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We improve the upper bound on the round complexity for perfectly concealing bit commitment
schemes based on the general computational assumption. The best known scheme is the one-way
permutation based scheme due to Naor, Ostrovsky, Venkatesan and Yung and its round complexity
is O(n). We consider a naive parallel version of their scheme of the multiplicity log n and obtain
an O(n/ log n)-round scheme. Our improvement answers a question, raised by them, whether their
O(n)-round scheme is essential with respect to the round complexity. Though such a parallelization
raises an analytic difficulty, we introduce a new analysis technique and then overcome the difficulty.
Our technique copes with expected almost pairwise independent random variables instead of the
pairwise independence, which is a key property in their analysis. While the expected almost
pairwise independence plays an important role in our security proof, it also provides alternative
security proof for the original scheme.
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1 Introduction

A notion of one-way functions is one of the most funda-
mental notions in cryptology. Constructions of crypto-
graphic protocols from cryptographic primitives such as
one-way functions help us to develop the foundations of
cryptography. Especially, reducing complexity assump-
tions or requirements for cryptographic primitives leads
us to essentially understand the nature of cryptography.

A construction of pseudorandom generators from any
one-way functions [6] is one of the most important re-
sults in the foundations of cryptography, because pseu-
dorandom generators are still primitive for other crypto-
graphic protocols. Digital signature schemes are also con-
structible from one-way functions [9, 10]. Besides one-way
functions, bit commitment schemes are building blocks
for cryptographic protocols and (non-uniform) computa-
tionally concealing statistically binding schemes are built
in zero-knowledge proof systems, introduced in [5], for
any NP language [3]. Furthermore, Naor, in [7], showed
that computationally concealing statistically binding bit
commitment schemes are constructible from pseudoran-
dom generators (i.e., from one-way functions). Another
type of bit commitment scheme, say statistically conceal-
ing computationally binding scheme, can be utilized in
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zero-knowledge arguments [1].

A bit commitment scheme is a two-party protocol and
there are messages to be exchanged between the two par-
ties. Since a bit commitment scheme is a cryptographic
primitive, it is desirable to be efficient in several points
(e.g., the total size of messages exchanged during the
protocol, or the round of communications in the proto-
col). In this paper, we focus on the round complexity
of bit commitment schemes based on general computa-
tional assumptions. Naor’s computationally concealing
statistically binding scheme [7] is of constant round. (Pre-
cisely speaking, his scheme is of one round in the com-
mit phase and of one round in the reveal phase.) On the
other hand, the O(n)-round one-way permutation based
scheme by Naor, Ostrovsky, Venkatesan and Yung [8] is
the most round-efficient of all known statistical concealing
computationally binding protocols based on general com-
putational assumption. (If we allow parties the quantum
computational powers, the quantum one-way permutation
based scheme by Dumais, Mayers and Salvail [2] is of con-
stant round.)

In this paper, we propose a perfectly concealing compu-
tationally binding bit commitment scheme of better round
complexity. We consider a naive parallel version of Naor-
Ostrovsky-Venkatesan-Yung scheme [8] of the multiplicity
log n and obtain an O(n/ log n)-round scheme. Though
such a parallelization raises an analytic difficulty, we in-
troduce a new analysis technique and then overcome the
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difficulty. Our technique copes with expected almost pair-
wise independent random variables instead of the pairwise
independence, which is a key property in their analysis.
While the expected almost pairwise independence plays
an important role in our security proof, it also provides
alternative security proof for the original scheme. Our
improvement answers a question, raised in [8], whether
their O(n)-round scheme is essential with respect to the
round complexity.

2 Preliminaries

Notations and Conventions

We introduce some useful notations and conventions.
For any pair u, v ∈ {0, 1}n of strings, let 〈u, v〉 =∑

uivi mod 2, where u = u1 · · ·un and v = v1 · · · vn.
Since n-bit strings can be regarded as n-dimensional vec-
tors over GF(2), 〈u, v〉 corresponds to the inner prod-
uct of n-dimensional vectors u and v. For an m-tuple
ĥ = (h1, h2, . . . , hm) of n-bit strings and an n-bit string
y, 〈〈ĥ; y〉〉 denotes the m-bit string s = s1s2 · · · sm where
the i-th bit si = 〈hi, y〉 for all 1 ≤ i ≤ m. Note that
an equation 〈〈ĥ; y〉〉 = s can be regarded as m simultane-
ous equations with n unknown variables. By a ∈R A we
denote the element a is randomly chosen from the set A.

