On uniform dimensions of uniform spaces

Takashi Kimura Department of Mathematics, Faculty of Education, Saitama University

Keywords: uniform dimension, pseudo orbit tracing property

Abstract

We introduce a notion of a uniform dimension, denoted by u-dim, of a uniform space. We construct a uniform space X such that u-dim X = n and dim X = m for $n, m \in \mathbb{N} \cup \{0\}$. We also prove that the identity mapping of a uniform space X has the pseudo orbit tracing property if and only if u-dim X < 0.

1 Introduction

In this paper we study a uniform dimension u-dim X of a uniform space X. All spaces are assumed to be normal unless otherwise stated.

In section 2 we introduce a notion of a uniform dimension of a uniform space. We prove the subspace theorem and the completion theorem for uniform dimension.

In section 3 we consider relationships between uniform dimensions and topological dimensions. We give a uniform space X such that u-dim X = n and dim X = m for every $n, m \in \mathbb{N} \cup \{0\}$.

Fujii (see [2] Theorem 2.3.2 or [1] Remark 4.30) pointed out that the identity mapping of a compact metric space X has the pseudo orbit tracing property if and only if X is zero-dimensional. In section 4 we generalize this result. Namely, we prove that the identity mapping of a uniform space X has the pseudo orbit tracing property if and only if u-dim $X \leq 0$.

For standard results and notion in General Topology and Dimension Theory we refer to [3] and [4].

2 Definition of uniform dimensions

We begin with basic symbols.

Let \mathcal{A} and \mathcal{B} be collections of subsets of a space $X, x \in X$ and Y a subset of X. We set

$$\begin{array}{rcl} \operatorname{St}(x,\mathcal{A}) & = & \bigcup \{A \in \mathcal{A} : x \in A\} \\ \\ \operatorname{St}(Y,\mathcal{A}) & = & \bigcup \{A \in \mathcal{A} : Y \cap A \neq \emptyset\} \\ \\ \mathcal{A}^* & = & \{\operatorname{St}(A,\mathcal{A}) : A \in \mathcal{A}\} \end{array}$$

$$\begin{array}{rcl} \mathcal{A}|Y & = & \{A\cap Y: A\in \mathcal{A}\} \\ \\ \mathcal{A}\wedge\mathcal{B} & = & \{A\cap B: A\in \mathcal{A} \text{ and } B\in \mathcal{B}\} \text{ and } \\ \\ \bigcup \mathcal{A} & = & \bigcup \{A: A\in \mathcal{A}\} \end{array}$$

Let \mathcal{A} and \mathcal{B} be covers of a space X and $x, y \in X$. We say that \mathcal{A} refines \mathcal{B} , in symbol $\mathcal{A} < \mathcal{B}$, if for every $A \in \mathcal{A}$ there exists $B \in \mathcal{B}$ such that $A \subset B$. If $x \in \operatorname{St}(y, \mathcal{A})$, then we write $d(x, y) < \mathcal{A}$.

By a uniformity Φ on a space X, we mean a collection of open covers of X satisfying:

- (1) if $\mathcal{U} \in \Phi$ and \mathcal{V} is an open cover of X with $\mathcal{U} < \mathcal{V}$, then $\mathcal{V} \in \Phi$,
- (2) if $\mathcal{U}, \mathcal{V} \in \Phi$, then $\mathcal{U} \wedge \mathcal{V} \in \Phi$,
- (3) for every $\mathcal{U} \in \Phi$ there exists $\mathcal{V} \in \Phi$ such that $\mathcal{V}^* < \mathcal{U}$,
- (4) for every $x \in X$ the collection $\{\operatorname{St}(x,\mathcal{U}) : \mathcal{U} \in \Phi\}$ is a neighborhood base at x.

A uniform space is a pair (X, Φ) consisting of a space X and a uniformity Φ on X. An open cover \mathcal{U} of a uniform space (X, Φ) is a uniform cover of X if $\mathcal{U} \in \Phi$. To simplify notions, we often use the symbol X instead of (X, Φ) for a uniform space.

- **2.1. Definition.** To every uniform space X we assign the *uniform dimension*, denoted by u-dim X. Let n denote an integer ≥ -1 ; we say that:
- (1) u-dim $X \leq n$ if every uniform cover of X is refined by some uniform cover of order $\leq n+1$.
- (2) u-dim X = n if u-dim $X \le n$ and the inequality u-dim $X \le n 1$ does not hold.
- (3) u-dim $X = \infty$ if the inequality u-dim $X \leq n$ does not hold for any $n \in \mathbb{N}$.

