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A new method is developed for determining the stress and displacement fields around a sharp V-shape

notched disk which is symmetrically loaded on the circumferential edge. Complex eigen function expansion

is used to satisfy the stress free condition of the sharp V-shape notch. Boundary condition of the external

load applied on the circumferential edge is satisfied with the aid of the Schmidt method. An example of

numerical calculation on the stress field is presented and examined. Approximation expressions based on

the eigen function expansion are proposed and its validity is confirmed. Finally, the numerical results are

compared to photoelastic experiment.
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1. Introduction

Sharp corners are often found in welded joints,
microelectronic chips, etc. and its structural integrity
has recently become increasingly important. Williams(1)

analyzed wedge with variety of edge boundary con-
ditions. He noted that a power stress singularity
(σij ∝ Krλ−1) can exist at the apex of the wedge.
He also noticed that an arbitrary loading along the
circumferential boundary can be formed by a linear
combination of the eigen functions. Many studies
have been done on the stress singularity and stress
intensity factor of the V-shape notch(2−8). The sin-
gular term describe the stress field just ahead of the
apex of the notch. When the notch opening angle is
large the singularity is not strong and the higher or-
der terms of the eigen functions are necessary for pre-
cise expression of the stress field around the notch.
In this paper, Papkovich-Neuber displacement po-

tentails are used to determine the stresses and dis-
placement equations. A new analytical method is
developed to calculate the stress and displacement
around a sharp V-shape notch in homogeneous elas-
tic disk which is symmetrically loaded. Numerical
calculations are carried out when the external loads
are applied to the circumferential edge of the disk.
The external boundary load condition are satisfied
with the help of the Schmidt method. Approxima-
tion expressions based on the eigen function expan-
sion are proposed and its validity is confirmed. Fi-
nally, the numerical results are compared to
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photoelastic experiment.

2. Method of Solution

Consider V-shape notched disk subjected to ex-
tension in its plane. The opening angle of the notch is
2(π-b). Let the origin of coordinates be at the center
of the circular plate and the relation of the Cartesian
and polar system by x = r cos θ, y = r sin θ and the
radious of the disk is a. Based on the Papkovich-
Neuber potentials formulation, ϕ0,ϕ1 and the radial
and tangential displacement components, ur, uθ, are
given as follows(9):

2Gur =
∂ϕ0
∂r

+ r cos θ
∂ϕ1
∂r
− κ cos θϕ1,

2Guθ =
1

r

∂ϕ0
∂θ

+ cos θ
∂ϕ1
∂θ

+ κ sin θϕ1,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

where, ∇2ϕ0 = ∇2ϕ1 = 0 and κ is defined as follows:

κ =

( 3− ν
1 + ν

(plane stress),

3− 4ν (plane strain),

where, ν is Possion’s ratio, G is shear modulus. The
boundary conditions of this problem are

(σθ)θ=±b = (τrθ)θ=±b = 0,
(σr)r=a = poσr(θ),
(τrθ)r=a = poτ rθ(θ).

⎫⎬⎭ (2)

Among the boundary conditions, the first bound-
ary condition is the stress free boundary condition of
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Figure 1: Circular plate subjected to distributed
load on the circumferencial edge

the notch and the second and third boundary con-
ditions are external load on the circumferencial edge
defined as follows:

σr(θ) =
1

2
(1− cos 2θ) cos πθ

2b
,

τrθ(θ) =
1

2
sin 2θ cos

πθ

2b
.

⎫⎪⎬⎪⎭ (3)

Displacement potential function, ϕ0,ϕ1, are expressed
into harmonic function in polar co-ordinate,

ϕ0 = p0

∞X
n=0

rλn+1An cos(λn + 1)θ,

ϕ1 = p0

∞X
n=0

rλnBn cosλnθ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4)

where, λn, An, Bn are the eigenvalues and the un-
known constants respectively to be determined from
boundary conditions. The equation of the stress and
displacement fields have been developed using Eq.(1)
and Eq.(4) .

