A dimension-lowering mappings theorem for C_f -spaces

Takashi KIMURA* and Chieko KOMODA**

Abstract

In this paper we prove the following theorem: If $f: X \longrightarrow Y$ is an open mapping of a paracompact space X onto a C_f -space Y such that $|f^{-1}(y)| < \aleph_0$ for every $y \in Y$, then X is a C_f -space.

Keywords and phrases: A-weakly infinite-dimensional, C-spaces, C_f -spaces, mapping theorems.

2000 Mathematics Subject Classification. Primary 54F45.

1 Introduction

The present paper is a continuation of [2]. In this paper we assume that all spaces are normal unless otherwise stated. We refer the readers to [1] for dimension theory.

In [3] the second author introduced the notion of C_f -spaces, which is a generalization of C-spaces. A space X is a C_f -space if for every countable collection $\{\mathcal{G}_i: i \in \mathbb{N}\}$ of

^{*} Department of Mathematics, Faculty of Education, Saitama University, Sakura, Saitama, 338-0825, Japan E-mail address: tkimura@mail.saitama-u.ac.jp

^{**} Department of Health Science, School of Health & Sports Science, Juntendo University, Inba, Chiba, 270-1695, Japan E-mail address: chieko_komoda@sakura.juntendo.ac.jp

finite open covers of X there exists a countable collection $\{\mathcal{H}_i : i \in \mathbb{N}\}$ of collections of pairwise disjoint open subsets of X such that \mathcal{H}_i is a refinement of \mathcal{G}_i for every $i \in \mathbb{N}$ and $\bigcup_{i=1}^{\infty} \mathcal{H}_i$ covers X.

2 The main theorem

Polkowski [4] proved the following theorem.

2.1 Theorem [4]. If $f: X \longrightarrow Y$ is an open mapping of a metacompact space X onto an A-weakly infinite-dimensional space Y such that $|f^{-1}(y)| < \aleph_0$ for every $y \in Y$, then X is A-weakly infinite-dimensional.

It is known [1, 6.3.G] that the above theorem remains true if we replace 'metacompact' by 'countably paracompact'.

On the other hand, we [2, Theorem 2.10] proved the following theorem.

2.2. Theorem [2] If $f: X \longrightarrow Y$ is an open mapping of a C_f -space X onto a countably paracompact space Y such that $|f^{-1}(y)| < \aleph_0$ for every $y \in Y$, then Y is a C_f -space.

This is a dimension-raising theorem for open mappings. In this section we shall prove a dimension-lowering theorem for open mappings, which is analogous to the above theorem of Polkowski.

2.3. Theorem If $f: X \longrightarrow Y$ is an open mapping of a paracompact space X onto a C_f -space Y such that $|f^{-1}(y)| < \aleph_0$ for every $y \in Y$, then X is a C_f -space.

To prove our main theorem we need the following lemma. For the sake of completeness we give a proof.

2.4. Lemma. If $f: X \longrightarrow Y$ is an open mapping of a space X to a space Y and there exists an integer $n \ge 1$ such that $|f^{-1}(y)| = n$ for every $y \in Y$, then f is a local homeomorphism.

Proof. For every $x_0 \in X$ let $f^{-1}(f(x_0)) = \{x_0, x_1, \dots, x_{n-1}\}$. Take a collection $\{V_i : 0 \le i \le n-1\}$ of pairwise disjoint open subsets of X with $x_i \in V_i$. Assume that for every neighborhood U of x_0 with $U \subset V_0$ the restriction $f|_U : U \longrightarrow Y$ is not injective. We can take distinct points a_U and b_U in U such that $f(a_U) = f(b_U)$. Letting $c_U = f(a_U)$ and $W = \bigcap_{i=1}^{n-1} f(V_i)$, we have $c_U \notin W$. Indeed, assume that $c_U \in W$. Since $c_U \in f(V_i)$ for every $1 \le i \le n-1$, there exists a point $z_i \in V_i$ such that $f(z_i) = c_U$. It is easy to see that the set $\{a_U, b_U, z_1, z_2, \dots, z_{n-1}\}$ consists of exactly n+1 points. This is a contradiction, because $|f^{-1}(c_U)| = n$. Thus we have $c_U \notin W$. On the other hand, we have $a_{f^{-1}(W)\cap V_0} \in f^{-1}(W) \cap V_0$, therefore $c_{f^{-1}(W)\cap V_0} = f(a_{f^{-1}(W)\cap V_0}) \in W$. This is a contradiction. Hence there exists a neighborhood U of x_0 such that the restriction $f|_U : U \longrightarrow Y$ is injective. Obviously, the restriction $f|_U$ is an embedding. Lemma 2.4 has been proved.