Bit Commitment Scheme

A bit commitment scheme is a two-party protocol. The
protocol consists of two phases: commit phase and reveal
phase. In the commit phase, the sender, say Sam, has a
bit b in his private space and he wants to commit b to the
receiver, say Rachel. They exchange messages and at the
end of the commit phase Rachel gets some information
that represents b. In the reveal phase, Sam confides b to
Rachel by exchanging messages. At the end of the reveal
phase, Rachel judges whether the information gotten in
the reveal phase really represents b or not.

In this paper, we consider bit commitment schemes sat-
isfying the perfectly concealing property and the compu-
tationally binding property. A formal definition follows.

Definition 2.1 A perfectly concealing computationally
binding bit commitment scheme must satisfy the follow-
ing four conditions.

(Correctness) If both parties are honest, then for any bit
b ∈ {0, 1} the sender has, the receiver accepts with
certainty.

(Efficiency) Both parties must obey some probabilistic
polynomial-time algorithms.

(Perfect Concealing) Even if a receiver R is dishonest and
computationally unbounded, the distributions of the
conversation between R and an honest sender in case
b = 0 and b = 1 are identical.

(Computational Binding) The probability that any proba-
bilistic polynomial time sender S can reveal two dif-
ferent values of b is negligible, where the probability
is over the internal coin tosses of both parties.

Remark. Polynomials in the above definitions are with
respect to the security parameter.

One-Way Permutation

Let f be a function from {0, 1}∗ to {0, 1}∗. If f is 1-to-1
and length-preserving then f is said to be a permutation.
Furthermore, if f is polynomial-time computable and hard
to invert then f is said to be one-way. A formal definition
of one-way permutation follows.

Definition 2.2 Let f be a permutation. If f satisfies the
following two conditions then f is said to be one-way:

• f is polynomial-time computable;
• for every probabilistic polynomial-time algorithm A,

for every polynomial p and for sufficiently large n,

Pr[A(f(Un)) = Un] ≤ 1
p(n)

,

where the probability above is over internal coin
tosses in A and the uniform distribution Un on
{0, 1}n.

3 New Scheme

In this section, we show our perfectly concealing bit com-
mitment scheme based on one-way permutation. As men-
tioned, our scheme is a parallel version of the Naor-
Ostrovsky-Venkatesan-Yung scheme [8].

Let n be the security parameter and m = �log n� be the
multiplicity parameter. Let f be a one-way permutation.
We assume that m divides n − 1 and let r = (n − 1)/m.
(This assumption is not really essential, and is only made
for convenience.) Let H [i] = {0i−11w | w ∈ {0, 1}n−i}
for any i such that 1 ≤ i ≤ n and H(j) = H [(j−1)m+1] ×
H [(j−1)m+2]×· · ·×H [jm] for any j such that 1 ≤ j ≤ r. Let
H

[i]
� = {0i−11�w | w ∈ {0, 1}n−i−|�|} for any � ∈ {0, 1}∗

and for any i. Let H(j)

�̂
= H

[(j−1)m+1]
�1

× H
[(j−1)m+2]
�2

×
· · ·×H

[jm]
�m

for any �̂ = (�1, �2, ..., �m) ∈ ({0, 1}∗)m and for
any j.

Now we are ready to describe our scheme.

[Commit Phase]

2

埼玉大学紀要　工学部　第39号　2006 41

cityadmin
テキストボックス



step 1. A sender Sam chooses x ∈ {0, 1}n randomly and
computes y = f(x). Let b be a bit to be committed
to a receiver Rachel.

step 2. For k from 1 to r,

• Rachel chooses an m-tuple of n-bit strings

ĥ(k) = (h(k−1)m+1, h(k−1)m+2, . . . , hkm) ∈R H(k)

randomly and sends ĥ(k) to Sam.
• Sam computes

ĉ(k) = (c(k−1)m+1, c(k−1)m+2, . . . , ckm) = 〈〈ĥ(k); y〉〉

and sends ĉ(k) to Rachel.

step 3. Sam solves the linear equation system

ci = 〈hi, z〉 for all i such that 1 ≤ i ≤ n − 1

and obtains two solutions z0 and z1, where z0 is lex-
icographically smaller than z1. (Recall that z can be
identified with n variables over GF(2) and the above
equations are defined over GF(2).) Since either z0 or
z1 is equal to y, let d be a bit such that zd = y. Sam
sends e = b ⊕ d to Rachel.

step 4. Rachel also solves the same linear equation sys-
tem and obtains the same two solutions z0 and z1.

[Reveal Phase]

step 5. Sam sends b and x to Rachel.

step 6. Rachel computes y′ = f(x) and verifies that ci =
〈hi, y

′〉 for all i such that 1 ≤ i ≤ n − 1. If y′ = yd

where d = b ⊕ e, then Rachel accepts.