The collection of all open covers of a space X refined by a finite open cover of X is a uniformity on X. It is obvious that u-dim $X = \dim X$ for this uniform space X. Every compact space X has a unique uniformity on X, so we have u-dim $X = \dim X$

For a subset Y of a uniform space (X, Φ) we set

$$\Phi|Y = \{\mathcal{U} : \mathcal{U} \text{ is an open cover of } Y \text{ such that } \mathcal{V}|Y < \mathcal{U} \text{ for some } \mathcal{V} \in \Phi\}.$$

Then the collection $\Phi|Y$ is a uniformity on Y. We say that $(Y,\Phi|Y)$ is a uniform subspace of (X,Φ) .

2.2. Theorem. For every uniform subspace Y of a uniform space X the inequality u-dim $Y \leq u$ -dim X holds.

Proof. The theorem is obvious if u-dim $X = \infty$, so that we can suppose that u-dim $X < \infty$. Suppose that u-dim X = n. For every uniform cover \mathcal{U} of Y there exists a uniform cover \mathcal{V} of X such that $\mathcal{V}|Y < \mathcal{U}$. Since u-dim X = n, we can take a uniform cover \mathcal{W} of X such that $\mathcal{W} < \mathcal{V}$ and ord $\mathcal{W} \le n + 1$. Then $\mathcal{W}|Y$ is a uniform cover of Y which refines \mathcal{U} and has order $\le n + 1$. This implies that u-dim $Y \le n$, therefore u-dim $Y \le n$ u-dim X.

2.3. Theorem. If a uniform space X satisfies the condition u-dim $X \le 0$, then X is zero-dimensional.

Proof. For every $x \in X$ and any neighborhood U of x there exists a uniform cover \mathcal{U} of X such that $\operatorname{St}(x,\mathcal{U}) \subset U$. Take a uniform cover \mathcal{V} of X such that $\mathcal{V} < \mathcal{U}$ and ord $\mathcal{V} \leq 1$. The set $V = \operatorname{St}(x,\mathcal{V})$ is a neighborhood of x and $V = \operatorname{St}(x,\mathcal{V}) \subset \operatorname{St}(x,\mathcal{U}) \subset U$. Since \mathcal{V} is an open cover of order ≤ 1 , V is open-and-closed in X. Hence X is zero-dimensional.

For a metric space (X, d) let Φ_d be the collection of open covers of X which is refined by $\{B(x, \varepsilon) : x \in X\}$ for some $\varepsilon > 0$, where $B(x, \varepsilon)$ is the ε -neighborhood of x in X. Then (X, Φ_d) is a uniform space. We say that Φ_d is the uniformity which is *induced* by the metric d on X.

Let Φ_d be the uniformity induced by the Euclidean metric on the real line \mathbb{R} . It is well-known that dim $\mathbb{R} = 1$. We consider the uniform dimension of this space.

For every $\varepsilon > 0$ let us set

$$\mathcal{U}_{\varepsilon} = \{(n\varepsilon, (n+1)\varepsilon) : n \in \mathbb{Z}\} \cup \{((n-\frac{1}{2})\varepsilon, (n+\frac{1}{2})\varepsilon) : n \in \mathbb{Z}\}.$$

Since $\frac{1}{2}\varepsilon$ is a Lebesgue number of $\mathcal{U}_{\varepsilon}$, $\mathcal{U}_{\varepsilon}$ is a uniform cover of \mathbb{R} . For every uniform cover \mathcal{U} of \mathbb{R} there exists $\varepsilon > 0$ such that $\{B(x,\varepsilon) : x \in X\}$ refines \mathcal{U} . On the other hand, since mesh $\mathcal{U}_{\varepsilon} = \varepsilon$, $\mathcal{U}_{\varepsilon}$ refines $\{B(x,\varepsilon) : x \in X\}$. Obviously, ord $\mathcal{U}_{\varepsilon} = 2$. Thus we have u-dim $X \leq 1$. By Theorem 2.3, we have u-dim X = 1.

