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Abstract

We discuss the use of the orthogonal expansions for the approxi-
mation of probability density functions under constraints. For given
independent and identically distributed samples, it has been shown
by Marumo and Wolff (2013) that smooth functions that approximate
the empirical distribution function can be constructed using orthogonal
polynomial expansion. The approximation of the density function is
given as the derivative of this smooth function.

In this paper, we show that the approximations under constraints
on the moments and risk measures such as Value at Risk and Expected
Shortfall can be constructed using orthogonal expansions.

The biggest advantage of our method over the typical existing meth-
ods is that our method has an explicit formula for the constrained ap-
proximations, whereas others often require intensive numerical calcula-
tions.
Keywords: Hermite polynomials; Orthogonal expansion; Quadratic pro-
gramming; Smoothing methods.

1 Introduction

In this paper, we discuss the approximation of a density under constraints us-
ing orthogonal expansions, as introduced by Marumo and Wolff (2013). Given
a set of independent and identically distributed (iid) observations, we have a
variety of choices for methods for approximating or estimating the underlying
density function: the use of kernels, splines, mixture distributions, orthogonal
polynomials and wavelets are among the most popular methods (see Silverman
(1986) for density estimation methods). As pointed out by Hall and Presnell
(1999), we sometimes wish densities to have particular characteristics. For
example, densities with a mean and variance that are identical to the sam-
ple mean and variance can be useful for simulation. Such desire can be the
motivation for density approximation under constraints.

Let X1, . . . , XN , be iid observations from density f . Hall and Presnell
(1999) use the weighted kernel estimator,

f̃(x|p) =
1

h

N∑
i=1

piK

(
x−Xi

h

)
,

where K, h and p = (p1, . . . , pN) are the kernel, its bandwidth, and the weights
that sum up to the unity. Their aim is to find the p that minimises the power-
divergence distance between p and the uniform weights (1/N, . . . , 1/N), given
by

Dρ(p) =
N −

∑N
i=1(Npi)

ρ

ρ(1− ρ)
,

where ρ ∈ R is a parameter, under the constraints. They show that, if the
constraints are of the form

Tj(f̃(·|p)) = tj, j = 0, . . . ,m, (1)
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where Tj and tj are linear functionals and constants, respectively, then La-
grange multipliers can be applied to this optimisation problem, and that the
optimal p can be obtained by solving a system of non-linear equations deter-
mined by the constraints. They pointed out that constraints on moments and
quantiles can be expressed in the form of Equation (1). They further consider
the constraints on the entropy and by adjusting the entropy and bandwidth
they obtain a unimodal density.

Eloyan and Ghosh (2011) use the mixture distribution of the form

f̃n(x|pn) =
n∑
k=1

pk,nfk,n(x),

where n ≥ 1 is the number of mixture components, and fk,n are some known
densities. They use an iteration procedure called the Expectation Maximisa-
tion Algorithm in order to obtain the weights pn that minimise the empirical
Kullback-Leibler divergence,

1

N

N∑
i=1

log
f(Xi)

f̃n(Xi|pn)
,

or equivalently, maximise the log-likelihood, under the constraints on the mo-
ments.

Musso and Oudjane (2009) use a kernel that can take negative values, in
order to reduce the bias in the mean integrated squared error, given by

E

(∫ ∞
−∞
{f̃(x)− f(x)}2dx

)
.

Their estimator takes the form

f̃(x|α1, . . . , αm) =

(
1

Nh

N∑
i=1

K

(
x−Xi

h

)
−

m∑
r=1

αrfr(x)

)
+

,

where fr are real functions determined by the constraints, and (·)+ denotes
max(·, 0). They suggest that we estimate α1, . . . , αm by numerical integration,
or by Monte Carlo, while they show that analytical solutions are available in
some special cases.