Theorem 3.1 The above O(n/ log n)-round bit commit-
ment protocol satisfies the perfectly concealing and the
computationally binding conditions.

Besides the concealing and binding conditions, the cor-
rectness and the efficiency of our protocol follow from the
construction. We will give a proof for the perfectly con-
cealing condition in Section 5.1 and one for the compu-
tationally binding condition in Section 5.2. As a typical
consequence, Theorem 3.1 improves the round complexity
of the perfect zero-knowledge arguments for any language
in NP assuming the existence of one-way permutations.

4 Expected Almost Pairwise Inde-

pendence

Before analyzing our protocol, we mention a new technique
for the analysis. The pairwise independence of random
variables is a commonly used tool to analyze probabilistic

behavior of algorithms and protocols. The almost pairwise
independence is a relaxed notion of the pairwise indepen-
dence is also used in cryptography, especially in universal
hash functions. In this section, we introduce yet another
relaxed notion of the pairwise independence.

Let X1, X2, . . . , Xn be binary random variables such
that Pr[Xi = 1] = p for all i. Then, E[Xi] = p and
Var[Xi] = p − p2. If

Pr[Xi = b ∧ Xj = b′] ≤ Pr[Xi = b] Pr[Xj = b′] + ε

for any b, b′ ∈ {0, 1} and for any pair (i, j) such that i 	=
j then X1, X2, . . . , Xn are said to be ε-almost pairwise
independent. It is easy to see that the almost pairwise
independence is defined for the “worst” pair. We consider
how the value Pr[Xi = b ∧ Xj = b′] “on average” is apart
from the value Pr[Xi = b] · Pr[Xj = b′]. If

(
n

2

)−1∑
i �=j

Pr[Xi = b ∧ Xj = b′] ≤ Pr[X = b] Pr[X = b′] + ε

for any b, b′ ∈ {0, 1} then X1, X2, . . . , Xn are said to be ε-
expected almost pairwise independent, where X is a binary
random variable such that Pr[X = 1] = p.

From the definitions, ε-almost pairwise independence
implies ε-expected almost pairwise independence. On the
other hand, the converse does not hold in general. For
some applications the expected almost pairwise indepen-
dence may be sufficient. Actually in this paper, the ex-
pected almost pairwise independence plays a key role for
the security analysis of our new scheme.

5 Security Analysis

In this section, we give a security proof for our scheme.
First, we will show that our scheme satisfies the per-
fectly concealing condition. Next, we will show that our
scheme satisfies the computationally binding condition.
Both proof structures are similar to the proofs in [8] ex-
cept the utilization of our new technique discussed in the
previous section. The technique of the expected almost
pairwise independence essentially contributes to the re-
duction of the round complexity.

5.1 Perfect Concealing

Lemma 5.1 (Perfect Concealing) For any cheating
receiver R, the distribution of the conversation between
the honest sender and R in the commit phase is indepen-
dent of the value of the bit b.

Proof. Let ĥ(k) = (h(k−1)m+1, h(k−1)m+2, . . . , hkm) ∈
H(k) be a (malicious) choice in the k-th response of
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the cheating receiver R. R’s choice may depend on
h1, h2, . . . , h(k−1)m and c1, c2, . . . , c(k−1)m. However, the
conditional distribution of y given h1, h2, . . . , h(k−1)m and
c1, c2, . . . , c(k−1)m is still uniform because of their shapes.
Moreover, since h1, h2, . . . , hkm are independent, we have
for any b̂ ∈ {0, 1}m

Pr[〈〈ĥ(k); y〉〉 = b̂] =
1

2m
.

Furthermore, since the value of d is uniformly
distributed over {0, 1}, then conversations
(h1, . . . , hn−1, c1, . . . , cn−1, e) between the honest sender
and R in the commit phase is independent of the value of
b. �

5.2 Computational Binding

Lemma 5.2 (Computational Binding) Suppose that
S is a probabilistic polynomial-time cheating sender that
follows the protocol in the commit phase. Also suppose that
S can reveal to an honest receiver two different values of
b with non-negligible probability ε = ε(n), where the prob-
ability is over the internal coin tosses of S and the honest
receiver. Then, there exists a probabilistic polynomial-time
inverter for f that violates the one-wayness of f .

We devote the rest of this subsection to the proof of
Lemma 5.2. To prove Lemma 5.2, we construct a proba-
bilistic polynomial-time inverter A for f by mimicking a
honest receiver R which interacts with the cheating sender
S.

