J. Saitama Univ., Fac. Educ., 57(1): 241-244 (2008)

Mapping theorems for C_f -spaces

Takashi KIMURA* and Chieko KOMODA**

Abstract

In this paper we study dimension-raising mapping theorems for Cf-spaces.

Keywords and phrases: A-weakly infinite-dimensional, C-spaces, Cf-spaces, mapping theorems.

2000 Mathematics Subject Classification. Primary 54F45.

1 Introduction

In this paper we assume that all spaces are normal unless otherwise stated. We refer the readers to [2] for dimension theory.

If \mathcal{A} and \mathcal{B} are collections of subsets of a space X, then $\mathcal{A} < \mathcal{B}$ means that \mathcal{A} is a refinement of \mathcal{B} , i.e. for every $A \in \mathcal{A}$ there exists $B \in \mathcal{B}$ such that $A \subset B$. Notice that \mathcal{A} need not be a cover even if \mathcal{B} is a cover. For a collection \mathcal{A} of subsets of a space X and for $Y \subset X$ we write $\mathcal{A}|Y$ for $\{A \cap Y : A \in \mathcal{A}\}, \bigcup \mathcal{A}$ for $\bigcup \{A : A \in \mathcal{A}\}$ and $[\mathcal{A}]^{<\omega}$ for $\{\mathcal{B} : \mathcal{B}\}$ is a finite subcollection of $\mathcal{A}\}$.

Haver [3] introduced the notion of *C*-spaces for the class of metric spaces. Addis and Gresham [1] extended this notion to normal spaces. A space *X* is a *C*-space if for every countable collection $\{\mathcal{G}_i : i \in \mathbb{N}\}$ of open covers of *X* there exists a countable collection $\{\mathcal{H}_i : i \in \mathbb{N}\}$ of collections of pairwise disjoint open subsets of *X* such that $\mathcal{H}_i < \mathcal{G}_i$ for every $i \in \mathbb{N}$ and $\bigcup_{i=1}^{\infty} \mathcal{H}_i$ covers *X*. Notice that not all finite-dimensional spaces are *C*-spaces (See [1]). In [4] we introduced the notion of the class of C_f -spaces which contains all finite-dimensional spaces. A space *X* is a C_f -space if for every countable collection $\{\mathcal{G}_i : i \in \mathbb{N}\}$ of finite open covers of *X* there exists a countable collection $\{\mathcal{H}_i : i \in \mathbb{N}\}$ of pairwise disjoint collections of open subsets of *X* such that $\mathcal{H}_i < \mathcal{G}_i$ for every $i \in \mathbb{N}$ and $\bigcup_{i=1}^{\infty} \mathcal{H}_i$ covers *X*. We call $\{\mathcal{H}_i : i \in \mathbb{N}\}$ *C*f-refinement of $\{\mathcal{G}_i : i \in \mathbb{N}\}$. In particular if all \mathcal{H}_i are discrete, then we call $\{\mathcal{H}_i : i \in \mathbb{N}\}$ a discrete *C*f-refinement of $\{\mathcal{G}_i : i \in \mathbb{N}\}$.

It is easily seen that every C-space is a C_f -space and every C_f -space is A -weakly infinitedimensional. Polkowski [5] proved the following theorems.

^{*} Department of Mathematics, Faculty of Education, Saitama University, Sakura, Saitama, 338-0825 Japan E-mail: kimura@post.saitama-u.ac.jp

^{**} Department of Health Science, School of Health & Sports Science, Juntendo University, Inba, Chiba, 270-1695 Japan E-mail: chieko_komoda@sakura.juntendo.ac.jp

Theorem [5].

(i) If $f: X \to Y$ is a closed mapping of an A-weakly infinite-dimensional countably paracompact space X onto a space Y and there exists an integer $k \ge 1$ such that $|f^{-1}(y)| \le k$ for every $y \in Y$, then Y is A-weakly infinite-dimensional.

(ii) If $f: X \to Y$ is an open mapping of an A-weakly infinite-dimensional space X onto a countably paracompact space Y such that $|f^{-1}(y)| < \aleph_0$ for every $y \in Y$, then Y is A-weakly infinite-dimensional.

2 Main theorems

A collection $\{\mathcal{G}_i : i \in \mathbb{N}\}$ of finite open covers of a space X is called *inessential* if there exists a discrete C_f -refinement of $\{\mathcal{G}_i : i \in \mathbb{N}\}$; if $\{\mathcal{G}_i : i \in \mathbb{N}\}$ is not inessential then it is called *essential*.

The following lemma will play an important role in the proof of our main theorem.

2.1. Lemma. If $f: X \to Y$ is a closed mapping of a countably paracompact C_f -space X onto a countably paracompact (resp. hereditarily normal) non- C_f -space Y, then there exist a closed non- C_f -space Y_0 and disjoint closed subsets X_0 , X_1 of X such that $f(X_0) = f(X_1) = Y_0$.

To prove Lemma 2.1, we need the following Lemmas 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7.

