窓ガラスに発生する摩擦振動および騒音の抑制

Reduction of the Friction-Induced Vibration of a Glass Window

森 博輝*

Hiroki MORI

When a plate-like object is rubbed by rubber, friction-induced vibration is generated. For reducing the friction-induced vibration, we experimentally investigate the characteristics of the vibration of a rectangular glass plate. The results show that the frequency of the friction-induced vibration is almost the same as the natural frequency of a glass plate. Then, we examine the effect of a dynamic absorber. The results demonstrate that the damping of a dynamic absorber is effective for reducing the friction-induced vibration.

Keywords: Friction-induced Vibration, Self-Excited Vibration, Vibration Control, Noise, Bouncing

1. はじめに

自動車のパワーウィンドウに摩擦振動が発生すると、 周辺の空気に振動が強く伝わるため、騒音問題を引き 起こすことが多い.本研究では、このような摩擦振動 の低減を目的として、平板がゴムで擦られることによ り生じる振動の基本的な特性を調べるとともに、平板 に取り付けられた動吸振器の効果について検討した.

2. 実験装置

実験装置を図1に示す.装置は,4本のワイヤによって水平に吊るされたガラス板と,図1(c)に示すゴムボールおよび片持ちはりからなる摩擦機構で構成される.ガラス板の寸法およびパラメータは図2および表1に示すとおりである.ガラス板を図1(a)に示す方向に水平に移動させると,ガラス板は図2(a)に示す中央部

*埼玉大学 大学院 理工学研究科

Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama, 338-8570, Japan 分をゴムボールによって擦られ,自励振動が発生する. また,ガラス板は図 2(a)に示す1次の曲げ振動モード の節の位置でワイヤと接触している.実験で用いたセ ンサの位置は図 2(b)に示すとおりである.

(c) Rubbing mechanism Fig.1 Experimental Apparatus

(原稿受付日:平成22年5月30日)

Fig.2 Glass plate and sensors

Fig. 3 Schematic of a dynamic absorber (DA)

Table	1	Parameters	of	glass	plate
I GOIC		1 urumeters	O1	Siabo	prace

Length (mm)	450	Young's modulus (GPa)	71.6
Width (mm)	250	Poisson's ratio	0.23
Thickness (mm)	4.85	1st natural frequency	133
Mass (kg)	1.365	Damping ratio	0.001

図3に示す概略図のように,動吸振器は2枚の金属 板,おもり,およびゴムブロックからなり,図2のよ うにガラス板長辺の中央部分に設置されている.

3. 解析モデル

動吸振器の効果について考察するために,数値シミ ュレーションによる検討を行う.本研究で用いた解析 モデルを図4に示す.動吸振器を設置していないガラ ス板に摩擦振動が発生した場合の振動数は,ガラス板 の1次の固有振動数に近いことから,ガラス板をモー ド質量m₀,モード減衰c₀,モード剛性k₀からなる1 自由度系でモデル化する.ゴムボールとはりからなる 摩擦機構は,質量のない長さ*1*および曲げ剛性*EI*の片 持ちはりの先端に質量m₁および半径 *a*の球が取り付 けられた系として取り扱う.ガラス板およびゴムボー ルの並進変位をz₀および*y*で表し,ゴムボールの回転

角を θ で表す.

また,振動成長時にゴムボールが跳びはねることを 考慮して,ゴムボールがガラス板と接しているときは 図 4(a)を,跳びはねているときは図 4(b)のモデルを用 いる.ゴムボールとガラス板の接触部における剛性お よび減衰は簡単のために線形の剛性 k_c および減衰 c_c とする.さらに,ガラス板と接触しているゴムボール には,ガラス板との間ですべりが生じないと仮定し, ガラス板の移動速度 V は一定であると仮定する.

動吸振器は質量 m_{DA} ,剛性 k_{DA} および減衰 c_{DA} からなる一自由度系でモデル化し、変位を z_{DA} とする.図中のrはガラス板のモード形状によって決まる定数であり、動吸振器設置位置における変位とゴムボール接触位置における変位の比を表す.

ゴムボール,ガラス板および動吸振器の並進変位に 関する運動方程式は以下のようになる.

$$m_1 \ddot{y} + c_1 \dot{y} + (12EI/l^3)y - (6EI/l^2)\theta - F_n = 0$$
(1)
$$m_0 \ddot{z}_0 + (c_0 + r^2 c_{D,0})\dot{z}_0 = rc_{D,0} \dot{z}_{D,0}$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$+(\kappa_0 + r \kappa_{DA})z_0 - r\kappa_{DA}z_{DA} + r_n = 0$$
(2)

 $m_{DA}\ddot{z}_{DA} + c_{DA}(\dot{z}_{DA} - r\dot{z}_0) + k_{DA}(z_{DA} - rz_0) = 0$ (3) ここに、"."=d/dt であり、 F_n はゴムボールとガラス 板の接触部における垂直抗力を表す、ゴムボールの回 転角に関する運動方程式および垂直抗力 F_n の式は接

