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Abstract

We consider mathematical modelling for immune response to the cancer cells, and we propose
a random model which describes cytotoxic effects to the cancer cells by effectors such as
natural killer cells, cytotoxic T cells, and macrophages, etc. Then we shall analyze the model
mathematically, and try to explain the qualitative properties of phenomena related to the
host-defense mechanism.
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1. Introduction

1.1 Mathematical Medicine

The status quo of the mathematical medicine in Japan has kept on rejecting optimism.
That is to say, the present situation keeps us, mathematical scientists away from collaboration
of modelling and immunology with medical workers. That is partly because Japan has not
brought up professional theorists who can deal with medical immunology, and partly because
the experimenters being a minor group among the immunology researchers has little chances
to be involved in the study of modelling. As a whole, in Japan we are facing at a critical phase
that the academic region in Mathematical Sciences (including the modelling study) which is
related to immunology remains an unexplored virgin field.

In order to resolve the pending problems and develop academic researches further, it is quite
necessary for theorists and experimenters to meet each other halfway, cooperate with each
other, and stimulate each interest in the researches. For instance, a mathematical medicine
research group consisting of Prof. T. Suzuki and his coworkers is aiming at creation of a
new research field as well as aiming at contribution towards practical scenes of medicine, by
applying mathematics to the medicine positively and actively, cf. Collection of Abstracts in
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Annual Meeting of Japan SIAM, 2010. Our stance in the study is, in its spirit, in the same
line with theirs.

1.2 Purpose of Research

We consider the mathematical modelling of immune response to the cancer cells. Usually,
normal cells N are transformed into irregular ones by some reasons, with the result that
tumorigenic process of cells proceeds. On the other hand, a group of immune cells invokes
the so-called immune response against the canceration, which is a central role in host-defense
mechanisms. In this article we shall focus our mind on the immune response in the transforma-
tion period and in the disorder proliferation period of cancer cells, and we aim at construction
of a random model which can describe the cytotoxic effect of effectors (such as natural killer
cells, cytotoxic T cells, and macrophages, etc.) against the cancer cells X, and we would like
to explain the qualitative properties of peculiar phenomena related to immune response, by
analyzing the model mathematically.

We have investigated the formulation of catalytic processes applicable to filament description
and catalyst action in Physiology and Biochemistry, the derivation of associated differential
equations, the asymptotic behaviors, and the probabilistic representation of solutions to the
partial differential equations which describe the particle movement in a random medium, for
example, see Dôku (2000) Acta Appl. Math. Vol.63 and RIMS Kokyuroku (Kyoto University),
Vol.1157, Dôku (2001) Sci. Math. Japn. Vol.54 and Quant. Infor. Vol.III, and Dôku (2001)
RIMS Kokyuroku (Kyoto University), Vol.1193. In Dôku (2010) Far East J. Math. Sci. Vol.38,
we studied the exsitence and uniqueness theorem as well as the long-time asymptotic behaviors
for the model of measure-valued stochastic process with spatially dependent parameters. Such
a stochastic model is very important because it can describe how the branching time of the
corresponding random branching particle system becomes longer or shorter, and how the
offspring increases or decreases in number according to the better or worse circumstance. In
particular, we investigated a special class of singular superprocesses in a series of papers:
Dôku (2003) Far East J. Theo. Stat. Vol.9, Dôku (2006) Adv. Appl. Stat. Vol.6 and Sci.
Math. Japn, and Dôku (2008) RIMS Kôkyûroku Bessatsu, B6. Those models are extremely
important because they can realize the chemical reaction of drugs. Moreover, we considered
limit theorems of measure-valued Markov processes which are closely related to population
genetics.

We divide our purpose into two categories: one is the short-term purpose, and the other is
the long-term purpose. As for the short-term purpose, we raise the following three:

(i) To construct a mathematical model which is able to describe the cytotoxic
actions of effectors against cancer cells (here we propose such a stochastic model);

(ii) To analyze the model mathematically;

(iii) To study the qualitative properties of the biological phenomena related to
immune response.