σr = p0

∞X
n=0

λnr
λn−1[An(λn + 1) cos(λn + 1)θ

+Bn{
λn − κ
2

cos(λn + 1)θ

+
λn − 3
2

cos(λn − 1)θ}], (5)

σθ = −p0
∞X
n=0

λnr
λn−1[An(λn + 1) cos(λn + 1)θ

+Bn{
λn − κ
2

cos(λn + 1)θ

+
λn + 1

2
cos(λn − 1)θ}], (6)

τrθ = −p0
∞X
n=0

λnr
λn−1[An(λn + 1) sin(λn + 1)θ

+Bn{
λn − κ
2

sin(λn + 1)θ

+
λn − 1
2

sin(λn − 1)θ}], (7)

2Gur = p0

∞X
n=0

rλn [An(λn + 1) cos(λn + 1)θ

+Bn
λn − κ
2

{cos(λn + 1)θ
+cos(λn − 1)θ}], (8)

2Guθ = −p0
∞X
n=0

rλn [An(λn + 1) sin(λn + 1)θ

+Bn{
λn − κ
2

sin(λn + 1)θ

+
λn + κ

2
sin(λn − 1)θ}]. (9)

By using the stress free boundary condition, the
characteristic equation can be exprssed into following
forms:

λ2n(λn + 1)(λn sin 2b+ sin 2λnb) = 0. (10)

The relationship between unknown constants An and
Bn can also be expressed into following forms;

Bn = −2(λn + 1) cos(λn + 1)bAn
/ {(λn − κ) cos(λn + 1)b
+(λn + 1) cos(λn − 1)b} .

(11)

For calculating eigenvalues the characteristic
equation is solved by using the Newton-Raphson method.
To satisfy the boundary conditions of the circumfer-
encial edge, the Schmidt method is used(10). The cal-
culated stresses can be expressed into complex form
as follows:

(σr + iτrθ)r=a = p0

∞X
n=0

AnWn(θ), (12)

where, Wn(θ) =Wrn + iWθn, i =
√
−1,

Wrn = λn[(λn + 1) cos(λn + 1)θ

+Rn{λn−κ2 cos(λn + 1)θ

+λn−3
2 cos(λn − 1)θ}],

Wθn = −λn[(λn + 1) sin(λn + 1)θ
+Rn{λn−κ2 sin(λn + 1)

+λn−1
2 sin(λn − 1)θ}],

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Rn = −2(λn + 1) cos(λn + 1)bAn
/ {(λn − κ) cos(λn + 1)b
+(λn + 1) cos(λn − 1)b} .

Wn(θ) can be expanded into an orthogonal function
series So, S1, S2, ...Sn. External load can also be ex-
panded into the orthogonal function series and we

Study on stress fields in a V-Shape notched disk under distributed load                                                         22



get the following relationship;

(σr + iτ rθ)r=a = po

∞X
m=0

LmSm(θ)

= po

∞X
n=0

AnWn(θ), (13)

where, Sm(θ) can also be expressed by series ofWl(θ)
and the equation can be expressed by following forms;

Sm(θ) =
mX
l=0

Mlm

Mmm
Wl(θ), (14)

Li =

R b
−b(σr(θ) + iτ rθ(θ))Sidθ

Ii
,

Ii =

Z b

−b
SiSidθ.

Mlm is the minor of the element d(l+1)(m+1) in
the matrix dnp.

dnp =

Z b

−b
Wn,Wpdθ(n, p = 1, 2, 3...m). (15)

Wp is defined as complex conjugate of Wp. From
Eq.(15) and the boundary condition, Eq.(14), we can
get

∞X
n=0

AnWn(θ) =
∞X
m=0

Lm

mX
l=0

αmlWl(θ), (16)

where, αml =
Mlm

Mmm
. We can rewrite the right side of

this equation as,

∞X
m=0

Lm

mX
l=0

αmlWl(θ)

=

∞X
m=0

∞X
n=m

LmαnmWm(θ). (17)

From equation (16) and (17) the unknown constants,
An, can be expressed into following equation;

An =
∞X
m=n

Lmαmn. (18)