<i>a</i> (mm)	12.8	ω_0 (rad/s)	133×2π	ζ0	0.001
<i>l</i> (mm)	82.8	ω_b (rad/s)	$13 \times 2\pi$	ζ_1	0.005
m_0 (kg)	1.06	d_s (mm)	0.023	ζ_2	0.01
<i>m</i> ₁ (g)	8.1	V (m/s)	0.07	ζc	0.03
k_c (N/m)	1.7×10 ⁴	r	1.2		

Table 2 Parameters used for calculation

触状態に応じて切り換えが必要であり、ゴムボールが ガラス板と接触している図 4(a)の場合には、以下のよ うになる.

$$\dot{\theta} = V/a \tag{4}$$
$$F_n = -c_c(\dot{y} - \dot{z}_0) - k_c(y - z_0) \tag{5}$$

ゴムボールがガラス板から跳びはねている図 4(b)の場合には、以下のようになる.

 $J\ddot{\theta} + c_2\dot{\theta} - (6EI/l^2)y + (4EI/l)\theta = 0$ $F_n = -k_c d_s$ (6)
(7)

ここに,
$$J = (2/5)m_1a^2$$
であり, d_s は静的平衡状態における接触ばね k_c の静変位を表す.

表 2 に数値シミュレーションに用いたパラメータ値 を示す.ここに、以下のパラメータを導入している.

$$\left. \begin{array}{l} \zeta_{0} = c_{0} / (2m_{0}\omega_{0}), \ \zeta_{1} = c_{1} / (2m_{1}\omega_{b}), \\ \zeta_{2} = c_{2} / (2J\omega_{b}), \zeta_{c} = c_{c} / (2m_{1}\omega_{c}), \omega_{0} = \sqrt{k_{0} / m_{0}}, \\ \omega_{b} = \sqrt{3EI / m_{1}l^{3}}, \ \omega_{c} = \sqrt{k_{c} / m_{1}} \end{array} \right\}$$

(8)

 m_0 およびrは、ガラス板の長辺および短辺を10×8 に分割し、薄板の長方形要素を用いた有限要素法によ り求められた質量行列および固有モードベクトルから 決定した¹⁾.

4. 結 果

図 5 は、実験において動吸振器を設置していないガ ラス板に摩擦振動が発生したときの、ガラス板加速度 と音圧の波形および周波数解析結果を示したものであ る.実験室の暗騒音レベルはおよそ 30dB 以下であっ た.加速度と音圧の波形形状が似ていることから、測 定された騒音はガラス板の振動によって発生している ことがわかる.摩擦振動の振動数は 134Hz であり、表

Fig.5 Vibration of a glass plate without a dynamic absorber

1 に示したガラス板の1次の固有振動数(133Hz)とほぼ 一致する.結果の表示は省略するが、図1のはり部分 の長さを変化させて振動発生の有無を調べた結果、は りがある程度長くなると振動は発生しなくなることが わかった²⁾. 次に、このようなガラス板の摩擦振動に対して、動 吸振器を適用した.動吸振器を設置した実験における ガラス板の振動波形および周波数解析結果を図6に示 す.図5と図6を比較すると、ガラス板の振動および 発生音が動吸振器により大きく低減していることがわ かる.解析結果の一例として、平板に質量および減衰 が異なる動吸振器を取り付けたときの、平板の加速度 波形の計算結果を図7に示す.計算においては、動吸 振器の固有角振動数 ω_{DA} を平板の固有角振動数 $\omega_0 = 133 \times 2\pi$ rad/s に一致させた.図中の m_{DA} および ζ_{DA} は、動吸振器の質量および減衰比の値を示してい る.図より、 $m_{DA} = 6g, 14g$ の場合ともに、 $\zeta_{DA} = 0.06$ の 波形は $\zeta_{DA} = 0$ の波形に比べて振動が非常に小さい.こ れは、摩擦振動の低減に対して動吸振器の減衰が有効 であることを示している³.

5.まとめ

平板がゴムで擦られたときに発生する摩擦振動の基本的な特性,および平板に取り付けられた動吸振器の 効果を実験と数値シミュレーションによって調べた. その結果,動吸振器の減衰が摩擦振動の低減に対して 有効であることが示された.

参考文献

- 1) 背戸・松本,パソコンで解く振動の制御,丸善, 1999.
- Hiroki Mori, Oleksandr Mikhyeyev, Takuo Nagamine, Mizue Mori, Yuichi Sato, Effect of a Dynamic Absorber on Friction-Induced Vibration of a Rectangular Plate, Journal of Mechanical Science and Technology, Vol.24, No.1, pp.93-96, 2010.
- Oleksandr Mikhyeyev, Hiroki Mori, Takuo Nagamine, Mizue Mori, Yuichi Sato, Suppression of Friction-Induced Vibration of a Glass Plate by a Dynamic Absorber, Journal of System Design and Dynamics, Vol. 3, No. 3, pp.380–390, 2009.