First of all, without loss of generality, we can assume
that S is deterministic. The following standard argument
justifies this assumption. Suppose that S succeeds (i.e.,
reveals two different values of b) with non-negligible prob-
ability ε and the probability is over the internal coin tosses
of S and R (i.e., messages (or, queries) from R). By
a counting argument, the fraction of internal coin tosses
with which S succeeds on at least ε/2 of R’s queries is ε/2
at least. If we prepare sufficiently many (i.e., 2n/ε) ran-
dom assignments for internal coin tosses for A, then there
exists one of the 2n/ε assignments with which S succeeds
on at least ε/2 of R’s queries with overwhelming proba-
bility.

Next, it is convenient to represent the cheating strat-
egy of S in the commit phase, depending on queries from
R, as a rooted tree T of depth r. A node Uk at the k-
th level is defined by queries ĥ(1), ĥ(2), . . . , ĥ(k−1), where
each ĥ(j) is in H(j) for 1 ≤ j ≤ k − 1. Every node at the
k-th level has |H(k)| outgoing edges. Each of the outgo-
ing edges corresponds to some queries (i.e., an m-tuple of
n-bit strings) ĥ(k) in H(k) and leads to a different node

at the (k + 1)th level. The cheating strategy of S speci-
fies a labeling of the edges of T with an m-bit string w.
For a node Uk defined by queries ĥ(1), ĥ(2), . . . , ĥ(k−1), the
label w on an edge ĥ(k) is the response ĉ(k) of S to the
queries ĥ(k) in the k-th round, on condition that the pre-
vious queries were ĥ(1), ĥ(2), . . . , ĥ(k−1). We denote it by
LS(Uk, ĥ(k)). Since S can be regarded as a deterministic
polynomial-time algorithm, the inverter algorithm A can
completely control the behavior of S. It implies that A
can compute the labeling LS . (Note that A does not have
the tree in the memory.) For a leaf node Ur+1 defined
by ĥ(1), ĥ(2), . . . , ĥ(r), let U1, U2, . . . , Ur be nodes on the
path from the root node to the leaf node Ur+1 and let
{y0(Ur+1), y1(Ur+1)} be the set of images consistent with
the labeling of S. Namely, for all 1 ≤ j ≤ r and for all
b ∈ {0, 1},

LS(Uj, ĥ
(j)) = 〈〈ĥ(j); yb〉〉.

The leaf node Ur+1, defined by ĥ(1), ĥ(2), . . . , ĥ(r), is said
to be good if S can reveal two different values of b when
R’s queries are ĥ(1), ĥ(2), . . . , ĥ(r). This implies that S can
invert both y0(Ur+1) and y1(Ur+1), which we will see later.

The basic strategy of the inverter A is to try to find a
good leaf by random sampling. In order to compute, given
y ∈ {0, 1}n, the preimage of y, A must take a path to a
good leaf Ur+1 such that y ∈ {y0(Ur+1), y1(Ur+1)}. To
take the path, A must choose queries ĥ(1), ĥ(2), . . . , ĥ(r)

such that

LS(Uj , ĥ
(j)) = 〈〈ĥ(j), y〉〉

for all 1 ≤ j ≤ r. If S is honest, a simple analysis of
the random sampling is sufficient to prove the security.
However, since S does not have to honestly respond to the
queries from R, that makes the security analysis harder.

Inverting Algorithm

Now, let us describe the inverter algorithm A. A is given
a random string y ∈ {0, 1}n and tries to compute the
preimage of y. Fix t = r − 8(log(n/ε) + m + 1)/m =
r − 8 log(2n2/ε)/ logn.

step 1. A makes S perform step 1 in the commit phase.
(Though S chooses a random element x′ and com-
putes y′ = f(x′), these values are not important.)

step 2. For k from 1 to t

2.1. A chooses ĥ(k) ∈ H(k) randomly.

2.2. A sends ĥ(k) to S and obtains ĉ(k) from S.

2.3. Unless ĉ(k) = 〈〈ĥ(k); y〉〉 then A rewinds S to the
state before its reply and restarts from step 2.1.

4

埼玉大学紀要　工学部　第39号　2006 43

cityadmin
テキストボックス



step 3. If A reaches the (t + 1)-th level, it chooses the
remaining n− tm− 1 queries htm+1, htm+2, . . . , hn−1

uniformly at random.

step 4. A checks whether the path to the leaf is
labeled consistently with 〈htm+1, y〉, 〈htm+2, y〉, . . . ,
〈hn−1, y〉. If this is the case and the leaf is good,
then A makes S reveal two different values of b. At
the same time, A obtains both x′ and the preimage x

of y from S and outputs x. Otherwise A aborts.

In what follows, we analyze the success probability and
the time complexity of A. We introduce several notations
only for the analysis.

