蒸発法による合金ナノ粒子の作製法の開発 Synthesis of nanosized metal-alloy particles using the vacuum vaporization method

小林 秀彦1*、大西 康夫2、佐藤 寛2、片岡 春樹2

Hidehiko Kobayashi^{1*}, Yasuo Ohnishi², Hiroshi Sato², Haruki Kataoka²

1*埼玉大学 工学部応用化学科

Department of Applied Chemistry, Saitama University

2株式会社 新光化学工業所

Shinko Kagaku Kogyosho Co., Ltd

1. はじめに

ナノテクノロジーの展開をボトムアップ型ナノテクノロ ジーの視点から眺めると、多様な応用展開が期待され る金属ナノ粒子は、その大きさがナノオーダーになるこ とで性能の向上や新規な機能を発現している。この応 用展開を可能にするためには、多様な用途に速効性の あるオーダーメードな金属ナノ粒子が不可欠であり、特 に、①ナノ粒子が工業的な役割を果たすためには、入 手の容易さが決定的に重要となる。②高純度で球状で あり、サイズ、構造および組成が広い範囲で制御され た単分散ナノ粒子の合成技術の開発が急がれている。

その中でも貴金属触媒は、もっとも古くからあるナノ テクノロジーであり、石油化学の発展を支える中核的触 媒として 20 世紀後半から本格的に用いられており、化 学工業のみならず、自動車排ガス浄化、ガスセンサー、 固体高分子型燃料電池などに広く利用されている。さ らなる貴金属触媒の多様な応用展開を可能にするため には、触媒に対する要求が多様化・高度化しており、 貴金属の複合化や担体の高機能化など、ナノメートル スケールでの構造と機能設計が行われている。

本研究開発では、金属コロイド粒子の合成手法であ るナノ粒子金属コロイドを分散媒中で安定化させる方 法と、凝集を阻止するための保護層を形成させる方法 に、真空蒸発法を組み合わせ、作製した簡便かつ高 収率なナノ粒子製造手法としての活性液面連続真空 蒸着装置を用いて、高機能化・高性能化した合金ナノ 触媒の作製技術を確立することを試みた。具体的には、 ナノ粒子金属コロイドの基礎物性を粒子単位で評価し、 より効率的な作製条件を把握すること、および作製した 複数のシングルナノサイズのナノ粒子金属コロイドをマ イクロ波照射することにより合金ナノ粒子化する。

2. 実験方法

2.1. ナノ粒子金属コロイドの調製

実験には、独立行政法人物質・材料研究機構より ライセンスされた技術に基づいて作製した真空蒸発装 置を用いた。また、図1には真空蒸発法によるシングル ナノサイズのナノ粒子金属コロイドの調製を概略化した ものを示す。

ガラスドラムの中に真空オイルと界面活性剤を入れ、 ドラムの中心部分に金属溶融用加熱ヒーターをセットし、 ドラム内を 10⁻²~10⁻³ Pa 程度の真空度に維持した。ガ ラスドラムを回転させて、ガラス内面に界面活性剤が溶 解した一様な油膜を形成させた。その後、金属溶融加 熱ヒーターを用いてドラムの中心部分で所定の金属を 溶融・蒸発させた。ガラスドラム内で蒸発した金属クラス ターはガラス内面に形成された油膜に衝突し、そこで 界面活性剤を吸着することで、金属クラスターが凝集 するのを抑制し、分散安定性の優れたナノ粒子金属コ ロイドが得られる。なお界面活性剤としては、ニッケル ナノコロイドの調製には分子量 1000(作製したコロイド を、Ni-Col.1000 と略記する)および 1600(同様に、 Ni-Col.1600 と略記する)の有機高分子を、またコバル トナノコロイドの場合には分子量 1000(同様に、 Co-Col.1000 と略記する)の有機高分子を使用した。 図 2 にナノ粒子金属コロイドの生成とその分散形態の 模式図を示す。

2.2. 金属ナノ粒子および合金ナノ粒子の作製

調製したナノ粒子金属コロイドをマイクロ波照射する ことで金属ナノ粒子および合金ナノ粒子を作製した。マ イクロ波照射装置には、三洋電機製電子レンジ 「EMO-FS30A」型(以下、「マルチモード」と略記する) およびIDX製「グリーン・モチーフ・II」型(以下、「シング ルモード」と略記する)を使用した。

ニッケルナノコロイド (Ni-Col.1000)を市販のガラス バイアル瓶に 4.5g 分取し、マルチモードを用いて 1000W および 500W の出力でそれぞれ 1.5~10 分間、 また Ni-Col.1600 を市販のガラスバイアル瓶に 2.2g 分 取し、同様にマルチモードを用いて 1000W で 1.5~6 分間マイクロ波照射し、ニッケルナノ粒子を作製した。

コバルトナノコロイド (Co-Col.1000)を市販のガラス バイアル瓶に 3.0g 分取し、マルチモードを用いて 1000W で 10~120 分間、および 7.0g を分取した溶液 を 210℃の加温状態でシングルモードを用いて 450W で 10~60 分間、それぞれマイクロ波照射し、コバルト ナノ粒子を作製した。

