SiC 単結晶の CMP プロセス改善に関する一検討

The Advanced CMP Process of SiC Single Crystal

中原 良彦^{1*}、土肥 俊郎² Yoshihiko Nakahara¹, Toshiro Doi²

¹秩父電子株式会社 Chichibu Electronics Corporation ²埼玉大学 教育学部 Faculty of Education, Saitama University

Abstract

We developed an advanced Chemical Mechanical Polishing (CMP) technology for Silicon-Carbide (SiC) single crystal, using oxidative polishing slurry. Using Potassium Permanganate, instead of Hydrogen Peroxide, we found the polishing rate was enhanced. We also found the quality of polished surface was improved; the number of scratches and pits are reduced. The steps of the atomic-layer are observed by Atomic Force Microscope (AFM) observation.

Key Words: SiC, CMP, oxidizing agent

1. 緒言

次世代のパワー半導体材料として期待されている SiC(炭化ケイ素)は、半導体材料として優れた特性を持つ反面、化学的に非常に安定であり、無欠陥の結晶面を得るための CMP 効率が非常に悪いという欠点を持っている。

以前、酸化触媒である酸化クロムと過酸化水素の 混合スラリーにより、SiC の CMP が可能であるこ とを報告回したが、今回の報告ではより強力な酸化 剤を使用することにより、研磨効率の向上が見られ たので、以下報告する。

* 〒368-0004 秩父市山田2178

電話:0494-22-5955 FAX:0494-22-7330

 $Email:nakahara@cec^kk.co.jp$

2. CMP プロセスの概要

CMP テストには、Engis 製定板径 380mm の研磨 装置を使用した。加重はデッドウェイト、定板上に スラリーを滴下しながら、セラミック製修正リング で、スラリーを分散させながら研磨を行った。また、 UV ランプを用いて定板に紫外光を照射することに より、光触媒による研磨特性への影響を確認した。

Fig.1に本研究で使用した研磨装置の写真を示す。

Fig. 1 CMP 装置

テストサンプルは、3 インチの 4H-SiC ウェハを 用いた。研磨面は Si 面、結晶面からの OFF 角は 4° である。

Table 1 に今回行った CMP テスト条件と、従来 の CMP 条件を示す。

項目		今回の	従来の
		CMP 条件	CMP 条件
研磨液1	Cr_2O_3	10 %	10 %
	KOH	2 %	2 %
	滴下量	14cm ³ /min	14cm ³ /min
研磨液 2	$KMnO_4$	0.25~%	0
	H_2O_2	0	30~%
	滴下量	14cm ³ /min	14cm ³ /min
加重		210 g/cm^2	210 g/cm^2
回転数		90 rpm	90 rpm

Table 1 CMP 条件

今回酸化剤として過酸化水素(H₂O₂)に替わり、 より強力な過マンガン酸カリウム(KMnO₄)を使 用した。

3. 試験結果

3.1 研磨レート

Fig. 2に CMP 研磨レートの条件間比較を示す。 従来条件では、研磨レートが 1 時間あたり 0.29µm であったのに対し、今回の試験条件では、1 時間あ たり 0.48µm の研磨レートが得られた。

Fig. 2に今回の CMP テストにおける研磨時間と 研磨量のグラフを示す。

Fig. 2 CMP 研磨時間と研磨量

3.2 研磨面品位

従来の CMP 条件では、研磨レートが遅いために 研磨時間が長く、研磨中に発生するコンタミネーシ ョンなどの影響を受けやすかった。そのため、Fig. 3 に示すように研磨面にはスクラッチやピットなど が発生しやすく、面品位には問題が多かった。

Fig. 3 従来条件 CMP による研磨面

今回、酸化剤を変更した条件では研磨レートの向 上によりピットやスクラッチが著しく減少してい る。また、SiC 結晶におけるマイクロパイプ欠陥周 辺の"ダレ"も改善が見られた。

Fig.4に今回の条件での研磨面写真を示す。

Fig. 4 今回の条件での研磨面写真

また、今回と同一条件で研磨した 6H-SiC ウェハ の AFM 観察では、原子層によるステップが観察さ れた。このときの平均面荒さは 0.07 nm (0.7) で あった。Fig. 5 に AFM 画像を示す。

Fig. 5 今回の研磨条件による 6H-SiC 研磨面の AFM 画像

4. 結言

SiC 単結晶ウェハの酸化触媒(酸化クロム)を用 いた CMP において、添加する酸化剤を過酸化水素 から過マンガン酸カリウムに変えることにより、研 磨レートが約 1.6 倍に向上することを確認した。ま た、このプロセスにより研磨面の欠陥が減少するこ とを確認した。

【謝辞】

本研究を進めるに当たりご協力いただきました 埼玉大学土肥研究室の方々に感謝いたします。

参考文献

[1] 中原、土肥、瀬山、尾形: 埼玉大学地域共同 センター紀要、第5号、pp.1-3 (2004)