A uniform space X is totally bounded if every uniform cover \mathcal{U} has a finite subcover of X. Let \mathcal{F} be a collection of subsets of a uniform space X. We say that \mathcal{F} contains arbitrarily small sets if for every uniform cover \mathcal{U} there exists $F \in \mathcal{F}$ such that $F \subset U$ for some $U \in \mathcal{U}$. A uniform space X is complete if every collection \mathcal{F} of closed subsets of X which has the finite intersection property and contains arbitrarily small sets has non-empty intersection. It is well-known ([3], 8.3.16) that a uniform space X is compact if and only if X is totally bounded and complete. Every compact space X has a unique uniformity. The unique uniformity on a compact space X is the collection of all open covers of X.

For a metric space (X, d) the uniform space (X, Φ_d) is totally bounded (respectively complete) if and only if the metric space (X, d) is totally bounded (respectively complete).

We denote by $(\tilde{X}, \tilde{\Phi})$ the completion of a uniform space (X, Φ) . The completion $(\tilde{X}, \tilde{\Phi})$ is the unique uniform space which is complete and contains (X, Φ) as a dense uniform subspace.

Let Ψ be a subcollection of a uniformity Φ on a uniform space X. We say that Ψ is a base for Φ if for every $\mathcal{U} \in \Phi$ there exists $\mathcal{V} \in \Psi$ such that $\mathcal{V} < \mathcal{U}$. For an open subset G of a uniform space X we set $\gamma(G) = \tilde{X} - \operatorname{Cl}_{\tilde{X}}(X - G)$. Then it is known that $\{\gamma(\mathcal{U}) : \mathcal{U} \in \Phi\}$ is a base for $\tilde{\Phi}$, where $\gamma(\mathcal{U}) = \{\gamma(\mathcal{U}) : \mathcal{U} \in \mathcal{U}\}$.

It is easy to show the following Fact.

Fact. Let \mathcal{U} and \mathcal{V} be uniform covers of a uniform space.

If $\mathcal{U} < \mathcal{V}$, then $\gamma(\mathcal{U}) < \gamma(\mathcal{V})$.

The equality ord $\mathcal{U} = \text{ord } \gamma(\mathcal{U})$ holds.

For more detailed information about uniform spaces the reader is referred to [3] and [5].

2.4. Theorem. For every uniform space X the equality u-dim $X = \text{u-dim } \tilde{X}$ holds.

Proof. Suppose that u-dim $\tilde{X} = n$. For every uniform cover \mathcal{U} of X $\gamma(\mathcal{U})$ is a uniform cover of \tilde{X} . Thus we can take a uniform cover \mathcal{V} of \tilde{X} such that $\mathcal{V} < \gamma(\mathcal{U})$ and ord $\mathcal{V} \le n+1$. Let us set $\mathcal{W} = \mathcal{V}|X$. Then we have

$$W = V|X < \gamma(U)|X = U$$
 and ord $W = \text{ord } V|X \leq \text{ord } V \leq n+1$.

This implies that u-dim $X \leq n$.

Conversely, suppose that u-dim X = n. For every uniform cover \mathcal{U} of \tilde{X} there exists a uniform cover \mathcal{V} of X such that $\gamma(\mathcal{V}) < \mathcal{U}$. Since u-dim X = n, \mathcal{V} is refined by some uniform cover \mathcal{W} of order $\leq n + 1$. Then we have

$$\gamma(\mathcal{W}) < \gamma(\mathcal{V}) < \mathcal{U}$$
 and ord $\gamma(\mathcal{W}) = \text{ord } \mathcal{W} \leq n+1$.

This implies that $\dim X \leq n$.

2.5. Corollary. For every totally bounded metric space (X, d) the inequality u-dim $(X, \Phi_d) \ge \dim X$ holds.

Proof. Since X is totally bounded, the completion \tilde{X} is compact, therefore u-dim $\tilde{X} = \dim \tilde{X}$. By Theorem 2.4, we have u-dim $X = \operatorname{u-dim} \tilde{X}$. Since X is separable and metrizable, we have dim $X \leq \dim \tilde{X}$. Hence the inequality u-dim $(X, \Phi_d) \geq \dim X$ holds.

3 Uniform dimension and topological dimension

This section is concerned with relationships between the uniform dimension and the topological dimension.

3.1. Example. For every $n \in \mathbb{N}$ there exists a uniform space Y_n such that $u\text{-dim }Y_n=0$ and $\dim Y_n=n$.