Notation

Let Uk be a node at the k-th level of the tree T defined
by ĥ(1), ĥ(2), . . . , ĥ(k−1). Let ĉ(1), ĉ(2), . . . , ĉ(k−1) be la-
bels assigned to the path from the root to Uk. We say
that y ∈ {0, 1} is an image in Uk if 〈〈ĥ(j); y〉〉 = ĉ(j) for
any 1 ≤ j ≤ k − 1. I(Uk) denotes the set of images
in Uk. Note that |I(Uk)| = 2n−m(k−1) for any k. We
say that ĥ(k) ∈ H(k) is a query m-tuple of Uk. Note that
there are 2m(n−k)−m(m−1)/2 query m-tuples from any node
Uk at the k-the level. Let A(Uk, y) = |{ĥ(k) ∈ H(k) :
LS(Uk, ĥ(k)) = 〈〈h(k); y〉〉}|. We say that an image y is
balanced in Uk at the k-th level if

1
2m

(
1 − 1

n

)
≤ A(Uk, y)

2m(n−k)− 1
2 m(m−1)

≤ 1
2m

(
1 +

1
n

)
.

We say that an image y is fully balanced in Uk of the kth
level if it is balanced in all the ancestor nodes of Uk. Let
F(Uk) be the set of images in I(Uk) that are fully balanced
in Uk. For a set H of query m-tuples from a node U and
y ∈ I(U), the discrepancy of y at H is defined as the
difference between the expected number of agreeing query
m-tuples and the actual number of query m-tuples in H
that agree with y. Formally, it is defined by∣∣∣∣

∣∣∣{ĥ ∈ H : LS(U, y) = 〈〈ĥ; y〉〉}
∣∣∣ − 1

2m
|H|

∣∣∣∣ .

Analysis

Claim 1 Let Uk be a node at the k-th level.
For any �̂ = (�1, �2, . . . , �m) ∈ {0, 1}(t−k+1)m ×
{0, 1}(t−k+1)m−1 × · · · × {0, 1}(t−k)m+1 and for any
ĥ(k) = (h(k−1)m+1, h(k−1)m+2, . . . , hkm) ∈ H(k)

�̂
, let aĥ(k)

be a binary random variable over z ∈R I(Uk) such that
aĥ(k) = 1 if LS(Uk, z) = 〈〈ĥ(k); z〉〉 and 0 otherwise. Then

Pr

⎡
⎢⎣

∣∣∣∣∣∣∣
∑

ĥ(k)∈H(k)
�̂

aĥ(k) − 1
2m

∣∣∣H(k)

�̂

∣∣∣
∣∣∣∣∣∣∣
≥ 2(m− 1

8 )(n−tm−1)

⎤
⎥⎦

≤ m · 2− 3
4 (n−tm−1).

From the technical point of view, the following proof is
a main contribution in this paper. Though the statement
itself is as simple as Claim 1 in [8], the proof is not sim-
pler. As mentioned, we devise a new technique to show
the above claim. The expected almost pairwise indepen-
dence plays a key role in the following proof. (Precisely
speaking, in the proof, we show a relaxed property of the
expected almost pairwise independence. Namely, we take
care of the probability Pr[aĥ(k) = b ∧ a

ĥ′(k) = b′] only for
the case b = b′ = 1.)
Proof. For any ĥ(k) ∈ H(k)

�̂
, we have

E[aĥ(k) ] =
1

2m
and Var[aĥ(k) ] =

2m − 1
22m

. (1)

Now, we are interested in the upper bound on

Var

⎡
⎢⎣ ∑

ĥ(k)∈H(k)
�̂

aĥ(k)

⎤
⎥⎦ =

∑
ĥ(k)∈H(k)

�̂

Var[aĥ(k) ]

+
∑

ĥ(k),ĥ′(k)∈H(k)
�̂

Cov[aĥ(k) , aĥ′(k) ].(2)

A crucial observation is that, for almost all pairs of query
m-tuples, their covariances are zero. Since

Cov[aĥ(k) , aĥ′(k) ] ≤ 2m − 1
22m

, (3)

we will give an upper bound on the variance in eq.(2)
by estimating the number of pairs having non-zero co-
variance. Note that the covariance of a pair (aĥ(k) , aĥ′(k))
is non-zero if and only if the random variables aĥ(k) and
a

ĥ′(k) are independent. Thus, we consider the correlation
between them more precisely. Let

ĥ(k) = (h(k−1)m+1, h(k−1)m+2, . . . , hkm) and

ĥ′(k)
= (h′

(k−1)m+1, h
′
(k−1)m+2, . . . , h

′
km).

If h(k−1)m+1, h(k−1)m+2, . . . , hkm, h′
(k−1)m+1, h

′
(k−1)m+2,

. . . , h′
km are linearly independent as vectors, then the

random variables aĥ(k) and a
ĥ′(k) are independent. We

know that vectors in ĥ(k) are linearly independent and
so are vectors in ĥ′(k)

. Another observation is that the
following statements are equivalent.