Table1: Calculated eigenvalues, λn for k=9
λ0 = 0.5444837367
λ1 = (1.6292573767, 0.2312505471)
λ2 = (2.9718437731, 0.3739312054)
λ3 = (4.3103772915, 0.4554935790)
λ4 = (5.6471117736, 0.513683812)
λ5 = (6.9828704415, 0.559108261)
λ6 = (8.3180336878, 0.5964194271)
λ7 = (9.6528039491, 0.6280993597)
λ8 = (10.9872997833, 0.6556354568)
λ9 = (12.3215956354, 0.6799917174)

Table2: Calculated An for k=9
A0 = (−0.43874054,−3.8344519× 10−18)
A1 = (−4.6860928× 10−2,−6.30572053× 10−18)
A2 = (−2.029204× 10−3,−4.7431015× 10−18)
A3 = (4.166764× 10−4,−7.2929320× 10−19)
A4 = (−1.7237520× 10−4, 8.1394037× 10−19)
A5 = (8.502311× 10−5,−2.0991458× 10−19)
A6 = (−5.1531855× 10−5,−3.2732869× 10−19)
A7 = (3.1820187× 10−5,−5.3546784× 10−19)
A8 = (−2.2444078× 10−5,−4.5320629× 10−19)
A9 = (1.54729739× 10−5,−4.8304523× 10−19)

3. Numerical Analysis

Eigenvalues are calculated when the opening an-
gle of the notch 2(π-b)=90◦. Firstly, characteristic
equation (Eq.(10)) is solved by the Newton-Raphson
method. Infinite number of complex eigenvalues ex-
ist. Calculated eigenvalues are listed in Table1. First
eigenvalue is real and the rest of eigenvalues are com-
plex. It is certified that the stress free boundary con-
ditions (σθ=τrθ=0 at θ=± b) are satisfied with
the calculated eigenvalues numerically. Using the
Schmidt method the distributed load on the circum-
ferencial edge (Eq.(3), ”Original” in Fig.2) are ex-
panded into the orthogonal function series (Eq.(13),
”Expanded” in Fig.2). The calculation error have
the maximum value at θ=0 and the error is 4.8%.
By using the Schmidt method unknown constants,
An, are calculated and listed in Table1. These con-
stants are real. Stress distributions are shown in
Fig.3. The large tensile stresses occure at θ=0 for σθ
and θ=±135◦ for σr. Comparing Fig.2(a) (σrpo = 0

at θ=0) and Fig.3 (σr
po
∼= 0.6 at θ=0) it is cleared

that the bi-axial stress field is developed due to the
constraint effect of the notch.

To calculate the stresses distribution in the V-
shape notched disk under distributed load we pro-
pose following relationships:

σr = po

n=kX
n=0

AnWrnr
λn−1, (19)

σθ = po

n=kX
n=0

AnWθnr
λn−1, (20)

τrθ = po

n=kX
n=0

AnWrθnr
λn−1. (21)

Wθn = −λn[(λn + 1) cos(λn + 1)θ

+Rn{
λn − κ
2

cos(λn + 1)θ

+
λn + 1

2
cos(λn − 1)θ}].
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(a)

(b)
Figure 2: Comparison between external distributed

load and its expanded result

Figure 3: Stress distribution along the
circumferential direction

Figure 4: Comparison between exact solution and
asymptotic solutions for tangential stress σθ

distribution along radial direction

(a) Linear plot

(b) log-log plot
Figure 5: Stress distribution along radial direction

Wrn and Wrθn are already given in Eq.(13). Fig-
ure 4 shows the comparison of full and asymptotic

solutions. In the figure (
σθ
po
)θ=0 is the full solution

(k →∞ in Eq.(20)). k=0 is the first order asymp-
totic solution, k=1 is the summation of the first and
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second order asymptotic solutions. The ranges of ap-
plicability of the asymptotic solutions are r

a ≤ 0.01
for k = 0, and r

a ≤ 1 for k=1 with the error of less
than 0.1%. Figure 5 illustrates that the summa-
tion of the first and second order asymptotic solution
gives reasonable approximation for σθ − r relation at
θ =0.
Figure 5(a) shows the stress distribution along

the radial axis at θ = 0. σθ is the maximum stress
distribution and τrθ is the minimum stress distribu-
tion. Figure 5(b) shows the log-log plot of the stress
distribution along the radial axis. Straight line rela-
tionships are shown close to the apex of the notch.