Marumo and Wolff (2013) use orthogonal expansions to approximate the
empirical distribution function. They show that the empirical distribution
function can be approximated by a smooth function using the orthogonal ex-
pansions, and the associated density function can be obtained from the ap-
proximation. In the remainder of this paper, we discuss the application of the
orthogonal expansion to approximating density functions under constraints on
the moments and risk measures. Section 2 reviews the orthogonal expansion
method. Section 3 introduce the approximation under constraints, and Section
4 shows the examples. We conclude in Section 5.
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2 Orthogonal expansion method

We briefly review the method introduced by Marumo and Wolff (2013). For
simplicity, let us assume that the samples X1, . . . , XN are standardised1, that
is, X̄ =

∑n
i=1Xi/N = 0 and s2X =

∑N
i=1(Xi − X̄)2/N = 1.

2.1 Orthogonal expansion

Let us consider the orthogonal expansion of the form,

f̃n(x|cn) = φ(x)
n∑
k=0

ckHek(x), (2)

where n ≥ 0 is the degree of expansion, φ(x) = exp(−x2/2)/
√

2π is the density
function of the Standard Normal distribution, and

Hek(x) =
1√
k!

1

φ(x)

dk

dxk
φ(x), k = 0, . . . , n, (3)

are the Hermite polynomials. Our aim here is to determine the coefficients
cn = (c0, . . . .cn)′ that make f̃n(·|cn) a ‘good’ approximation in respect of the
density function that generated the samples. Note that from the condition∫∞
−∞ f̃n(x|cn)dx = 1, we always have c0 ≡ 1.

2.2 Näıve expansion

From Equations (2) and (3), the distribution function can be expressed as,

F̃n(x|cn) =

∫ x

−∞
f̃n(u|cn)du = Φ(x) + φ(x)

n∑
k=1

ck√
k

Hek−1(x), (4)

where Φ(x) =
∫ x
−∞ φ(u)du is the distribution function of the Standard Normal

distribution.
Define the empirical distribution function as

FN(x) =
1

N

N∑
i=1

1{Xi≤x},

and consider the weighted integrated squared difference (WISD) defined by

WISD =

∫ ∞
−∞

{F̃n(x|cn)− FN(x)}2

φ(x)
dx =

n∑
k=1

(ck − ĉk)2

k
+

∞∑
k=n+1

ĉ2k
k
,

where the secnd equality is given by considering the Parseval identity (see
Marumo and Wolff (2013)), and ĉk are the näıve estimators defined by,

ĉk =
1

N

N∑
i=1

Hek(Xi), k = 0, . . . , n.

1 See Marumo and Wolff (2013) for this standardisation.
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Thus the WISD is minimised when cn = ĉn, where the components of ĉn are
the näıve estimators. Note that if the samples are standardised as suggested
above, we have ĉ1 = ĉ2 = 0.

They show that F̃n(·|ĉn)→ FN as n→∞, whereas that f̃n(·|ĉn) is diver-
gent. Let us call F̃n(·|ĉn) and f̃n(·|ĉn) the näıve expansions of the distribution
and density functions, respectively.

2.3 Smoothed expansion

From Equations (3) and (4), the second derivative of the distribution function
is expressed as

F̃ ′′n (x|cn) = φ(x)
n∑
k=0

√
k + 1ckHek+1(x).

Define the weighted integrated squared curvature (WISC) by
∫∞
−∞{F̃

′′
n (x|cn)}2/φ(x) dx,

which is calculated to be

WISC =

∫ ∞
−∞

{F̃ ′′n (x|cn)}2

φ(x)
dx =

n∑
k=0

(k + 1)c2k,

and consider the average of the two integrals weighted by 0 ≤ q ≤ 1, as

(1− q)WISD + qWISC

=
n∑
k=1

(
1− q + qk(k + 1)

k
c2k − 2

(1− q)ĉk
k

ck

)
+ (1− q)

∞∑
k=1

ĉ2k
k

+ q.

(5)

This is minimised when

ck = ĉSk (q) =
1− q

1− q + qk(k + 1)
ĉk, k = 0, . . . , n.

Let us call the expansions that use the coefficients ĉSn(q) = (ĉS0 (q), . . . , ĉSn(q))′

the smoothed expansions. Marumo and Wolff (2013) show that F̃n(·|ĉSn(q))
and f̃n(·|ĉSn(q)) are convergent for q > 0 as n→∞.

Note that q = 0 corresponds to the näıve expansion, and q = 1 to the
approximation by the Standard Normal distribution.