As for the long-term purpose, in the near future we are going to explain the following:
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(iv) To explain an extraordinary phenomenon (such as the saturation of immune
effectiveness), from the viewpoint of model theory.

Furthermore, we have already announced our main results of this article at the organized ses-
sion: “mathematical medicine” in the annual meeting of Japan SIAM, held in Meiji University,
Tokyo on September 8, 2010, and have also talked about them at the session of disease I in the
twentieth conference of Japan Society of Mathematical Biology, held in Hokkaido University,
Sapporo on September 14, 2010, see Dôku (2010) Collection of Abstracts in Annual Meeting
of Japan SIAM and Dôku (2010) Collection of Abstracts of the 20th JSMB. We are also going
to give a talk about the results in the seventh conference on the theory of biomathematics
and its applications, which is to be held at the Research Institute for Mathematical Sciences,
Kyoto in November, 2010.

2. Mathematical Modelling

We divide our modelling process into several phases, and we shall consider and explain it
step by step in what follows.

2.1 Proliferation Process of Cancer

The aim of this section consists in modelling the proliferation process of cancer cells. Since
our goal is, roughly speaking, to construct a mathematical model for host-defense mechanisms
against cancer, the so-called immune response is a very important keyword. Actually, what
we have in mind about the immune response is as follows. We shall give it in a very simple
way. First, normal cells are transformed into irregular ones by some reasons. Here any specific
reason does not matter, namely, we do not care any individual reason. Then the tumorigenic
process of cells proceeds, and finally a group of immune cells invokes immune response (cf.
Figure 1). It is well-known as host-defense mechanisms against cancer. The figure 1 illustrates
the situation where the macrophage which has been activated by the interferon (IFN-α) and
interleukin (IL-8) with the help of T helper cell (Th cell), is attacking the cancer cell. As
to the subject, in this article we focus our mind especially on the immune response in both
cases: both in the transformation period and in the proliferation period of cancer cells. Next we
consider the effectors being countermeasure of cancer, which should be carefully chosen. What
we have in mind about effectors is as follows: for examples, natural killer (NK) cells, cytotoxic
T cells, and macrophages, etc. (see Figure 2). The figure 2 illustrates the effectors such as
(a) macrophage, (b) NK cell, and (c) cytotoxic T cell. These effectors are main characters in
our model, and especially we consider the activated macrophage, which plays an important
role in the immune response as far as mathematical modelling is concerned. As we have
reviewed above, some reasons cause transformation of cells, then those cells cancerate. More
precisely, malfunction of oncogene or tumor suppressor gene evokes continual proliferation
signals, and finally cancer cells repeat disorder proliferation (cf. Figures 3 and 4). Figure
3 illustrates the situation, where normal cells are transformed into irregular cells (= cancer
cells), and they start off disorder proliferation. Figure 4 also illustrates a similar situation.
On the other hand, a group of immune cells or effectors (such as NK cells, cytotoxic T cells
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and macrophages, etc.) prey on and destroy cancer cells. As a matter of fact, by virtue of the
immunological surveillance the effector is coming about the scene of irregular proliferation in
the affected area, and sticks to one of cancer cells and makes a bound body together with the
unfortunately chosen cancer cell, and kills it by the cytotoxic effect.

Taking the above into consideration, we propose the following proliferation model. Let Nn

be the total number of cancer cells in the n-th generation. Actually, for each n ∈ N,

Nn : Ω → N
is an N-valued random variable. We assume that there exists a sequence of positive numbers
{γn}n, γn > 0 satisfying

γn → γ ∈ R+ (as n → ∞)

for some positive number γ. Let Zn denote the number of offspring to be produced. Its
expectation is given by

E[Zn] = 1 +
γN

n
and its variance satisfies the condition

V ar(Zn) = σ2
n → σ2 (< ∞) (as n → ∞).