4. Comparison with experiment

To compare the calculated result of the difference
of principle stresses with experimental result, pho-
toelastic experiments have been done. In analytical
model the boundary condition on the circumferen-
tial edge (Eq.(3)) is the stress distribution of uniax-
ial tension, σr(θ) =

1
2 (1− cos 2θ), τrθ(θ) = 1

2 sin 2θ,

times cos πθ2b . cos πθ2b is needed for the notch edge
stress free condition. This boundary condition in
the analytical model is considered to be similar to
the stress field around V-shape notch in a strip sub-
jected to uniaxial tension because the remote stress
fields for the both models are uniaxial tension. From
this reason, in this study, the analytical results about
V-shape notched disk are compared with the experi-
mantal results of the V-shape notched strip. A speci-
men shown in Fig.6 which has two V-shape notch(opening
angel 2(π-b)=90◦) in both sides of the strip were ma-
chined out from a epoxy plate. Then this strip was
annealed to remove the residual stresses of the mate-
rial. In annealing process, firstly 1 hour is needed to
arise the room temperature to 120◦ C. Secondly, this
temperature was kept for 40 minutes. Thirdly, the
temperature is gradually down 10◦C /hr and if the
temperature reached to 80◦ C, the annealing process
was stopped. The specimen was set to the photoelas-
tic experiment equipment where the tensile load was
applied. For photoelasticity the following relation
can be used to determine the difference of principle
stresses:

σ1 − σ2 =
n

αd
, (22)

where, n is fringe order, α is the photoelastic con-
stant (0.96 mm/kgf for the material used), d is thick-
ness of the specimen. Figure 7 shows the fringe pat-
tern in the specimen around V-shape notch. Figure
8 gives the comparison between the experimental re-
sults and the numerical results for σr at θ =

3
4π

(along the notch edge). The distribution character-
istics are in good agreement qualitatively.

Figure 6: Specimen configuration (unit: mm)

(a) Bright field

(b) Dark field
Figure 7: Photoelastic experiment result. (po=7.2

MPa)

The distribution of the difference of principal stresses
along the tangential direction are shown in Figure 9.
The qualitative agreement (between the calculated
results and the experimental results ) in tangential
direction of the stresses is also verified. Figure 8 and
9 suggest that the result of the present analysis is
valid to evaluate the stress distribution around the
V-shape notch strip qualitatively.
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(a) Linear plot

(b) log-log plot
Figure 8: Comparison between experimental and
numerical results along the radial direction

Figure 9: Comparison between experiment and nu-
merical result (tangential distribution)

5. Conclusion

A new method is developed for determining
the stress and displacement fields around a sharp V-
shape notched disk which is symmetrically loaded on
the circumferential edge. Complex eigen function ex-
pansion is used to satisfy the stress free condition of
the sharp V-shape notch. Boundary condition of the
external load applied on the circumferential edge is
satisfied with the aid of the Schmidt method. An ex-
ample of numerical calculation on the stress field is
presented and examined. Approximation expressions
based on the eigen function expansion are proposed
and its validity is confirmed. Finally, the numeri-
cal results are compared to photoelastic experiment.
Results are summarized as follows;

(1) Infinite number of complex eigenvalues exist.
First eigenvalue is real and the rest of eigenvalues are
complex. It is certified that the stress free boundary
conditions are satisfied with the calculated eigenval-
ues numerically.

(2) The range of applicability of the asymptotic
solutions are r

a ≤ 0.01 for k = 0, and r
a ≤ 1 for k=1

with the error of less than 0.1%. The summation
of the first and second order asymptotic solution
gives reasonable approximation for σθ − r relation at
θ = 0.

(3) The qualitative agreement between the ana-
lytical results and experimental results in radial and
tangential direction of the stresses are verified.
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