2.2. Lemma ([4], Lemma 4.2). Let X be a countably paracompact C_f -space. Then for every collection $\{\mathcal{G}_i : i \in \mathbb{N}\}$ of finite open covers of X, where $\mathcal{G}_i = \{G_\lambda : \lambda \in \Lambda_i\}$, there exists a discrete C_f -refinement $\{\mathcal{H}_i : i \in \mathbb{N}\}$ of $\{\mathcal{G}_i : i \in \mathbb{N}\}$, where $\mathcal{H}_i = \{H_\lambda : \lambda \in \Lambda_i\}$, such that $H_\lambda \subset G_\lambda$ and H_λ is an F_{σ} -set.

2.3. Lemma ([4], Lemma 4.3). Let *E* be a closed subset of a space *X*. For every finite discrete collection \mathcal{U} of open subsets of *E* there exists a discrete collection \mathcal{V} of open subsets of *X* which satisfies $\mathcal{V}|E = \mathcal{U}$.

2.4. Lemma ([4], Lemma 4.4). Let *E* be a closed subset of a hereditarily normal space *X*. For every finite collection \mathcal{U} of pairwise disjoint open subsets of *E* there exists a finite collection \mathcal{V} of pairwise disjoint open subsets of *X* which satisfies $\mathcal{V}|E = \mathcal{U}$.

2.5. Lemma ([4], Theorem 4.5). If a space X is either countably paracompact or hereditarily normal, and can be represented as the union of a countable collection of closed C_f -spaces, then X is a C_f -space.

2.6. Lemma. Let $\{\mathcal{G}_i : i \in \mathbb{N}\}$ be an essential collection of finite open covers of a countably paracompact space X. For every collection $\{\mathcal{H}_{2i} : i \in \mathbb{N}\}$ of pairwise disjoint open subsets of X such that $\mathcal{H}_{2i} < \mathcal{G}_{2i}$, the space $L = X - \bigcup_{i \in \mathbb{N}} \bigcup \mathcal{H}_{2i}$ is not a C_f -space.

Proof. Assume that the space *L* is a *Cf*-space. By Lemma 2.2, there exists a finite discrete *Cf*-refinement $\{\mathcal{U}_{2i+1}: i \in \mathbb{N}\}$ of $\{\mathcal{G}_{2i+1}|L: i \in \mathbb{N}\}$. By Lemma 2.3, there exists a collection $\{\mathcal{H}_{2i+1}: i \in \mathbb{N}\}$ of discrete collections of open subsets of *X* such that $\mathcal{H}_{2i+1}|L = \mathcal{U}_{2i+1}$ and $\mathcal{H}_{2i+1} < \mathcal{G}_{2i+1}$. We have $\bigcup_{i \in \mathbb{N}} \mathcal{H}_{2i+1} \supset \bigcup_{i \in \mathbb{N}} \mathcal{H}_{2i+1}|L = \bigcup_{i \in \mathbb{N}} \mathcal{U}_{2i+1} = L$. This contradicts that $\{\mathcal{G}_i : i \in \mathbb{N}\}$ is essential, thus the space *L* is not a *Cf*-space.

2.7. Lemma Let $\{\mathcal{G}_i : i \in \mathbb{N}\}$ be an essential collection of finite open covers of a hereditarily normal space X. For every collection $\{\mathcal{H}_{2i} : i \in \mathbb{N}\}$ of pairwise disjoint open subsets of X such that $\mathcal{H}_{\lambda} \subset \mathcal{G}_{\lambda}$, the space $L = X - \bigcup_{i \in \mathbb{N}} \bigcup \mathcal{H}_{2i}$ is not a C_f -space. Proof. Assume that the space L is a C_f -space. There exists a C_f -refinement $\{\mathcal{U}_{2i+1} : i \in \mathbb{N}\}$ of $\{\mathcal{G}_{2i+1} | L : i \in \mathbb{N}\}$. We may assume that every \mathcal{U}_{2i+1} is finite. By Lemma 2.4, there exists a collection

 $\{\mathcal{H}_{2i+1}: i \in \mathbb{N}\}\$ of finite collections of pairwise disjoint open subsets of X such that $\mathcal{H}_{2i+1}|L = \mathcal{U}_{2i+1}\$ and $\mathcal{H}_{2i+1} < \mathcal{G}_{2i+1}$. We have $\bigcup_{i \in \mathbb{N}} \bigcup \mathcal{U}_{2i+1} \supset \bigcup_{i \in \mathbb{N}} \bigcup \mathcal{H}_{2i+1}|L = \bigcup_{i \in \mathbb{N}} \bigcup \mathcal{U}_{2i+1} = L$. This contradicts that $\{\mathcal{G}_i: i \in \mathbb{N}\}\$ is essential, thus the space L is not a C_f -space.