So, we assume that the branching mechanism is asymptotically supercritical, and we consider
the situation where there exists the second moment of Zn even in the limit as n tends towards
infinity. As to the proliferation or cleavage, each cell divides independently at random time.
Here we realize it by giving the branching rate nλ with λ > 0. This means that we assume
the accelerated proliferation. In other words, it implies that, if the branching rate is λ simply,
under the condition that the parent cell is alive until time t, the probability that the cell dies
in the small interval [t, t + δt) is given by

λδt + o(δt).

2.2 Spatial Movement of Cancer

As to domain, it is restricted to the immune response in a local tissue, so it is sufficient to
consider a bounded domain

D ⊂ Rd (d = 3).

Since we consider the spatial movement of cancer, we need to describe its starting point.

So that, for each n ∈ N given, let x
(n)
i ∈ Rd be the initial location of the i-th cell among Nn

cancer cells in the n-th generation, for i = 1, 2, . . . , Nn. Here our target cell is of course a cancer
cell. It is observed that there is almost little movement in the initial period, namely, in the
transformation period, and they have oozing liquid-like diffusion in the disorder proliferation
period. Hence we suppose that they obey a diffusive movement with a diffusion coefficient
including a small parameter ε (> 0).

Moreover, we also consider the spatial movement of cancer caused by its extraordinary
proliferation. Because of its concentration with high density, we need an interaction effect, in
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a sense, in the diffusion of cancer. Indeed, this is realized by specific functions. Let h ∈ C1

be a function describing the strength of interaction, and ρ denotes a parameter indicating the
interaction effect. More precisely, on a mathematical basis, we assume that the function h
itself and its first derivative h′ belong to the same L2 space, i.e.,

h(x), h′(x) ∈ L2.

Then the function ρ is defined by the integration of h, that is,

ρ(x) =

∫
h(x − y)h(y)dy.

Define k0 = c2 + ρ(0) as a positive constant, and k(ε) = εk0. We set

Lε = k(ε)Δ with Δ : Laplacian

2.3 Cytotoxicity of Effectors

Next we consider the cytotoxicity of effector against cancer cells. We realize it as a positive
constant

q > 0 : the strength of cytotoxicity of effector

It just corresponds to the emigration rate in the terminology, which is stemmed from the
theory of branching processes.

3. A Random Model by Superprocess as the Limiting Process

Under the circumstances stated above, we consider the random model for cancer. As a

matter of fact, we propose an empirical measure X
(n)
t as our stochastic model, which is given

by

X
(n)
t =

1

n

Nn(t)∑
i=1

δ
x
(n)
i (t)

.(1)

It is nothing but a measure-valued stochastic process, where Nn(t) denotes the total number

of cancer cells alive at time t, and x
(n)
i (t) is the location of the i-th cancer cell among the n-th

generation at time t, for i = 1, 2, . . . , Nn(t). Actually, our proposed model can be regarded
as the following quantity. Counting up all the designated cancer cells alive until time t, and
summing all of them flagging one among all the members in the n-th generation, and moreover
the quantity is multiplied by some scaling factor or a certain weight that is given by here 1/n.
It is interesting to note that the weight term may possibly possess an alternative expression

realized by other scaling. In other words, we can say that our proposed model X
(n)
t is the

process describing the random cloud of cancer. Some stochastic process Xt can be obtained as

a limit of X
(n)
t as n tends towards infinity. Such a limiting process is called the superprocess.

It is expected that this superprocess Xt reflects the qualitative properties of the proposed

random model. So in what follows, we will analyze the superprocess Xt only, instead of X
(n)
t .
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4. Principal Results

4.1 Existence Result

First we are going to introduce the existence result.

Theorem 1. If the initial data

X
(n)
0 ≡ Xn(0) =

1

n

Nn∑
i=1

δ
x
(n)
i

(2)

converges weakly to a finite measure μ ∈ MF , then the proposed empirical model {Xn(·)}n

converges weakly to a finite measure-valued process X = {X(·)}.
The above theorem guarantees the existence of the model, which we are going to analyze
mathematically.

4.2 Results on Uniqueness and Regularity

Next we shall introduce a regularity result as well as the uniqueness result. We begin with
defining some useful operators.