• h(k−1)m+1, h(k−1)m+2, . . . , hkm, h′
(k−1)m+1, h

′
(k−1)m+2,

. . . , h′
km are linearly independent.

• h(k−1)m+1, h(k−1)m+2, . . . , hkm, v1, v2, . . . , vm are lin-
early independent, where vi = h(k−1)m+i ⊕
h′

(k−1)m+i ∈ {0tm+1w : w ∈ {0, 1}n−tm−1} for all
1 ≤ i ≤ m.

So, we can bound from below the number V of assign-
ments for which the 2m vectors are linearly independent
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as follows:

V ≥ (2n−tm−1)m ·
m∏

i=1

(2n−tm−1 − 1 − 2i−1). (4)

The factor (2n−tm−1)m in eq.(4) comes from that every as-
signment for h(k−1)m+1, h(k−1)m+2, . . . , hkm makes them
linearly independent. The term “−1” in eq.(4) means the
exclusion of the case vi = 0n and the term “−2i−1” means
the exclusion of all the vectors in span(v1, v2, . . . , vi−1).
Thus, the number W of assignments for which the 2m

vectors are not linearly independent is upper-bounded as
follows:

W ≤ (2n−tm−1)2m− (2n−tm−1)m ·
m∏

i=1

(2n−tm−1− 1− 2i−1)

≤ (1 + 2m−1)(2n−tm−1)2m−1. (5)

By putting equations (1), (2), (3) and (5) together, we
have

Var

⎡
⎢⎣ ∑

ĥ(k)∈H(k)
�̂

aĥ(k)

⎤
⎥⎦ ≤ 2m − 1

22m

(
(2n−tm−1)m

+(1 + 2m−1)(2n−tm−1)2m−1
)

≤ m · (2n−tm−1)2m−1.

By Chebyschev’s inequality,

Pr

⎡
⎢⎣
∣∣∣∣∣∣∣

∑
ĥ(k)∈H(k)

�̂

aĥ(k) − E

⎡
⎢⎣ ∑

ĥ(k)∈H(k)
�̂

aĥ(k)

⎤
⎥⎦
∣∣∣∣∣∣∣

≥ λ

√√√√√√Var

⎡
⎢⎣ ∑

ĥ(k)∈H(k)
�̂

aĥ(k)

⎤
⎥⎦

⎤
⎥⎥⎦ ≤ 1

λ2
.

Taking λ = m− 1
2 · 2 3

8 (n−tm−1) we get the assertion of the
claim. �

Though the following claim corresponds to Claim 2 in
[8], we can simplify the proof by eliminating the discussion
on the pairwise independence.

Claim 2 For any node Ut+1 at the (t+1)-th level and for
random z ∈R I(Ut+1), we have Pr[z ∈ F(Ut+1)] ≥ 1 − γ

where γ = n2−
5
8 (n−tm−1).

Proof. Let U1, U2, . . . , Ut be the nodes on the path
to Ut+1. We show that for any Ui along the path almost
z ∈ I(Ut+1) are balanced. By Claim 1, we have for any
�̂ = (�1, �2, . . . , �m) ∈ {0, 1}(t−k+1)m × {0, 1}(t−k+1)m−1 ×
· · · × {0, 1}(t−k)m+1

Pr

⎡
⎢⎣
∣∣∣∣∣∣∣

∑
ĥ(k)∈H(k)

�̂

aĥ(k) − 1
2m

∣∣∣H(k)

�̂

∣∣∣
∣∣∣∣∣∣∣
≥ 2(m− 1

8 )(n−tm−1)

⎤
⎥⎦

≤ m · 2− 3
4 (n−tm−1).

Let b�̂ = 1 if

∣∣∣∣∣∣∣
∑

ĥ(k)∈H(k)
�̂

aĥ(k) − 1
2m

∣∣∣H(k)

�̂

∣∣∣
∣∣∣∣∣∣∣
≥ 2(m− 1

8 )(n−tm−1)

and b�̂ = 0 otherwise. By Markov’s inequality, we have

Pr

⎡
⎣∑

�̂

b�̂ >
2(t−k+1)m2−m(m−1)/2

2
1
8 (n−tm−1)

⎤
⎦ ≤ m · 2− 5

8 (n−tm−1),

where the number of �̂’s is 2(t−k+1)m2−m(m−1)/2. That is,
the probability that, for more than a fraction 2−

1
8 (n−tm−1)

of the �̂’s, the set H(k)

