光機能性有機薄膜の作製と特性評価に関する研究

Preparation and Characterization of Organic Thin-Films for Optical Applications

鎌田 憲彦^{1*}、幡野 健¹、照沼 大陽¹、相原 聡²、久保田 節² Norihiko Kamata¹, Ken Hatano¹, Daiyo Terunuma¹, Satoshi Aihara², and Misao Kubota²

1 埼玉大学 工学部機能材料工学科

Department of Functional Materials Science, Saitama University ²NHK 放送技術研究所 映像デバイス Science and Technical Research Laboratories, Japan Broadcasting Corporation

Abstract

Since the first observation of an efficient energy transfer between polysilanes, we have been studying the energy transfer process from polysilanes to their energy-matched counterparts. The resonant energy transfer to dye molecules was utilized for realizing blue(B), green(G) and red(R) electroluminescence (EL) from polysilane-based thin films. A combination of polymethylphenylsilane (energy-donor), tetraphenylbutadiene (B-emitter) and Eu(TTA)₃-Phen (R-emitter) was tried this time to improve chromatic controllability. The combination enhanced the B-emission intensity without affecting that of the R-emission, suitable for wider colour-tuning region simply by intermixing dye molecules in the wet process. Tailoring emission and/or absorption energy, including the technique of molecular orientation, leads us to light-weight, flexible and intelligent devices for optical applications.

Key Words: Polysilane, Electroluminescence, Photoluminescence, Energy-Transfer, Organic Dye

1. はじめに

照明、フルカラーディスプレイ応用や撮像・受光 素子として、軽量で柔軟性に富んだ光機能性有機薄 膜への期待が高まっている[1-7]。特に高分子を用い ると、ウエットプロセスでの簡便な作製、側鎖基、 共重合体の選択により発光波長、導電性等の物性制 御が容易といった利点がある。有機側鎖基を伴いシ リコン(Si)原子が鎖状に連なった1次元高分子で あるポリシランは、主鎖σ電子の非局在性により高 いホール移動度や高効率な励起子発光を示すため、 その応用が期待されている[1,4]。我々はこれまでに 有機色素添加ポリシラン薄膜 EL 素子を作製し、導 電性ポリシランから有機色素分子への高効率な励 起エネルギー移動[8]を利用して、青(B)、緑(G)、 赤(R)3原色 EL、さらにそれらを混合した白色 EL を実現した[5,9]。白色 EL では濃度消光等により青 色発光強度が微弱であったため、本研究では新たな 混合組成により色バランスの改善を試みた。

2. 測定試料

ポリシランとしては可溶性、導電性に優れ、側鎖 基への反応も容易である Poly[methylphenylsilane] (PMPS)を用いた。また、従来よりも青色発光効

^{* 〒338-8570} さいたま市桜区下大久保255 電話:048-858-3529 FAX:048-858-9131 Email:kamata@fms.saitama-u.ac.jp

 Fig. 1
 PMPS、色素分子の発光及び

 励起(吸収)スペクトル

率と混色性を改善するために、PMPS との共鳴エネ ルギーを持つ青色発光色素に Tetraphenylbutadiene (TPB)、赤色発光色素に Eu 錯体(Eu(TTA)₃Phen) を選択した。希土類錯体では配位子で吸収されたエ ネルギーが Eu イオンに移動するので、吸収効率が 高く希土類イオン特有の単色性に優れた高効率発 光が得られ、有機 EL での蛍光色素ドーパント、導 電性を利用したホスト色素材料として用いられる。 各分子の PL, PLE(UV)スペクトルを緑色発光色素 である Coumarin 6 と共に Fig. 1 に示す。 TPB、 Eu(TTA)₃Phen 共に吸収スペクトルが PMPS の発光 スペクトルと重なりを持つため、PMPS からの励起 エネルギー移動が期待できる。さらにこの組み合わ せでは、TPBの発光領域に Eu 錯体の吸収帯がなく、 B、R発光バランスの制御が容易と予測される。

3. PL 及び PLE スペクトル

3.1 TPB 添加 PMPS 薄膜の光学特性

測定試料は、PMPS のクロロホルム溶液(10g/l)

に有機色素をポリシラン 1 ユニット当たり 0.025~ 10mol%添加した混合溶液を、スピンコート法 (1500rpm, 1min.) により石英基板上に成膜し [200nm]、乾燥させることにより作製した。

