
k+l≤n

αk,lC
2
k,l +

∞∑
k,l=0

C2
k,l. (32)
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An unbiased estimator for Expression (32) is given by

∑
k+l≤n

α2
k,lĈ

2
k,l − 2

∑
k+l≤n

αk,l
NĈ2

k,l − B̂2
k,l

N − 1

+
∞∑

k,l=0

NĈ2
k,l − B̂2

k,l

N − 1
,

where B̂2
k,l = N−1

∑N
i=1

{
Hek(X

(i))Hel(Y
(i))
}2

. From a similar discussion to

that in Section 2.5, we use a biased but considered to be better estimator

∑
k+l≤n

α2
k,lĈ

2
k,l − 2

∑
k+l≤n

αk,l

(
NĈ2

k,l − B̂2
k,l

)
+

N − 1

+
∞∑

k,l=0

(
NĈ2

k,l − B̂2
k,l

)
+

N − 1
. (33)

Again, α0,0 = 1 is required so that
∫∫∞

u,v=−∞ f̂
O
n (u, v)dudv = 1 is satisfied. If

the variables are standardised, we can set αk,l = 0 for k+l = 1, 2. For k+l ≥ 3,

Equation (33) is minimised when

αk,l =

(
NĈ2

k,l − B̂2
k,l

)
+

(N − 1)Ĉ2
k,l

.

Optimisation with smoothing

The derivation is almost parallel to that for the univariate case and {αk,l} are

given by α0,0 = 1, αk,l = 0 for k + l = 1, 2, and

αk,l =

(
NĈ2

k,l − B̂2
k,l

)
+

{1− q + q(k + 1)(k + 2) + q(l + 1)(l + 2)}(N − 1)Ĉ2
k,l

for k + l ≥ 3.

Numerical examples

We show numerical examples using two data sets: one consists of daily log-

returns of the Nikkei 225 stock index, and daily log-differences of the European

call option implied volatility (three month, at-the-money)21 on the Nikkei 225;

21 The implied volatility was obtained using the standard Black and Scholes formula.
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and the other consists of daily log-returns of the S&P 500 stock index and daily

log-differences of the European call option implied volatility (three month, at-

the-money) on the S&P 500. The reason why we consider the combination

of a stock index and an implied volatility (or IV) of an option on the index

is that both of these variables are important for measuring market risk of an

option premium22. Summary statistics are given in Table 5.

N225 N225 IV SP500 SP500 IV

Observation period From 25/10/2004 From 25/10/2004

to 6/11/2006 to 18/10/2006

Number of observations 500 500

Mean (×10−4) 8.574 −2.931 −4.425 −5.006

Std. dev. (×10−2) 1.081 3.987 .654 5.018

Skewness (×10−1) −2.269 3.125 0.715 −2.510

Excess Kurtosis 1.013 1.957 .376 1.782

Min (×10−1) −0.423 −1.375 −0.185 −2.275

Max (×10−1) .352 1.996 .213 1.910

Correl. coef. −0.3612 −0.7443

Table 5: Summary statistics of the data sets.

Comparison of the expansion methods. Figures 6 and 7 shows numerical

examples of bivariate expansions. Each example approximates the joint density

of an index return and the log-difference of the implied volatility (IV). We show

examples with the order n = 20, and weight for smoothness q = 0.01 where

used.

By comparing the plots in Figures 6 and 7, we can see that smoothing and

optimisation mitigates the fluctuations and negative density around the tail

area.

The Figures also show that the approximations capture the characteristics

of the original observations: Figure 6 shows a high concentration of the ob-

22 See, for instance, Marumo (2007).
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servations around the origin with only a few observations around them while

Figure 7 shows a high concentration of the observations along the line from

front-left to rear-right, which also can be seen as a large correlation coefficient

in Table 5.
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Figure 6: Approximated joint densities of the N225 log-return and the IV

log-difference (3 month, at-the-money European call option). The front-left

axes in the plots corresponds those of IV. The naive (upper left), smoothed

(upper right), optimised (lower left), and optimised and smoothed (lower right)

expansions are shown. The gray areas indicate those with negative density.

The order of expansion is n = 20 and the weight for smoothness is q = 0.01

where used. The observations are scattered on the plane z = −800 to show

the relationship. See Table 5 for a summary of the data set.