�̂
has a discrepancy larger than

2(m− 1
8 )(n−tm−1) is at most m2−

5
8 (n−tm−1). Thus, with

probability at least 1−m · 2− 5
8 (n−tm−1) the total discrep-

ancy at node Uk is at most

2−
1
8 (n−tm−1) · 2(t−k+1)m2−m(m−1)/2 · 2m(n−tm−1)

+(1 − 2−
1
8 (n−tm−1))2(t−k+1)m2−m(m−1)/22(m− 1

8 )(n−tm−1)

≤ 2 · 2(t−k+1)m2−m(m−1)/2 · 2(m− 1
8 )(n−tm−1)

≤ 2
Pm−1

i=0 (n−(k−1)m−1−i) · 2− 1
8 (n−tm−1)+1,

where |H(k)| = 2
Pm−1

i=0 (n−(k−1)m−1−i), the first summand
is an upper bound on the contribution of the H(k)

�̂
’s where

b�̂ = 1 and the second the contribution of the H(k)

�̂
’s where

b�̂ = 0. Hence for z ∈R I(Ut+1) with probability at least
1 − m · 2− 5

8 (n−tm−1) we have

2−m− 2−
1
8 (n−tm−1)+1 ≤ A(Uk, z)

|H(k)| ≤ 2−m+ 2−
1
8 (n−tm−1)+1.

Since t = r − 8(log(n/ε) + m + 1)/m,

1
2m

(
1 − 1

n

)
≤ 2−m − 2−

1
8 (n−tm−1)+1 ≤ A(Uk, z)

|H(k)|
≤ 2−m + 2−

1
8 (n−tm−1)+1 ≤ 1

2m

(
1 +

1
n

)
.

The probability that z is balanced in all the levels is there-
fore at least 1 − rm2−

5
8 (n−tm−1) > 1 − n2−

5
8 (n−tm−1). �

Claim 3 For any node Ut+1 at the (t+1)-th level and for
any z ∈ F(Ut+1),

1
2ne1/m

tm∏
i=1

1
2n−i−1

≤ Pr[A reaches Ut+1 and y = z]

≤ e1/m

2n

tm∏
i=1

1
2n−i−1

,

where the probability is over the random choice of y and
the internal coin tosses of A.
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Proof. The first inequality comes from the following.

Pr[A reaches Ut+1 and y = z]

=
1
2n

·
t∏

i=1

1
A(Ui, z)

≥ 1

2n(1+ 1
n )n/m · ∏tm

i=1
1

2n−i−1

≥ 1
2ne1/m

·
tm∏
i=1

1
2n−i−1

.

The second inequality comes from the following.

Pr[A reaches Ut+1 and y = z]

=
1
2n

·
t∏

i=1

1
A(Ui, z)

≤ 1

2n
(
1 − 1

n

)n/m
·

tm∏
i=1

1
2n−i−1

≤ e1/m

2n
·

tm∏
i=1

1
2n−i−1

.

�

Recall that the goodness has been defined only for leaf
nodes. Let us extend the notion of goodness for leaves to
for internal nodes. We say that an internal node U is good
if at least ε/4 of the leaf nodes at the subtree rooted at
U are good. From the assumption, the fraction of good
leaves is at least ε/2 and thus the fraction of good nodes
among those of any fixed level is at least ε/4, since all of
them have the same number of leaves.

Claim 4 The probability that A reaches some good node
Ut+1 at the (t + 1)-th level and y ∈ F(Ut+1) is at least
ε(1 − γ)/4e1/m where the probability is over the random
choice of y and the internal coin tosses of A.

Proof. Let Ut+1 be a good node at the (t+ 1)-th level.
Then

Pr[A reaches Ut+1 and y ∈ F(Ut+1)]
=

∑
y∈F(Ut+1)

Pr[A reaches Ut+1 and y = z]

≥
∑

y∈F(Ut+1)

1
2ne1/m

·
tm∏
i=1

1
2n−i−1

≥ 2n−tm(1 − γ)
2ne1/m

·
tm∏
i=1

1
2n−i−1

=
1 − γ

e
·

tm∏
i=1

1
2n−i

.

The first inequality follows from Claim 3 and the second
from Claim 2. Since there are

∏tm
i=1 2n−i nodes at the

(t + 1)-th level and at least ε
4 · ∏tm

i=1 2n−i nodes are good,
the probability that the image chosen is fully balanced in a
good node at the (t+1)-th level is at least ε(1−γ)/4e1/m.
�

Claim 5 In any good node Ut+1 at the (t+1)-th level, the
fraction of the good leaves at the subtree rooted in Ut+1 that
have at least one image in F(Ut+1) is at least ε/8.