Fig. 1 Schematic diagram of key component on the vacuum evaporation

合金ナノ粒子の作製では、Ni と Co のモル比が 1:1 になるようにNi-Col.1000を3.5gとCo-Col.1000を5.5g の混合コロイド溶液(以下、Ni+Co-Col.1000 と略記す る)に、シングルモードを用いて出力450W、かつ210℃ にコロイド温度を保持して 10~30 分間マイクロ波照射 した。

2.3. 評価·解析

透過型電子顕微鏡(TEM、日本電子製 JEM-2200FS 型)を用いてマイクロ波照射したナノ粒子金属 コロイドに含まれる金属クラスターの形態を観察した。 また、マイクロ波照射したシングルナノサイズのナノ粒 子金属コロイドの粒子径、形状、組成を透過型電子顕 微鏡により評価した。

3. 実験結果

3.1. Ni-Col.1000 および Ni-Col.1600 の調製

真空蒸発法により調製したニッケルナノ粒子コロイド (Ni-Col.1000)の TEM 観察から、ニッケルナノ粒子の 形状は球形で、平均粒子径 2.3nm の分散性の良い粒 子であった。この Ni-Col.1000 溶液をマイクロ波照射 (マルチモード)した後の TEM 写真を図 3 および図 4 に示す。マイクロ波照射時間を長くすると、粒子径が増 大する傾向が見られた。この傾向はマイクロ波の出力 に依存していなかった。

マイクロ波照射後の Ni-Col.1000 と Ni-Col.1600 の TEM 画像から平均粒子径を算出したところ、マイクロ波 照射時間とともに粒子径は増大する傾向を示した。

Fig. 3 Transmission electron microscopy (TEM) image of Ni-Col.1000 nano particles. Microwave: 3 min.

Fig. 4 Transmission electron microscopy (TEM) image of Ni-Col.1000 nano particles. Microwave: 10 min.

3.2. Co-Col.1000 の調製

真空蒸発法により調製したコバルトナノ粒子コロイド (Co-Col.1000)の TEM 観察から、コバルトナノ粒子の 形状は球形で、平均粒子径は 2.1nm の分散性の良い 粒子であった。この Co-Col.1000 溶液を Ni-Col.1000 の場合と同様にマイクロ波照射(マルチモード)したが、 コバルトナノ粒子の粒子径はほとんど変化しなかった。

図5および図6には、マイクロ波照射の条件をシング ルモードに変えた時の TEM 写真を示す。シングルモ ードのマイクロ波照射の場合には、マルチモードを使 用して得られたNi-Col.1000およびNi-Col.1600と同様 に、マイクロ波照射時間の増加とともにコバルトナノ粒 子に粒子径の増大が見られた。

Fig. 5 Transmission electron microscopy (TEM) image of Co-Col.1000 nano particles. Microwave: 10 min.

Fig. 6 Transmission electron microscopy (TEM) image of Co-Col.1000 nano particles. Microwave: 60 min.

3.3. Ni+Co-Col.1000の調製

Ni+Co-Col.1000をシングルモードで30分間マイクロ 波照射した後の TEM 写真を図 7 に示す。観察された ニッケルとコバルトナノ粒子の粒子径は、Ni-Col.1000 および Co-Col.1000 単独によるマイクロ波照射の場合 と同様に増大していることが分かった。

TEM で観察された粒子のニッケルとコバルトの分布 状態を調べるために、図 8 に示す TEM 写真の範囲を 元素マッピングした。ニッケルのマッピング画像を図 9 に、コバルトのマッピング画像を図 10 にそれぞれ示す。 元素マッピングの結果、ニッケルとコバルトが同一の箇 所に存在していることが分かった。 この事実を確認するために、図8に示した TEM 写真 内の粒子を任意に10個選び、それらに含まれるコバル トとニッケルの比率をエネルギー分散型 X 線分光分析 (EDS)により調べた。その結果、いずれの粒子も Co-過剰組成のニッケルとコバルトの合金ナノ粒子であっ た。

Fig. 7 Transmission electron microscopy (TEM) image of Ni+Co-Col.1000 nano particles. Microwave: 30 min.

4. まとめ

真空蒸発法により調製したシングルナノサイズのニッ ケルおよびコバルトナノコロイド溶液をマイクロ波照射 することで、それぞれの粒子径を制御できる可能性を 見出した。また、ニッケルとコバルトナノコロイド混合溶 液をマイクロ波照射したところ、容易にニッケルーコバ ルト合金ナノ粒子コロイドが作製できた。

謝 辞

本研究は、平成20年度「埼玉大学地域イノベーション支援共同研究」として行われた。

参考文献

- 産業技術総合研究所 ナノテクノロジー知識研究会、 「ナノテクノロジー・ハンドブック」,(2003).
- 2) 岩村 秀 監訳、廣瀬千秋 翻訳、「ナノ粒子科 学」,(2007).

Fig. 8 Transmission electron microscopy (TEM) image of Ni+Co-Col.1000 nano particles. Microwave: 30 min.

Fig. 9 Energy dispersive X-ray (EDX) image of the distribution of Ni on Ni+Co-Col.1000 nano particles.

Fig. 10 Energy dispersive X-ray (EDX) image of the distribution of Co on Ni+Co-Col.1000 nano particles.