2.5 Proof of Theorem 2.3. For every $n \in \mathbb{N}$ we set

$$Y_n = \{y \in Y : |f^{-1}(y)| = n\} \text{ and } X_n = f^{-1}(Y_n).$$

It is easy to see that the union $Y'_n = \bigcup_{k \leq n} Y_k$ is closed in Y for every $n \in \mathbb{N}$, therefore the union $X'_n = \bigcup_{k \leq n} X_k$ is also closed in X. Since X is the union of countable collection $\{X'_n : n \in \mathbb{N}\}$ of closed subsets of X, by the countable sum thereom for C_f -spaces, we only prove that X'_n is a C_f -space for every $n \in \mathbb{N}$. Let $f_n : X_n \longrightarrow Y_n$ be the mapping defined by $f_n(x) = f(x)$ for every $x \in X_n$.

Obviously, X'_1 is a C_f -space, because f_1 is a homeomorphism. Assume that X'_{n-1} is a C_f -space. To prove that X'_n is a C_f -space, it suffices to show that every closed subset Z of X'_n contained in X_n is a C_f -space.

By Lemma 2.4, the mapping f_n is a local homeomorphism. Thus for every $x \in X_n$ we can take a neighborhood U_x of x in X_n such that the restriction $f_n|_{U_x}:U_x\longrightarrow Y_n$ is an embedding. Since X_n is open in X'_n , U_x is open in X'_n . We may assume that U_x is an F_{σ} -set of X'_n . Let $U_x = \bigcup \{A(x,m) : m \in \mathbb{N}\}$, where A(x,m) is closed in X'_n . For

every $y \in Y_n$ let us set $f^{-1}(y) = \{x(y,1), x(y,2), \ldots, x(y,n)\}$. Then the intersection $\bigcap_{i=1}^n f(U_{x(y,i)})$ is a neighborhood of y in Y'_n . Take an open F_σ -set V_y of y in Y'_n such that $y \in V_y \subset \bigcap_{i=1}^n f(U_{x(y,i)})$. Let $V_y = \cup \{B(y,\ell) : \ell \in \mathbb{N}\}$, where $B(y,\ell)$ is closed in Y'_n . The set $W(y,i) = U_{x(y,i)} \cap f^{-1}(V_y)$ is homeomorphic to f(W(y,i)). We have

$$W(y,i) = \bigcup \{A(x(y,i),m) \cap f^{-1}(B(y,\ell)) : m,\ell \in \mathbb{N}\}.$$

We shall prove that $A(x(y,i),m) \cap f^{-1}(B(y,\ell))$ is a C_f -space. Since $f_n|_{U_x(y,i)}$ is an embedding, $A(x(y,i),m) \cap f^{-1}(B(y,\ell))$ is homeomorphic to $f_n(A(x(y,i),m) \cap f^{-1}(B(y,\ell)))$.

By [1, Lemma 6.3.12], f_n is closed, therefore $f_n(A(x(y,i),m) \cap f^{-1}(B(y,\ell)))$ is closed in Y_n . Since

$$f_n(A(x(y,i),m)\cap f^{-1}(B(y,\ell)))\subset B(y,\ell)\subset Y_n,$$

 $f_n(A(x(y,i),m)\cap f^{-1}(B(y,\ell)))$ is closed in $B(y,\ell)$. As $B(y,\ell)$ is a C_f -space, $f_n(A(x(y,i),m)\cap f^{-1}(b(y,\ell)))$ is a C_f -space. Thus $A(x(y,i),m)\cap f^{-1}(b(y,\ell))$ is a C_f -space. By the countable sum theorem for C_f -spaces, W(y,i) is a C_f -space. Since Z is paracompact, the open cover $\mathcal{W} = \{W(y,i)\cap Z: y\in Y_n, 1\leq i\leq n\}$ of Z has a locally-finite closed refinement \mathcal{F} . Since every member of \mathcal{F} is a C_f -space, by the locally finite sum theorem for C_f -spaces, Z is a C_f -space. Theorem 2.3 has been proved.

References

- [1] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag, 1995.
- [2] T. Kimura and C. Komoda, Mapping theorems for C_f -spaces, to appear in J. Saitama Univ., Fac. Educ. (Math. & Nat. Sci.).
- [3] C. Komoda, Sum theorems for C-spaces, Sci. Math. Japonicae 59(2004), 71-77.

[4] L. Polkowski, Some theorems on invariance of infinite dimension under open and closed mappings, Fund. Math. 119(1983), 11-34.

(Received March 21, 2008) (Accepted April 25, 2008)