AF (μ) =

∫

Rd

Lε
δF (μ)

δμ(x)
μ(dx) +

1

2

∫∫

Rd×Rd

∑
i�=j

ρij∂
2
ij

δ2F (μ)

δμ(x)δμ(y)
dμdμ(3)

for a proper test function F defined on the space of finite measures MF . Here the symbol
δF (μ)/δμ(x) denotes the variational derivative of the test function F with respect to a measure
μ at x in the functional analysis. This A is an operator that controls spatial movement of the
superprocess.

BF (μ) =
1

2

∫

Rd

σ̃
δ2F (μ)

δμ(x)2
μ(dx).(4)

This B is an operator that controls the branching mechanism of the superprocess.

CF (μ) = −
∫

Rd

q
δF (μ)

δμ(x)
m(dx),(5)

where m is a reference measure on Rd. This operator C describes the influence of cytotoxicity
to cancer cells by the effectors. Furthermore, we define

L = A + B + C.

Theorem 2. For every μ ∈ MF with compact support, the limiting process X = {Xt} solves
the martingale problem (L, δμ)-MP.

Theorem 3. The process X = {Xt} is a MF -valued Markov process.

4.3 Characterization of the Limiting Process
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Actually, the above-mentioned theorem 2 not only guarantees the uniqueness of the super-
process, but also provides with a characterization of the superprocess Xt. Indeed, the following
assertion is valid as well. That is to say, there exists a unique probability measure Pμ defined
on the space of MF -valued continuous paths C([0,∞); MF )

∃1 Pμ ∈ P(C([0,∞); MF ))

satisfying
(a) X0 = μ, a.s.
(b) For each F ∈ Dom(L),

F (Xt) − F (X0) −
∫ t

0

LF (Xs)ds(6)

is a continuous {Ft}-martingale. Here the measure Pμ is nothing but the probability distribu-
tion of the superprocess Xt.

5. Expected Results

There are some remarkable results which we can expect from our stochastic model. First,
longtime asymptotic behaviors of Xt is, of course, obtained. Especially when the constant
is the typical case c = 0, with a minor hypothesis, it is possible that the singular process
may appear under a suitable scaling. This indicates that our proposed model has a potential
capability of describing the catastrophic situation.

Next we shall introduce an important result named “local extinction” of the process Xt.
Before stating it, we need to make a quick review on the concept of local extinction. What is
the transience? What does it mean that the process Xt is transient? In fact, we say that the
support supp(X) is transient if for any open set B,

Pμ( Xt(B) > 0, ∃ t ≥ 0 | X(·) survives ) < 1

holds. That is, under the assumption that the process X(·) survives, the probability of the
event that the process Xt has a charge on the set B for some time t ≥ 0 is less than one,
which means that the probability that the process is absent on B for some time t is positive,
i.e., such an event may possibly take place. On the other hand, what is the local extinction?
We say that the support supp(X) exposes a local extinction if for each bounded set B, there
exists a finite random time ζB such that

Xt(B) = 0, ∀t ≥ ζB

holds. Namely, the process Xt has no charge on the subset B for any time t after some time,
whcih means that the cancer cells are absent in the region B after a suitable time, that is
possible. Notice that local extinction is a much stronger condition than transience. In fact, we
can expect that the superprocess Xt exposes a local extinction. In other words, it is equivalent
to the fact that the effectors succeed in expelling the cancer cells localy out the territoty, that
is, this model has the ability to realize the admissible phenomenon that effectors are locally
predominant over cancer. That is why this property is extremely important.
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6. Concluding Remarks

In this last section we will refer to the final target in our study. We consider the following
two things related to effectors in immune response side:

· Killing capability against cancer
· Multiplicative capability of effector

From the viewpoint of comparison of the above two capabilities, it is said that there exists a
upper bound called “the saturation of immune effectiveness”, for which SIE stands. The final
purpose is to explain the existence of such SIE theoretically, by using our stochastic model.
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