2.4 Choice of n and q

In the smoothed expansion, n and q are arbitrary parameters. Choosing ap-
propriate values for these parameters are somewhat similar to the problem
of choosing appropriate kernel and bandwidth in kernel estimation and un-
fortunately both problems do not seem to have an unambiguous or definitive
solution.
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Choice of n

One idea is to choose n large enough so that F̃n is close to F̃∞. We can measure
the difference between the two distribution function by the WISD as,∫ ∞

−∞

{F̃n(x|ĉSn(q))− F̃∞(x|ĉS∞(q))}2

φ(x)
dx =

∞∑
k=n+1

ĉSk (q)2

k
.

We normally do not know the value of this quantity, but observing the value
of
∑n

k=1 ĉ
S
k (q)2/k for n = 1, . . . can be useful. We can stop increasing n when

the growth of the sum is small enough.
Alternatively, if we wish a simple formula, a small n such as n ≤ 8 may be

of great use.

Choice of q

From the definition, the estimate is close to the empirical distribution when
q is small. In this sense, smaller q is more desirable. However, from the fact
that the density function is not convergent when q = 0, we can assume that
the estimate can be erratic for small q; that is, we are more likely to encounter
the negative density. One idea is that we choose the smallest q that does not
suffer form the effect of negative density.

3 Approximation Under Constraints

Now, we consider the density approximation under constraints; that is, we
firstly find cn that let the associated distribution satisfy the constraints and
be close to the empirical distribution. Then the density is given by f̃(·|cn).

As already mentioned, the constraint c0 = 1 is always imposed and we
regard it as constant. Hence, hereafter, we use the notation cn = (c1, . . . , cn)′,
from which c0 is removed.

3.1 Methodology

Weighted average

We consider minimising the weighted average in Equation (5), under con-
straints. We define

c∗n = Dncn,

where Dn is a diagonal matrix,

Dn = diag

(√
1− q + qk(k + 1)

k
; k = 1, . . . , n

)
.
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Then the weighted average can be rewritten as

n∑
k=1

(
c∗k −

(1− q)ĉk√
(1− q)k + qk2(k + 1)

)2

−
n∑
k=1

(1− q)2ĉ2k
(1− q)k + qk2(k + 1)

+ (1− q)
∞∑
k=1

ĉ2k
k

+ q,

where c∗k are the components of c∗n.
Since only the first term is relevant to c∗n, we can define our objective

function as

In(c∗n) =
n∑
k=1

(
c∗k −

(1− q)ĉk√
(1− q)k + qk2(k + 1)

)2

.

Now, In(c∗n) can be considered as the squared radius of a sphere in n dimen-
sional space, centred at

u∗n =


(1−q)ĉ1√

1+q
...

(1−q)ĉn√
(1−q)n+qn2(n+1)

 .

Linear constraints

As we review later, many constraints including those on the moments, quan-
tiles and Expected Shortfalls can be expressed as linear equations in terms of
c1, . . . , cn. Let us call such constraints linear constraints. Assume that we have
a set of m linear constraints expressed as Ancn = a, where An is an m × n
rank m matrix with m ≤ n and a is a constant vector. This set of constraints
can be rewritten as A∗nc

∗
n = a, where A∗n = AnD

−1
n . Hence, c∗n under the

constraints forms a linear subspace Π∗n, which is orthogonal to all of the row
vectors of A∗n, and is shifted by a.

Optimisation

Under the above settings, c∗n ∈ Π∗n that minimises In(c∗n) is given by the
orthogonal projection of u∗ onto Π∗n. That is, the optimal c∗n is given by

c∗†n = (I − A∗n
′(A∗nA

∗
n
′)−1A∗n)u∗n + A∗n

′(A∗nA
∗
n
′)−1a.

Thus, the optimal cn is given by

c†n = D−1n c
∗†
n = (I −D−2n A′n(AnD

−2
n A′n)−1An)un +D−2n A′n(AnD

−2
n A′n)−1a,

(6)

where

un = D−1n u
∗
n =


1−q
1+q

ĉ1
...

1−q
1−q+qn(n+1)

ĉn

 =

ĉ
S
1 (q)
...