Fig. 2 TPB 添加 PMPS 薄膜の PL(a) および PLE(b)スペクトル

TPB 添加 PMPS 薄膜の PL、PLE スペクトルを Fig. 2 に示す。PL の測定結果から、TPB 添加濃度を増 大するにしたがって PMPS 発光ピーク(3.49eV) 強度は減少し、TPB 発光ピーク(2.82eV)強度が 増大していることがわかる。ここで低濃度添加試 料の場合、TPB による PMPS の吸収係数への影響 は無視し得る。また、PLE の結果より、TPB 発光 (2.82eV)の励起スペクトルは PMPS 発光 (3.49eV)の励起スペクトルとほぼ同型であり、 TPB の青色発光が PMPS-TPB 間の励起エネルギ ー移動によることがわかる。また TPB 添加濃度 10mol%まで、PMPS 発光強度の減少、TPB 発光強 度増大が観測されたことから、高濃度添加状態に おいても濃度消光は起こらないことがわかった。 これは TPB 分子間の相互作用が弱く、それに伴う 失活確率が低いので、比較的高濃度添加状態まで 高い蛍光量子効率を維持するためと考えられる。 高濃度添加試料の PLE スペクトルでは、3.5eV 以 下に自己吸収発光成分が現れている。PMPS の光 劣化を利用すると、TPB 自己吸収成分の定量的算 出が可能であることが示された。

以上の結果より TPB は perylene と比較して高濃 度添加が可能であり、ポリシラン白色 EL の青色 発光強度改善に有用な青色蛍光色素であること が実証された。

3.2 TPB、Eu 錯体共添加 PMPS 薄膜の光学特性

TPB に加えて、Eu(TTA)₃Phen を共添加した PMPS 薄膜の、PMPS 励起時の PL 測定結果を Fig. 3(a)に示 す。色素添加濃度は TPB を 0.4mol%で一定とし、 Eu(TTA)₃Phen を 0.25~1mol%の範囲で変化させた。 測定結果より Eu(TTA)₃Phen 添加濃度を増大するに 従って、PMPS(3.49eV), TPB(2.82eV)発光強 度の減少、Eu(TTA)₃Phen(2.01eV)発光強度の増大 が観測された。TPB の発光強度の減少は PMPS→ Eu(TTA)₃Phen の励起エネルギー移動成分の増大に より PMPS→TPB のエネルギー移動成分が減少した ためと考えられるが、TPB の発光スペクトルと Eu(TTA)₃Phen の吸収スペクトルの重なりが完全に0 ではないので TPB→Eu(TTA)₃Phen への励起エネル ギー移動により TPB の発光強度が減少した可能性 も考えられる。そこで、TPB-Eu(TTA)3Phen 間での 励起エネルギー移動の程度を確認するため、同薄膜 において、励起エネルギー3.26eV で TPB、

Eu(TTA)₃Phen を直接励起させ PL 測定を行った(Fig. 3(b))。測定結果より、薄膜の 3.26eV における吸光 係数、薄膜の物理的劣化を考慮すると Eu(TTA)₃Phen の添加濃度に関わらず、TPB 発光強度はほぼ一定の

TPB: 0.4mol% Eu³⁺complex 添加濃度 ——1mol% ——-0.5mol% ---- 0.25mol%

Fig. 3 TPB, Eu(TTA)₃Phen 共添加 PMPS 薄膜の PL スペクトル (a) PMPS 励起, (b)TPB 及び Eu(TTA)₃Phen 直接励起

値を示した。このことより TPB, Eu(TTA)₃Phen 添加

-81-

PMPS 薄膜における R 発光、B 発光は PMPS からの 励起エネルギー移動成分によるもので、TPB-Eu(TTA)₃Phen 間のエネルギー移動は無視し得るこ とを実証した。

- Fig. 4 色素添加 PMPS 薄膜 EL 素
 子の EL スペクトル
 (a)TPB:0.4mol%,
 (b)Eu(TTA)₃Phen: 0.1mol%
- 4. EL スペクトル

4.1 色素添加 PMPS 薄膜 EL 素子

上記の結果を利用して色素添加 PMPS 薄膜 EL 素 子を作製し、EL 特性を評価した。測定試料は ITO

(Indium-Tin-Oxide)付きのガラス基板上に色素添加 PMPS クロロホルム溶液(10g/l)をスピンコート法

(1500rpm, 1min.)にて成膜し[200nm]、LiF, Al を それぞれ 5nm, 150nm 真空蒸着して EL 素子を得た。 なお、EL 素子は封止を行っていないので、真空下、 液体窒素温度にて測定を行った。

4.2 TPB、Eu 錯体添加 PMPS 薄膜 EL 素子

TPB(0.4mol%) 添加 PMPS 薄膜、Eu(TTA)3Phen

(0.1mol%) 添加 PMPS 薄膜 EL 素子の EL スペクト ルを PMPS 単体膜の EL スペクトル(破線)と共に、 それぞれ Fig. 4(a), (b)に示す。双方の EL 素子で色素 ドープにより PMPS による EL の減少、色素による B, R 領域の EL が観測された[10]。色素添加濃度が 極微量であることと PL、PLE 測定結果も考慮する と、これら青色,赤色 EL は PMPS からの励起エネ ルギー移動によるものであると考えられる。