E. Pol and R. Pol [6] constructed a hereditarily normal space Y with $\dim Y = 0$ containing for every $n \in \mathbb{N}$ a perfectly normal subspace Y_n such that $\dim Y_n = n$. Let Z_n be the Stone-Čech compactification of $\operatorname{Cl}_Y Y_n$. Since Z_n is compact, Z_n has a unique uniformity. We regard Y_n as a uniform subspace of Z_n . As the completion of Y_n is uniformly isomorphic to Z_n , by Theorem 2.4, u-dim $Y_n = \text{u-dim } Z_n = \dim Z_n = \dim \operatorname{Cl}_Y Y_n \leq \dim Y = 0$.

3.2. Example. For every $n \in \mathbb{N}$ there exists a uniform space Z_n such that $u\text{-}\dim Z_n = n$ and $\dim Z_n = 0$.

First, by using a method of A. K. Steiner and E. F. Steiner [7], we construct a compactification of \mathbb{N} with n-dimensional remainder. Represent the space \mathbb{N} of all positive integers as the union $\bigcup \{N_i : i \in \mathbb{N}\}$ of infinite sets, where $N_i \cap N_j = \emptyset$ whenever $i \neq j$. Take a countable dense subset D of I^n , where I = [0, 1]. Let φ_i be a bijection from N_i onto D and let $\varphi : \mathbb{N} \to D$ be the mapping defined by $\varphi(x) = \varphi_i(x)$ for each $x \in N_i$. The space $G = \{(x, \varphi(x)) : x \in \mathbb{N}\}$ is homeomorphic to \mathbb{N} . Let us set $Y_n = \text{Cl}_{\mathbb{N} \times I^n} G$, where \mathbb{N} is the Alexandroff compactification of \mathbb{N} . Obviously, the space Y_n is a compactification of \mathbb{N} , and the remainder

 $Y_n - \mathbb{N}$ is homeomorphic to I^n . Thus we have dim $Y_n = n$. We regard \mathbb{N} as a uniform subspace of Y_n , and we denote by Z_n this uniform space. By Theorem 2.4, we have u-dim $Z_n = \text{u-dim } Y_n = \text{dim } Y_n = n$.

If a uniform space X is the topological sum of two spaces Y and Z, then the equality

$$\operatorname{u-dim} X = \max\{\operatorname{u-dim} Y, \operatorname{u-dim} Z\} \text{ and } \dim X = \max\{\dim Y, \dim Z\}$$

hold. Hence we can construct a uniform space X such that u-dim X = n and dim X = m for $n, m \in \mathbb{N} \cup \{0\}$.

4 Pseudo orbit tracing property

A self-mapping f on a uniform space X is uniformly continuous if $f^{-1}(\mathcal{U})$ is a uniform cover of X for every uniform cover \mathcal{U} of X, where $f^{-1}(\mathcal{U}) = \{f^{-1}(\mathcal{U}) : \mathcal{U} \in \mathcal{U}\}$. A self-bijection f on a uniform space X is a uniform isomorphism if both f and f^{-1} is uniformly continuous.

Let f be a uniform isomorphism on a uniform space X and let \mathcal{U} be a uniform cover of X. A sequence $\{x_n : n \in \mathbb{Z}\}$ of points of X is a \mathcal{U} -pseudo orbit for f if $d(f(x_n), x_{n+1}) < \mathcal{U}$ for every $n \in \mathbb{Z}$. A sequence $\{x_n : n \in \mathbb{Z}\}$ of points of X is called to be \mathcal{U} -traced by $x \in X$ if $d(f^n(x), x_n) < \mathcal{U}$ for every $n \in \mathbb{Z}$. A uniform isomorphism f on a uniform space X has the pseudo orbit tracing property if for every uniform cover \mathcal{U} of X there exists a uniform cover \mathcal{V} of X such that every \mathcal{V} -pseudo orbit for f can be \mathcal{U} -traced by some point $x \in X$.

Fujii [2] pointed out that the identity mapping of a compact metric space X has the pseudo orbit tracing property if and only if X is zero-dimensional.

4.1. Theorem. The identity mapping id on a uniform space X has the pseudo orbit tracing property if and only if u-dim $X \leq 0$.

Proof. Suppose that u-dim $X \leq 0$. For every uniform cover \mathcal{U} of X we take a uniform cover \mathcal{V} of X such that $\mathcal{V} < \mathcal{U}$ and ord $\mathcal{V} \leq 1$. It suffices to show that every \mathcal{V} -pseudo orbit for id can be \mathcal{U} -traced by some point $x \in X$. To this end let $\{x_n : n \in \mathbb{Z}\}$ be a \mathcal{V} -pseudo orbit for id. Since ord $\mathcal{V} \leq 1$, it is easy to see that $\{x_n : n \in \mathbb{Z}\} \subset \mathcal{V}$ for some $V \in \mathcal{V}$. Take $x \in X$ and $U \in \mathcal{U}$ such that $V \subset U$ and $x \in U$. Obviously, $d(id^n(x), x_n) < \mathcal{U}$. Hence id has the pseudo orbit tracing property.