ĉSn(q)

 ,
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and

D−2n = (D−1n )2 = diag

(
k

1− q + qk(k + 1)
; k = 1, . . . , n

)
.

Note that this is among the simplest cases of the quadratic programming
problem. If we do not cling on the explicit formula in Equation (6), we can
generalise the constraints to inequality constraints, where the constraints are
expressed as a half-subspace.

Convergence

The convergence of expansions using c†n as n → ∞ can be verified as follows.
For n > m, we have

|u∗n+1 − c∗†n |2 = |u∗n+1 − u∗n|2 + |u∗n − c∗†n |2

= u∗2n+1 + I†n,

where we consider the n-dimensional vectors as being in the Rn-subspace in
Rn+1, that is, we consider c∗†n = (c∗†n,1, . . . , c

∗†
n,n, 0)′, and so on, and I†n = In(c∗†n ).

See Figure 1. By considering the facts, c∗†n ∈ Π∗n ⊆ Π∗n+1 and c∗†n+1 ∈ Π∗n+1, we
have

|u∗n+1 − c
∗†
n+1|2 ≤ |u∗n+1 − c∗†n |2

I†n+1 ≤ u∗2n+1 + I†n,

which leads to

I†n+1 − I†n ≤ u∗2n+1, (7)

0 ≤ I†n ≤ I†m +
n∑

k=m+1

u∗2k . (8)

Using limn→∞ ĉn/
√
n = 0, and 0 ≤

∑∞
k=1 ĉ

2
n/n < ∞ shown by Marumo

and Wolff (2013), and |u∗n| < |ĉn/
√
n| for large n, we have limn→∞ u

∗2
n = 0 and

0 ≤
∑∞

k=m+1 u
∗2
k <∞. By considering the limit n→∞ in Inequalities (7) and

(8), we find that I†n is convergent. Since I†n = |u∗n−c∗†n |2 and limn→∞ |u∗n|2 <∞,
we have

∑∞
k=1 c

∗†2
k < ∞. From definition, we have c∗†2k > c†2k for large k, and

hence
∑∞

k=1 c
†2
k <∞. This suggests that f̃n(·|c†n) is convergent.

3.2 Comparison with other methods

Here, we compare the proposed method with others already reviewed above.
The biggest advantage of the proposed method is that it has the explicit

formula given by Equation (6) for the optimised estimators. Optimisation
is achieved using elementary linear algebra. This makes a contrast to other
methods: Hall and Presnell (1999) require solving numerically a system of
non-linear equations, Eloyan and Ghosh (2011) use an iteration algorithm,
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Π𝑛+1
∗

Π𝑛
∗

ℝ𝑛+1

ℝ𝑛

𝒖𝑛+1
∗

𝒖𝑛
∗

𝒄𝑛
∗†

𝒄𝑛+1
∗†

Figure 1: Illustrative diagram (for n = 2). u∗n, c∗†n and Π∗n are in the Rn-
subspace, while others are in the Rn+1-space. We use the fact (u∗n+1 − u∗n) ⊥
(c∗†n − u∗n).

and Musso and Oudjane (2009) use numerical integration, in order to obtain
the estimates.

While arbitrariness can sometimes provide extra degree of freedom, it is
often considered as a problem. The methods using the kernel have arbitrariness
in choosing the kernels and the bandwidth. Guidelines for making these choices
exist, as pointed out by Musso and Oudjane (2009), however, the choice of the
bandwidth is often made by many trials, as done by Hall and Presnell (1999).
The arbitrariness of the proposed method is those of choosing n and q. We
might use the idea mentioned in Subsection 2.4.

The biggest disadvantage of the proposed method is the effect of possible
negative density. As shown later, we find from numerical examples that we can
mitigate the effect by choosing n and q appropriately, although it is difficult
to eliminate it completely.