Figure 8 shows squared coefficients
{∑

k+l=nC
2
k,l/(max{k, 1}max{l, 1})

}
up to order n = 40. This suggests that the convergence of naive and optimised

expansions is slow and the convergence of optimised and smoothed expansions

is the fastest among the four, as expected.
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Figure 7: Approximated joint densities of the S&P 500 log-return and the IV

log-difference (3 month, at-the-money European call option). The front-left

axes in the plots corresponds those of IV. The naive (upper left), smoothed

(upper right), optimised (lower left), and optimised and smoothed (lower right)

expansions are shown. The gray areas indicate those with negative density.

The order of expansion is n = 20 and the weight for smoothness is q = 0.01

where used. The observations are scattered on the plane z = −800 to show

the relationship. See Table 5 for a summary of the data set.
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Figure 8: Squared coefficients of the expansions up to order 40. N255 (left)

and S&P 500 (right). Plots are in log scale with base 10. The symbols in the

left plots denote naive (n), smoothed (s), optimised (o), and optimised and

smoothed (+) expansions, respectively.
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4.3 Conditional expectations and expansion

For r = 0, 1, . . ., consider E(Her(Y )|X = x), the expectation of Her(Y ) under

the condition X = x, defined as

E(Her(Y )|X = x) =

∫∞
−∞Her(y)f(x, y)dy∫∞
−∞ f(x, y)dy

,

where f is the joint pdf of (X, Y ). By applying expansions to f , we have

E(Her(Y )|X = x) =

∫∞
−∞Her(y)φ(x)φ(y)

∑∞
k,l=0Ck,lHek(x)Hel(y)dy

φ(x)
∑∞

k=0Ck,0Hek(x)

=

∑∞
k=0Ck,rHek(x)∑∞
k=0Ck,0Hek(x)

, (34)

where Ck,l = E(Hek(X)Hel(Y )). We can approximate the conditional expec-

tation by taking sums in Equation (34) up to some finite n.

The conditional moments such as E(Y r|X = x) can be obtained by solving

the system of linear equations in E(He0(Y )|X = x), . . . ,E(Her(Y )|X = x).

The same techniques, standardising, smoothing, optimisation, and optimi-

sation with smoothing, can be applied similarly to the approximations for the

joint pdfs.

Numerical examples

Figure 9 is numerical examples using the same data sets as in Figures 6 and

7. The plots show the expected value of IV log-difference conditioned on

stock indices log-return, or E(Y |X = x) (solid line) and ±conditional standard

deviation, or E(Y |X = x)±
√

V(Y |X = x) (dotted lines). Both are obtained

by applying the optimised and smoothed expansion with order n = 20 and

weight for smoothness q = 0.01.

These plots shows that expansions captures non-linear dependence struc-

ture of the original observations.
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Figure 9: Expected value of IV log-difference conditioned on stock indices

log-return, or E(Y |X = x) (solid line) and ±conditional standard deviation,

or E(Y |X = x)±
√

V(Y |X = x) (dotted lines). Nikkei 225 (left) and S&P 500

(right). Both are obtained by applying the optimised and smoothed expansion

with order n = 20 and weight for smoothness q = .01. The data used are the

same as in Figures 6 and 7. Scattered dots represent observations.
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4.4 Copula functions and expansion

The two dimensional copula is a function C : [0, 1]2 7→ [0, 1] which satisfies23

C(t, 0) = C(0, t) = 0, C(1, t) = C(t, 1) = t, for all 0 ≤ t ≤ 1 and C(u1, v1) −

C(u2, v1) − C(u1, v2) + C(u2, v2) ≥ 0, for all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤

v2 ≤ 1.