Proof. Any pair of images y1 	= y2 in I(Ut+1) can be
together in at most 1/2n−tm−1 of the leaves of the subtree
rooted at Ut+1. By Claim 2, there exists at most γ2n−tm

images in I(Ut+1) that are not fully balanced in Ut+1.
Therefore the fraction of the leaves of the subtree rooted
in Ut+1 where both of their images are from I(Ut+1) \
F(Ut+1) is bounded by

(
γ2n−tm

2

)
· 1
2n−tm−1

.

Since(
γ2n−tm

2

)
· 1
2n−tm−1

≤ 2γ22n−tm−1

= n22−
1
4 (n−tm−1)+1

= n22−2(log n
ε +m+1)+1

≤ ε2

22m+1

=
ε2

2n2
,

we have that at least ε/4 − ε2/2n2 ≥ ε/8 of the leaves are
both good and have at least one image in F(Ut+1). �

Claim 6 For any good node Ut+1 at the (t+1)-th level and
any z ∈ F(Ut+1), on condition A reaches Ut+1 and y ∈
F(Ut+1), the probability that y = z is at least 1/e2/m2n−tm

where the probability is over the random choice of y and
the internal coin tosses of A.

Proof. For fixed Ut+1 and z ∈ F(Ut+1), we would like
to bound from below the value

Q =
Pr[A reaches Ut+1 and y = z]

Pr[A reaches Ut+1 and y ∈ F(Ut+1)]
.

We know from the first inequality of Claim 3 that

Pr[A reaches Ut+1 and y ∈ F(Ut+1)]
=

∑
y′∈F(Ut+1)

Pr[A reaches Ut+1 and y = y′]

≤ |F(Ut+1)| · e1/m

2n

tm∏
i=1

1
2n−i−1

≤ |I(Ut+1)| · e1/m

2n

tm∏
i=1

1
2n−i−1

≤ e1/m · 2n−tm

2n
·

tm∏
i=1

1
2n−i−1

.

On the other hand, from the second inequality of Claim
3, for any z ∈ F(Ut+1), we have that

Pr[A reaches Ut+1 and y = z] ≥ 1
e1/m2n

tm∏
i=1

1
2n−i−1

.
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Therefore Q ≥ 1/e2/m2n−tm. �

Claim 7 The probability that A is successful is at least
ε10/65e3/ log n(2n2)8 where the probability is over the ran-
dom choice of y and the internal coin tosses of A.

Proof. We say that A succeeds if

• A reaches a good node Ut+1 at the (t+1)-th level and
y ∈ F(Uj);

• A random choice of htm+1, htm+2, . . . , hn−1 defines a
path to a good leaf that has at least one image, say
z, in F(Ut+1);

• y = z.

By Claims 4, 5 and 6, the probability that A succeeds is
at least

ε(1 − γ)
4e1/m

· ε

8
· 1
e2/m2n−tm

= ε2 · 1 − γ

32 · e3/m · 2n−tm

>
ε10

65e3/m(n2m+1)8

=
ε10

65e3/ log n(2n2)8
.

�

Thus, we can say that A inverts the one-way permuta-
tion f if an input y is fully balanced at the (t+1)-th level.
On the other hand, the above analysis does not guarantee
that A reaches the (t + 1)-th level. So, some care must
be taken. If y is fully balanced at the (t + 1)-th level,
then y is balanced in Uk for all 1 ≤ k ≤ t and therefore
A(Uk, y)/|H(k)| > 1/2m+1 = 1/2n. It implies that 4n tri-
als for step 2.1 in the inverting algorithm A are sufficient.
The probability that A does not proceed to step 3 after
4n trials is exponentially small. If the rare case occurs
then A may abort. Totally, 4nt ≤ 4n2/ log n trials are
enough for A to reach the (t + 1)-th level. Therefore, A
runs in polynomial time and its success probability is at
least ε10/65e3/ log n(2n2)8 − e−n.

6 Concluding Remarks

We have considered a naive parallel version of Naor-
Ostrovsky-Venkatesan-Yung scheme [8] of the multiplic-
ity log n and obtain an O(n/ log n)-round scheme. By
introducing a technique called expected almost pairwise
independence, we have shown that their protocol can be
improved. Trivially, we can set the multiplicity parame-
ter m = c log n and obtain the similar results. Moreover,
we can set m = 1 and this means that our proof is alter-
native proof for the original scheme without the pairwise

independence technique. On the other hand, an exten-
sion of our approach to the case m = ω(log n) is not easy,
since both the success probability and the efficiency of the
inverting algorithm would violate the allowance.

We have utilized the expected almost pairwise indepen-
dence for the security proof of our scheme. Since it is a
natural generalization of the pairwise independence, we
believe that the technique has other cryptographic appli-
cations.

References

[1] G. Brassard, D. Chaum and C. Crépeau: Minimum
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