4 Examples

We apply the method explained in the previous Section to some examples.
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4.1 Constraints on the moments

Assume that the random variable X̃ has the density function of the form in
Equation (2). It can be easily shown that

E(Hek(X̃)) =

∫ ∞
−∞

Hek(x)f̃n(x|cn)dx = ck,

for k = 0, . . . , n. On the other hand, we have

E(Hek(X̃)) = hk,0µ̃0 + hk,1µ̃1 + · · ·+ hk,kµ̃k,

where hk,r are the rth coefficient of kth Hermite polynomial and µ̃r is the
rth moment of X̃. Hence, the moments and the coefficients have a linear
relationship of the form,

c0
c1
...
cn

 =


h0,0
h1,0 h1,1 0

...
. . .

hn,0 · · · · · · hn,n



µ̃0

µ̃1
...
µ̃n

 . (9)

Since we have c0 = h0,0 = µ̃0 = 1, Equation (9) can be rewritten as

cn = h0 +Hnµ̃n, (10)

where h0 = (h1,0, . . . , hn,0)
′, µ̃n = (µ̃1, · · · , µ̃n)′ andHn = (hk,r; k = 1, . . . , n, r =

1, . . . , n). It is obvious that the matrix Hn is non-singular.

Setting the lower moments to certain values

Sometimes we wish the approximation to have the same mean, variance, skew-
ness and kurtosis as those of the samples. We learn from Equation (9) that this
constraint can be easily imposed by letting cn = (ĉ1, . . . , ĉ4, ĉ

S
5 (q), . . . , ĉSn(q))′.

Other linear moment constraints

A set of linear constraints on the moments can be written in a form, Bµ̃n = b,
where B and b are a constant matrix and vector, respectively. Using the
relationship in Equation (10), this can be written in terms of that of cn as
BH−1n cn = b + BH−1n h0. The optimal cn is given by Equation (6) with A =
BH−1n and a = b+BH−1n h0.

4.2 Constraints on risk measures

In applications to financial risk management, we are often interested in risk
measures associated with the profit and loss distribution. Among a number of
risk measures, the Value at Risk (VaR) and Expected Shortfall (ES) are the
most commonly discussed. The VaR is defined as the quantile of the profit
and loss distribution, and the ES, as the expected loss exceeding the VaR. 2

2 See McNeil et al. (2005) and Basel Committee on Banking Supervision (2013).
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Density approximations whose risk measures are the same as those of the
empirical distribution obtained from the markets can be useful, for instance, for
simulating possible future profit and loss. Hall and Presnell (1999) consider the
density estimations under constraints on quantile, mainly from the statistical
interest.

Constraints on Value at Risk

Suppose that X is a random variable that denotes the profit and loss of the
portfolio. Then the VaR with a confidence level α is defined as

VaRα = − sup{x|P (X ≤ x) ≤ 1− α}.

Let F̃n(·|cn) be our approximation for the distribution function of X. Then
the constraint that sets the VaR a certain value −xα can be expressed as
F̃n(xα|cn) = 1− α. This can be written as a linear constraint of cn as

n∑
k=1

Hek−1(xα)√
k

ck =
1− α− Φ(xα)

φ(xα)
.

Therefore it is trivial to apply the method explained above to this case.

Constraints on Expected Shortfall

Given VaRα = −xα, the ES with the confidence level α is defined as

ESα = −E(X|X ≤ xα).

The ES can be expressed using an orthogonal expansion as

ESα = −
∫ xα
−∞ udF̃n(u|cn)

1− α

= − 1

1− α

[
φ(xα) + {φ(xα)xα − Φ(xα)}c1

+ φ(xα)
n∑
k=2

{
xαHek−1(xα)√

k
− Hek−2(xα)√

k(k − 1)

}
ck

]
.

Hence, the constraint ESα = −ηα, for some constant ηα, can be expressed as
a linear constraint of cn as{

xα −
Φ(xα)

φ(xα)

}
c1 +

n∑
k=2

{
xαHek−1(xα)√

k
− Hek−2(xα)√

k(k − 1)

}
ck = −1− 1− α

φ(xα)
ηα.