Conversely, assume that u-dim $X \ge 1$. Then there exists a uniform cover \mathcal{U} of X such that every uniform cover \mathcal{V} of X which refines \mathcal{U} has order ≥ 2 .

Take uniform covers W and W' of X such that $W^* < W'$ and $W'^* < U$. For every uniform cover V of X we shall construct a V-pseudo orbit for id which can not be W-traced by any point of X.

Let \mathcal{V} be a uniform cover of X. For $V, V' \in \mathcal{V}$ we write $V \sim V'$ if there exist $V_0, V_1, \dots, V_n \in \mathcal{V}$ such that $V = V_0, V' = V_n$ and $V_i \cap V_{i+1} \neq \emptyset$ for each $i = 0, 1, \dots, n-1$. Obviously, the above relation \sim is an equivalence relation on \mathcal{V} . Let $\{\mathcal{V}_{\lambda} : \lambda \in \Lambda\}$ be the equivalence class with respect to \sim . We set $V_{\lambda} = \bigcup \mathcal{V}_{\lambda}$ for each $\lambda \in \Lambda$ and $\mathcal{V}' = \{V_{\lambda} : \lambda \in \Lambda\}$. Then $\operatorname{ord} \mathcal{V}' \leq 1$. Since $(\mathcal{W}^*)^* < \mathcal{W}'^* < \mathcal{U}$, \mathcal{V}' does not refine $(\mathcal{W}^*)^*$. This implies that there exists $V_{\lambda} \in \mathcal{V}'$ such that $V_{\lambda} \not\subset \operatorname{St}(\operatorname{St}(W, \mathcal{W}), \mathcal{W}^*)$ for every $W \in \mathcal{W}$. Take $x \in V_{\lambda}$ and $W \in \mathcal{W}$ such that $x \in W$. Since $V_{\lambda} \not\subset \operatorname{St}(\operatorname{St}(W, \mathcal{W}), \mathcal{W}^*)$, we can take $y \in V_{\lambda} - \operatorname{St}(\operatorname{St}(W, \mathcal{W}), \mathcal{W}^*)$. Since $x \sim y$, there

exist $V_0, V_1, \dots, V_n \in \mathcal{V}$ such that $x \in V_0, y \in V_n$ and $V_i \cap V_{i+1} \neq \emptyset$ for each $i = 0, 1, \dots, n-1$. Take a point $x_{i+1} \in V_i \cap V_{i+1}$ for each $i = 0, 1, \dots, n-1$. We also set $x_{-i} = x$ for every $i = 0, 1, 2, \dots$ and $x_i = y$ for every $i = n+1, n+2, \dots$. The sequence $\{x_i : i \in \mathbb{Z}\}$ is a \mathcal{V} -pseudo orbit for id. Assume that the sequence $\{x_i : i \in \mathbb{Z}\}$ can be \mathcal{W} -traced by some point $z \in X$. Since $z \in \text{St}(W, \mathcal{W}), y \in \text{St}(\text{St}(W, \mathcal{W}), \mathcal{W}) \subset \text{St}(\text{St}(W, \mathcal{W}), \mathcal{W}^*)$. This is a contradiction.

References

- N. Aoki, Topological Dynamics, in: K. Morita, J. Nagata, Ed., Topics in General Topology, North-Holland, Amsterdam · London · New York · Tokyo, 1989. 625-740.
- [2] N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland, Amsterdam · London-New York · Tokyo, 1994.
- [3] R. Engelking, General Topology, Heldermann, Berlin, 1989.
- [4] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann, Berlin, 1995.
- [5] K. Morita, On the simple extension of a space with respect to a uniformity. I, II, III, IV, Proc. Japan Acad. 27(1951), 65-72, 130-137, 166-171, 632-636.
- [6] E. Pol and R. Pol, A hereditarily normal strongly zero-dimensional space containing subspaces of arbitrarily large dimension, Fund. Math. 102(1979), 137-142.
- [7] A. K. Steiner and E. F. Steiner, Compactifications as a closures of graphs, Fund. Math. 63(1968), 221-223.

(Received March 31, 2010) (Accepted April 16, 2010)