Let F (x, y) be the joint distribution of X and Y and FX(x) and FY (y) be

their marginal distributions. Then, Sklar’s theorem24 yields that there is a

unique copula representation for F , given by

F (x, y) = C(FX(x), FY (y)). (35)

Assume that F is differentiable. Then, from Equation (35), the joint den-

sity function is given by f(x, y) = fX(x)fY (y)c(FX(x), FY (y)), where

c(u, v) =
∂2

∂u∂v
C(u, v)

is the copula density, and fX and fY are the marginal densities. From Equa-

tions (29) and (4), we have an expression of c by a rational function:

c(FX(x), FY (y)) =
f(x, y)

fX(x)fY (y)

=

∑∞
k,l=0Ck,lHek(x)Hel(y)∑∞

k,l=0Ck,0C0,lHek(x)Hel(y)
. (36)

or

c(u, v) =

∑∞
k,l=0Ck,lHek(F

−1
X (u))Hel(F

−1
Y (v))∑∞

k,l=0Ck,0C0,lHek(F
−1
X (u))Hel(F

−1
Y (v))

. (37)

Note that it is also possible to remove the marginal functions FX and

FY from Equation (37) by applying an expansion with support [0, 1] to the

variables (U, V ) = (FX(X), FY (Y )). However, the advantage of our method

is that it only requires moments and cross-moments of the original variables.

See, for instance, Freedman (1981) for an expansion with closed support.

23 Intuitively, a two dimensional copula function can be understood as a df of two random

variables U, V , where both U and V have uniform marginal distributions on [0, 1], and are

possibly dependent on each other.
24For details of Sklar’s theorem and other properties of copulas, see for example Nelsen

(1999).
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Standardisaton, smoothing and optimisation

From Equations (34) and (36), we find that the copula density can be expressed

using the conditional expectation

c(FX(x), FY (y)) =

∑∞
l=0 E(Hel(Y )|X = x)Hel(y)∑∞

l=0C0,lHel(y)
. (38)

This suggests that the techniques such as standardisation, smoothing and op-

timisation are available as long as they are available for the calculation of the

conditional expectation.

Numerical examples

Figure 10 is the examples using the same data sets as in previous sections. The

left plot in Figure 11 is a copula density obtained by applying standardised and

optimised Hermite expansion to 500 random samples from the Clayton copula

(θ = 2) with the Normal marginal distributions. The Clayton copula function

with parameter θ is given by C(u, v) = (u−θ + v−θ − 1)−
1
θ . By comparing this

with the theoretical shape of the Clayton copula density in the right plot, we

can get some idea how close the copula by the expansion can be to the ‘true’

copula density. In fact, except for the tails where the observations are sparse,

the expansion reproduces the shape similar to the one of the Clayton copula

density.

From the plots in Figure 10, we can see that the dependence structures

inherent in the Nikkei 225 data set is different from that in the S&P 500 data

set.

We can see from the plots in Figures 10 and 11, that the approximations are

erratic near the boundary. This is most likely to be because our method uses

rational functions, which can be erratic at the extremes, for approximationg

the copula density25.

Apart from that, they exhibit characteristics of dependence structure; for

instance, the S&P 500 data set shows heavier concentration along the diagonal

line from (0, 1) to (1, 0) than Nikkei 225 data set.

25See Equations (36) and (37).
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Figure 10: Copula density obtained by applying the optimised and smoothed

expansion to 500 observations of the stock indices log-returns and the IV log-

differences. Nikkei 225 (left) and S&P 500 (right). The front right axis corre-

sponds to the indices log-return. The data used are the same as in Figures 6

and 7. The order of expansion is n = 20 and weight for smoothness is q = .01.
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Figure 11: Copula density obtained by applying the optimised and smoothed

expansion to 500 random samples from the Clayton copula (θ = 2) with the

Normal marginal distributions (left). The order of the expansion is n = 20 and

the weight for smoothness is q = .01. The right plot shows the Clayton copula

density. By comparing them with each other, we can get some idea how close

the copula by the expansion can be to the ‘true’ copula density. In fact, except

for the tails where the observations are sparse, the expansion reproduce the

shape similar to the one of the Clayton copula density.
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4.5 Extension to the p-variate case

Let f(x1, . . . , xp) be the joint density function of (X1, . . . , Xp), p ≥ 3. Similarly

to Section 4.1, we have

f(x1, . . . , xp) =

φ(x1) · · ·φ(xp)
∑

k1,...,kp

E(Hek1(X1) · · ·Hekp(Xp))Hek1(x1) · · ·Hekp(xp). (39)

The condition for convergence is expressed as∫
· · ·
∫
u1,...,up

{f(u1, . . . , up)}2

φ(u1) · · ·φ(up)
du1 · · · dup <∞.