4.3 Numerical examples

Let us review numerical examples of the proposed method.
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Data sets

We use four data sets from the four markets shown in Table 1. We take daily
returns of the equity indices and treat them as iid samples.3

S&P 500 FT 100 Nikkei 225 AS 51
Start Date 2 Oct 2012 8 Oct 2012 13 Sep 2012 8 Oct 2012
End Date 30 Sep 2014 30 Sep 2014 30 Sep 2014 30 Sep 2014
Number of
Samples

500 500 500 500

Mean
(×10−4)

6.211 2.510 11.73 3.326

Standard
Deviation
(×10−3)

6.931 6.887 14.46 6.996

Skewness -0.487 -0.137 -0.645 -0.232
Kurtosis 4.340 4.681 5.608 3.855
Max
(×10−2)

2.509 3.032 4.826 2.593

Min
(×10−2)

-2.533 -3.027 -7.597 -2.354

Table 1: Summary statistics of the samples

Constraints

We consider the following two constraints:

Constraint 1 The mean, variance, skewness and kurtosis are identical to
those of the samples.

Constraint 2 In addition to Constraint 1, 97.5% VaR and ES are identical
to those of the samples.

Choice of n

We calculate
∑n

k=1 c
2
k/k for up to n = 100, for q = 0.001, 0.01 and 0.05 (upper

plots in Figures 2 to 5). From these plots, we find that n = 60 can be close to
the convergence in all cases.

Choice of q

We firstly define the ‘range of approximation’ as ±6σ, where σ is the sample
standard deviation. We then numerically searched for the smallest q with

11



S&P 500 FT 100 Nikkei 225 AS 51
Unconstrained 0.0441 0.0132 0.3801 0.0558
Constraint 1 0.0075 0.0109 0.0163 0.0105
Constraint 2 0.0049 0.0095 0.0200 0.0068

Table 2: The smallest q that realise non-negative density within the range of
approximation (±6σ).

which the density function is non-negative within the range of approximation.
The value of q obtained is shown in Table 2.

The range of approximation ±6σ is large enough to contain all of the sam-
ples with margins, and we use the values in Table 2 in the lower plots in Figures
2 to 5.4 However, we find that widening the range of approximation can lead
to a sharp rise in minimum q, or difficulty in finding appropriate value of q.
See Table 3 for the example with the range of approximation ±10σ.

S&P 500 FT 100 Nikkei 225 AS 51
Unconstrained 1.0000 1.0000 1.0000 1.0000
Constraint 1 0.9873 0.9969 0.9997 0.9950
Constraint 2 - - - -

Table 3: The smallest q that realise non-negative density within the range of
approximation (±10σ). The ‘-’ symbol denotes that the value of q that realise
non-negative density is not found by our numerical search.

Density and distribution functions

The lower plots in Figures 2 to 5 show the approximations for the density func-
tion and distribution function. The plots for the distribution function show
that Constraint 1, constraints on up to the fourth moments, can make the ap-
proximation closer to the empirical distributions. Further, the approximations
with Constraint 2 are closest to the empirical distributions, as expected.

Impact of negative density

By construction, the approximations may exhibit negative density in the out-
side of the range of approximation. In our numerical examples, the size of
negative density is around 10−8 at most, and we may consider it negligible
compared to the densities in the range of approximation. See Figures 6 to 9
and Table 4.

3We are aware of possible existence of serial dependence structures in the samples; how-
ever, we ignore it here for simplicity. Marumo and Wolff (2008) consider approximating the
distribution functions where the samples have serial dependence structures.

4For the Normal distribution, for example, −6σ corresponds to the 9.8659× 10−10 quan-
tile.
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daily return

F
Figure 2: Results for S&P 500 daily returns (standardised). Upper plots
show

∑n
k=1 c

2
k/k against n. The solid, dashed and dotted curves correspond

to unconstrained approximation, approximations with Constraints 1 and 2,
respectively. The value of q is set to 0.001, 0.01 and 0.05, from the top to
bottom curves. The lower left plots show the density functions with n = 60.
For unconstrained approximation (solid) and approximations with Constraints
1 (dashed) and 2 (dotted), the value of q is set to 0.0441, 0.0075 and 0.0049,
respectively. The ‘+’ marks on the horizontal axis correspond to the samples.
The lower right plots show the left tails of the distribution functions. The ‘+’
marks correspond to the empirical distribution function.

5 Discussion

In this paper, we propose a method for approximating density function under
constraint using orthogonal expansions, given an iid data set. We show that the
explicit formula for the approximation is available, as long as the constraints
are expressed as a set of linear equations. This is the advantage over other
methods reviewed above.