2.8 Proof of Lemma 2.1. As Y is a not C_f -space, we take an essential collection $\{\mathcal{U}_i : i \in \mathbb{N}\}$ of finite open covers of Y, where $\mathcal{U}_i = \{U_\lambda : \lambda \in \Lambda_i\}$. Since X is a countably paracompact C_f -space, by lemma 2.2, there exists a discrete C_f -refinement $\{\{V_\lambda : \lambda \in \Lambda_{2i}\} : i \in \mathbb{N}\}$ of $\{\{f^{-1}(U_\lambda) : \lambda \in \Lambda_{2i}\} : i \in \mathbb{N}\}$ such that $V_\lambda \subset f^{-1}(U_\lambda)$ and V_λ is a F_σ -set. Let us set $V_\lambda = \bigcup_{n \in \mathbb{N}} F_{\lambda n}$, where $F_{\lambda n}$ is closed. For every, $\lambda \in \Lambda_{2i}$ we set

$$W_{\lambda} = Y - f(X - V_{\lambda}).$$

Then $W_i = \{W_{\lambda} : \lambda \in \Lambda_{2i}\}$ is a collection of pairwise disjoint open subsets of Y such that $W_{\lambda} \subset U_{\lambda}$. Let us set

$$L = X - \bigcup_{i \in \mathbb{N}} \bigcup \mathcal{W}_i$$

By Lemma 2.6 (resp. Lemma 2.7), L is a not C_f -space. we have

$$L = L \cap Y = L \cap f(X)$$
$$= L \cap f(\bigcup_{i \in \mathbb{N}} \bigcup_{\lambda \in \Lambda_{2i}} V_{\lambda})$$
$$= \bigcup_{i \in \mathbb{N}} \bigcup_{\lambda \in \Lambda_{2i}} L \cap f(V_{\lambda})$$
$$= \bigcup_{i \in \mathbb{N}} \bigcup_{\lambda \in \Lambda_{2i}} (L \cap f(\bigcup_{n \in \mathbb{N}} F_{\lambda n}))$$
$$= \bigcup_{i \in \mathbb{N}} \bigcup_{\lambda \in \Lambda_{2i}} \bigcup_{n \in \mathbb{N}} (L \cap f(F_{\lambda n}))$$

Assume that $L \cap f(F_{\lambda n})$ is a C_f -space for every $i \in \mathbb{N}$, $\lambda \in \Lambda_{2i}$ and $n \in \mathbb{N}$. From Lemma 2.5, L is a C_f -space. This contradicts that L is not a C_f -space. Thus $L \cap f(F_{\lambda n})$ is not a C_f -space for some $i \in \mathbb{N}$, $\lambda \in \Lambda_{2i}$ and $n \in \mathbb{N}$. Let us set

$$Y_0 = L \cap f(F_{\lambda n}), \ X_0 = F_{\lambda n} \cap f^{-1}(L) \ and \ X_1 = (X - V_{\lambda}) \cap f^{-1}(L \cap f(F_{\lambda n})).$$

It is easy to show that these subsets X_0 , X_1 and Y_0 have all the required properties.

We now come to our main theorems.

2.9. Theorem If $f: X \rightarrow Y$ is a closed mapping of a countably paracompact C_f -space X onto either countably paracompact or hereditarily normal space Y and there exists an integer $k \ge 1$ such that $|f^{-1}(y)| \le k$ for every $y \in Y$, then Y is a C_f -space.

Proof. Assume that Y is not a C_f space. By applying k times Lemma 2.1, we can find a point $y \in Y$ with $|f^{-1}(y)| \ge k + 1$. This is a contradiction.

2.10. Theorem $f: X \rightarrow Y$ is an open mapping of a C_f -space X onto a countably paracompact space Y such that $|f^{-1}(y)| < \aleph_0$ for every $y \in Y$, then Y is a C_f -space.

Proof. Let $K_j = \{y \in Y : |f^{-1}(y)| = j\}$ for every $i \in \mathbb{N}$. It is easy to see that the union $\bigcup_{j \leq i} K_j$ is closed in Y for every $i \in \mathbb{N}$. Inductively, we show that the union $\bigcup_{j \leq i} K_j$ is a C_f -space for every $i \in \mathbb{N}$. To this end, it suffices to show that every closed subspace Z of Y contained in K_i is a C_f -space. By [2, Lemma 6.3.12], the restriction $f|_Z: f^{-1}(Z) \to Z$ is perfect. Since the inverse image of a countably paracompact space under a perfect mapping is countably paracompact, by Theorem 2.9, Z is a C_f -space. Thus the union $\bigcup_{j \leq i} K_j$ is a closed C_f -space for every $i \in \mathbb{N}$. By Lemma 2.5, Y is a C_f -space.

References

- D. F. Addis and J. H. Gresham, A class of infinite-dimensional spaces, Part I: Dimension theory and Alexandroff's Problem, Fund. Math. 101 (1978), 195-205.
- [2] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag, 1995.
- [3] W. E. Haver, A covering property for metric spaces, Topology Conference at Virginia Polytechnic Institute 1973, Lecture Notes in Math. 375 (1974), 108-113.
- [4] C. Komoda, Sum theorems for C-spaces, Sci. Math. Japonicae 59 (2004), 71-77.
- [5] L. Polkowski, Some theorems on invariance of infinite dimension under open and closed mappings, Fund. Math. 119 (1983), 11-34.

(Received September 28, 2007; Accepted October 19, 2007)