Standardisation is done by a linear transformation of (X1, . . . , Xp) into

(Z1, . . . , Zp) so that the covariances between Zi and Zj (i 6= j) are 0. Such

linear transformation can be found, for example, by inverting the Cholesky

decomposition of the covariance matrix of the original variables.

We can make a parallel discussion on smoothing and optimisation to the

bivariate case.

Conditional expectations

Consider the expectation of Heki+1
(Xi+1) · · ·Hekp(Xp) under the conditionX1 =

x1, . . . , Xi = xi. From Equation (39), we have

E(Heki+1
(Xi+1) · · ·Hekp(Xp)|X1 = x1, . . . , Xi = xi)

=

∑
k1,...,ki

E(Hek1(X1) · · ·Hekp(Xp))Hek1(x1) · · ·Heki(xi)∑
k1,...,ki

E(Hek1(X1) · · ·Heki(Xi))Hek1(x1) · · ·Heki(xi)
. (40)

Standardisation is done by applying Equation (40) to (Z1, . . . , Zp) and

solving a system of linear equations, to obtain the conditional moments of

(X1, . . . , Xp). We can make a parallel discussion on smoothing and optimisa-

tion to the bivariate case.
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Copula density

Using Equation (39), a p-variate copula density function can be expressed as

c(F1(x1), . . . , Fp(xp)) =
f(x1, . . . , xp)

f1(x1) · · · fp(xp)

=

∑
k1,...,kp

E(Hek1(X1) · · ·Hekp(Xp))Hek1(x1) · · ·Hekp(xp)∑
k1,...,kp

E(Hek1(X1)) · · ·E(Hekp(Xp))Hek1(x1) · · ·Hekp(xp)
, (41)

where Fi is the marginal df of Xi and fi is its marginal pdf. From Equations

(40) and (41), we have

c(F1(x1), . . . , Fp(xp)) =

∑
k2

E(Hek2(X2)|X1 = x1)Hek2(x2)∑
k2

E(Hek2(X2))Hek2(x2)
× · · ·

×
∑

kp
E(Hekp(Xp)|X1 = x1, . . . , Xp−1 = xp−1)Hekp(xp)∑

kp
E(Hekp(Xp))Hekp(xp)

,

and we can apply smoothing and optimisation to this whenever they are avail-

able for the conditional moments.

5 Discussion

We reviewed the convergence properties of the Hermite expansion and pro-

posed techniques, smoothing and optimising, to mitigate the fragility of naive

applications of the Hermite expansion.

We also showed that the simple extension of univariate expansion methods

is applicable to the joint density function, and demonstrated how it works

using the bivariate case.

The techniques, smoothing and optimisation, can make the approximation

quality sufficient for many purposes such as visualising non-linear dependence

structure, approximating the conditional mean, and approximating the copula

density; however, even with these techniques, the expansions showed negative

density. One possible solution to this might be to optimise MISE subject to a

constraint that the joint density is non-negative: see Hall and Presnell (1999).

The remaining issues include the problem of choosing an ‘optimal’ weight

for smoothness q. This can be similar to the problem of choosing the optimal

bandwidth in kernel density estimation, and we expect we find some criterion

similarly.
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Dealing with problems including these can be our future work.
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G. Szegö. Orthogonal Polynomials. American Mathematical Society, 4 edition,

1975.

Y. Takahashi. Jitsu Kansuu to Furie Kaiseki, (Real Functions and Fourier

Analysis). Iwanami, Japan, 2006.

Y. Xu. Multivariate orthogonal polynomials and operator theory. Transactions

of the American Mathematical Society, 343(1):193–202, May 1994.

Y. Xu. Christoffel functions and Fourier series for multivariate orthogonal

polynomials. Journal of Approximation Theory, 82:205–239, 1995.

47


	Introduction
	Hermite polynomials and expansion methods for univariate distributions
	Hermite polynomials
	Hermite expansion and expansion methods
	Difficulties in applying expansion methods
	Naive application to approximating empirical distributions
	Techniques to improve the approximation quality
	Numerical examples

	Application to risk measurement
	Risk measurement and risk aggregation
	Applying expansion methods
	The delta-gamma-vega-Normal model for an European call options

	Expansion methods for multivariate distributions
	Expanding a joint density function
	Application and related techniques
	Conditional expectations and expansion
	Copula functions and expansion
	Extension to the p-variate case

	Discussion