The biggest disadvantage of the method is possible existence of negative
density. The numerical examples demonstrate that we can mitigate its effect,
while it is difficult to eliminate it completely. Strictly speaking, in order to
ensure that the density is non-negative, we need to investigate the condition
on c1, . . . , cn with which the polynomial

∑n
k=0 cnHek(x) does not have roots.

However, it is a tricky task to derive the necessary and sufficient condition
when n is large. Instead, finding some sufficient condition or focusing on small
n may be useful. This is our future task.
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Figure 3: Results for FT 100 daily returns (standardised). Upper plots
show

∑n
k=1 c

2
k/k against n. The solid, dashed and dotted curves correspond

to unconstrained approximation, approximations with Constraints 1 and 2,
respectively. The value of q is set to 0.001, 0.01 and 0.05, from the top to
bottom curves. The lower left plots show the density functions with n = 60.
For unconstrained approximation (solid) and approximations with Constraints
1 (dashed) and 2 (dotted), the value of q is set to 0.0132, 0.0109 and 0.0095,
respectively. The ‘+’ marks on the horizontal axis correspond to the samples.
The lower right plots show the left tails of the distribution functions. The ‘+’
marks correspond to the empirical distribution function.

(×10−8) S&P 500 FT 100 Nikkei 225 AS 51
Unconstrained -0.0394 -1.0594 -0.0385 -0.0755
Constraint 1 -0.1578 -1.1524 -1.2519 -0.1110
Constraint 2 -0.7928 -1.3945 -0.9081 -0.2204

Table 4: The largest negative densities. See Figures 6 to 9.
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Figure 4: Results for Nikkei 225 daily returns (standardised). Upper plots
show

∑n
k=1 c

2
k/k against n. The solid, dashed and dotted curves correspond

to unconstrained approximation, approximations with Constraints 1 and 2,
respectively. The value of q is set to 0.001, 0.01 and 0.05, from the top to
bottom curves. The lower left plots show the density functions with n = 60.
For unconstrained approximation (solid) and approximations with Constraints
1 (dashed) and 2 (dotted), the value of q is set to 0.3801, 0.0163 and 0.0200,
respectively. The ‘+’ marks on the horizontal axis correspond to the samples.
The lower right plots show the left tails of the distribution functions. The ‘+’
marks correspond to the empirical distribution function.
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Figure 5: Results for AS 51 daily returns (standardised). Upper plots show∑n
k=1 c

2
k/k against n. The solid, dashed and dotted curves correspond to un-

constrained approximation, approximations with Constraints 1 and 2, respec-
tively. The value of q is set to 0.001, 0.01 and 0.05, from the top to bottom
curves. The lower left plots show the density functions with n = 60. For
unconstrained approximation (solid) and approximations with Constraints 1
(dashed) and 2 (dotted), the value of q is set to 0.0558, 0.0105 and 0.0068,
respectively. The ‘+’ marks on the horizontal axis correspond to the samples.
The lower right plots show the left tails of the distribution functions. The ‘+’
marks correspond to the empirical distribution function.
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Figure 6: Far tails of the density functions for S&P 500 daily returns (stan-
dardised). The solid, dashed and dotted curves correspond to unconstrained
approximation, approximations with Constraint 1 and 2, respectively. The
value for n and p are the same as those in Figure 2.
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Figure 7: Far tails of the density functions for FT 100 daily returns (stan-
dardised). The solid, dashed and dotted curves correspond to unconstrained
approximation, approximations with Constraint 1 and 2, respectively. The
value for n and p are the same as those in Figure 3.
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Figure 8: Far tails of the density functions for Nikkei 225 daily returns (stan-
dardised). The solid, dashed and dotted curves correspond to unconstrained
approximation, approximations with Constraint 1 and 2, respectively. The
value for n and p are the same as those in Figure 4.
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Figure 9: Far tails of the density functions for AS 51 daily returns (stan-
dardised). The solid, dashed and dotted curves correspond to unconstrained
approximation, approximations with Constraint 1 and 2, respectively. The
value for n and p are the same as those in Figure 5.
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