4.3 色素共添加 PMPS 薄膜 EL 素子の白色 EL

TPB, Eu(TTA)₃Phen に加えて TPB の発光スペク トルと重なりを持った吸収スペクトルをもつ Coumarin6をG色素とした(Fig. 1)。これらR, G, B 色素共添加PMPS薄膜素子のELスペクトルをFig. 5 に示す。添加濃度 TPB:4mol%, Coumarin6:0.05mol%, Eu(TTA)₃Phen: 0.2mol%の試料において従来より色 バランス制御性の良い EL スペクトルが観測され、 肉眼でも白色発光を確認した。さらに、本研究では、

Fig. 5 色素共添加 PMPS 薄膜 EL 素子の
EL スペクトル (a)本研究、
(b)及び(c)は従来報告

Fig. 6 スペクトル色の色度座標(●,▲,■は Fig. 5 の(a), (b)及び(c)に対応)

1931 CIE 標準観測者 XYZ 表色系等色関数を利用 し、色度座標上で白色 EL の色度を定量的に評価し た。白色 EL スペクトルから XYZ 表色系の三刺激値 より算出した色度座標 x, y, z を色度図上にプロット した。●が Fig. 5 の(a)、▲が(b)、■が(c)に対応し ている。本研究では青色成分の強い白色が得られた ため、これまでの成果と合わせて大幅な色度の制御 が可能であることを実証した(Fig. 6)。

Fig.7 両親媒性オリゴシラン(1)の合成

5. 両親媒性オリゴシランの合成とLB膜化

配向性制御は、光機能性有機薄膜の応用上極めて 重要である。ポリシラン薄膜の可能性を広げるため、 ケイ素数6個からなるオリゴシランの末端に親水 性基を導入することにより両親媒性オリゴシラン を合成し、LB膜化の可能性について検討した。

代表的な例として末端にメトキシ基を持つオリ ゴシランの合成経路を示す(Fig. 7)。1を少量のク ロロホルムに溶かし、LB膜の作製を試みた。得ら れたπ-A曲線(Fig. 8)から、今回合成した両親媒 性オリゴシランは比較的安定な単分子膜を形成し ていることが明らかとなった。

6. 結論

従来と異なる色素 TPB, Coumarin6, Eu(TTA)₃phen の組み合わせによって青色発光強度が改善され、よ り純度の高い白色発光が可能となった。さらに B、 R 発光成分間の結合がないため、励起エネルギー移 動を利用したポリシラン ELにおいて R, G, B 各成分 の混色制御が従来より容易となった。ポリシラン白 色 EL はウエットプロセスで作製可能であり、Si を 母体材料としているため対環境性に優れている等 の利点からも有機 EL の可能性を広げる上で重要と 考えられる。また配向性制御のために両親媒性ポリ シランを合成し、LB 累積の可能性を得た。

参考文献/References

[1] R. West: J. Organomet. Chem. 300, 327(1986).

[2] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913(1987).

[3] J.Kido, K. Okuyama, and K. Nagai: "Organic electroluminescent devices based on molecularly doped polymers", Appl. Phys. Lett., 61 (7), pp. 761-763 (1992).
[4] H. Tachibana, M. Matsumoto, Y. Tokura, Y. Moritomo, A. Yamaguchi, S. Koshihara, R. D. Miller and S. Abe: Phys. Rev., B 47, 4363(1993).

[5] N. Kamata, R. Ishii, S. Tonsyo and D. Terunuma: "Electroluminescence of mixed organic dyes via resonant energy transfer from polysilane molecules", Appl. Phys. Lett., **81**, pp. 4350-4352(2002).

[6] S. Aihara, Y. Hirano, T. Tajima, K. Tanioka, M. Abe, N. Saito, N. Kamata and D. Terunuma: "Wavelength selectivities of organic photoconductive films: Dye-doped polysilanes and zinc phthalocyanine/ tris-8-hydroxyquinoline aluminium double layer", Appl. Phys. Lett., **82**, pp. 511-513(2003).

[7] S. Aihara, N. Kamata, D. Terunuma et al.: "Image pickup from zinc phthalocyanine/bathocuproine double-layer film using pickup tube", Jpn. J. Appl. Phys., 42, pp. L801-L803(2003).

[8] S. Aihara, N. Kamata, W. Ishizaka, M. Umeda, A. Nishibori, D. Terunuma and K. Yamada: "Efficient intermolecular energy transfer between polysilanes revealed by time-resolved photoluminescence", Jpn. J. Appl. Phys., **37**, pp. 4412-4416(1998).

[9] N. Kamata, D. Terunuma, R. Ishii, H. Satoh, S. Aihara, Y. Yaoita and S. Tonsyo: "Efficient energy transfer from polysilane molecules and its application to electroluminescence (Review)", J. Organometallic Chemistry, **685**, pp. 235-242 (2003).

[10] 田中洋平、頓所真司、鎌田憲彦、幡野健、照沼大陽: "ポリシラン-TPB 間の共鳴エネルギー移動と
EL 特性"、電子情報通信学会電子デバイス研究会、
有機エレクトロニクス研究会、ED2003-130、
OME2003-13、pp. 23-26(2003).