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A construction of a generalized infinite-dimensional Cantor-manifold
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Abstract

We construct a separable metrizable space T satisfying the following conditions;
(1) T is weakly infinite-dimensional, and
(2) T can not be separated by any hereditarily weakly infinite-dimensional subspace of T'.

This is a negative answer to a problem of Krasinkiewicz.
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1 Introduction

In this paper we assume that all spaces are separable and metrizable. A collection {(A;, B;) : 1 < w} of
pairs of disjoint closed subsets of a space X is essential in X if there is no partition L; in X between A; and B;
such that (\{L;: 7 <w} =0. A space X is said to be strongly infinite-dimensional (we abbrev. s.i.d.) provided
that there exists an essential collection in X. If X is not s.i.d., then we call X weakly infinite-dimensional (we
abbrev. w.i.d.). For a closed subset F' of a space X we say that X is separated by F (or F is a separator of X) if
X — F is not connected. A compact space X is infinite-dimensional Cantor-manifold it X can not be separated
by any w.i.d. subspace of X. The existence of infinite-dimensional Cantor-manifolds is obvious. Indeed, the
Hilbert cube is such one. Furthermore, Sklyarenko [5, p.165] proved that every s.i.d. compact space contains
an infinite-dimensional Cantor-manifold.

Krasinkiewicz [7] asked whether the existence of another type of like infinite-dimensional Cantor-manifolds.
Namely, he asked whether for every w.i.d. space X it is possible to separate X by a hereditarily w.i.d. subspace
of X. Here a space X is hereditarily w.i.d. if every subspace of X is w.i.d. E. Pol [9] gave a negative answer to
this problem. Namely, she cnstructed a w.i.d. compact space which can not be separated by any hereditarily
w.i.d. subspace of X. We may regard such a space as a generalized infinite-dimensional Cantor-manifold.

The purpose of this paper is to construct another counterexample to this problem.
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2 Construction

In this section we shall construct a w.i.d. space T which can not be separated by any hereditarily w.i.d.
subspace of T.

we begin with the following example.

2.1. Example ([10]). There ezists a space S satisfying the following conditions;
(1) S is s.i.d.,

(2) S is Cech-complete, and

(3) S is totally disconnected.

In this section we denote by S the above space. By (1), there exists an essential collection {(4;, B;) 14 < w}

in S. The following fact and lemma are easily proved, so we omit the proofs.
2.2. Fact. Every partition in S between Ag and Bg s s.1.d.

2.3. Lemma. Let Y be a space and X a subspace of Y. If the following two conditions hold, then Y is w.i.d.
(1) Y — X s wid, and
(2) for every closed subset F' of Y, if F C X, then F is w.i.d.

Let Y be a compactification of S and X = S. Then, by Example 2.1 (3), the condition (2) in Lemma 2.3
holds. Thus if the remainder ¥ — S is w.i.d., then sois Y.

Schurle [12] proved that every Cech-complete space has a compactification with strongly countable-dimensional
remainder. Engelking and Pol [4] gave a simple proof of Schurle’s theorem above. Since the space S in Example
2.1 is Cech-complete, there exists a compactification Y of § such that ¥ — S is strongly countable-dimensional.
Thus, by Lemma 2.3, Y is w.i.d. However, the equality ClyAg N ClyBy = @ need not hold. We need a

compactification Y of S with this property.

2.4. Lemma. There exists a compactification Y of S satisfying the following conditions;

(1) Y s w.r.d.,

(2) Cly Ag N Cly By =0, and

(3) Y — S is countable-dimensional.

Proof. The proof of this lemma is essentially due to Engelking and Pol [4]. To satisfy the condition (2) we
slightly improve the last part of their proof.

It is easy to see that (see [2] or [6]) there exists a compactification X of S such that Clx Ag N Clx By = 0.
Since S is Cech-complete, there is a collection {U; : i < w} of open subsets of X such that (U, :i <w} =S
and U; 4y C Uy for every 1 < w.

Let d be a metric on X such that d(z,y) < 1 for every z,y € X. From the compactness of X it follows that

for every 7 < w there is a finite collection ¢; = {U;; : 7 < n(7)} of open subsets of X such that

1
S C UU,: C U; and mesh U; < o
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Let fi; : X — I =[0,1] be the mapping defined by
fij(w) = d(a, X = Uij)

for every i,j;i < w and j < n(i). Since Clx Ao N ClyBo = 0, there is a contintous mapping foo : X — I such
that

(*) foo(Clx Ag) = {0} and foo(Clx Bo) = {1}.
Let f be the diagonal of the mappings {fi; : ¢ < w and j < n(7)}, where n(0) = 1, that is,

f=~0{fiji<wand j<n()}: X —1I¢

defined by
fa)y =@y e [TCIT 1) =1

i<w j<n(i)

where I;; is a copy of I. Then the restriction f|S of f to S is an embedding and f(X — §) C K, where
K, =A{(t;) € I* : {i : t; # 0} is finite }. The closure Y of f(S) in I* is a compactification of S and we have
Y—-SC f(X-5)C K,. Since K, is countable-dimensional, so is Y — S. Thus, by Lemma 2.3, Y is w.i.d. By
(), we have Cly Ag N Cly By = 0. Hence Y has all the required properties. Lemma 2.4 has been proved.

Let Y be as in Lemma 2.4, Z' = Y/{Cly Ap,Cly By} the quotient space and ¢ : ¥ — Z’ the quotient
mapping. Let us set

{a'} = q(Cly Ag),

{0} = a(Cly Bo),

Z=27"xC,
a=(d',0) € Z, and
b=(¥,0) € 7.

where C is the standard Cantor set in I. We regard ¢: Y — Z' as¢: Y - Z'~ Z' x {0} C Z.

2.5. Lemma. Let Z be as above. Then

(1) Z has no isolated point,

(2) Z is w.id., and

(3) for every open neighborhood U of a in Z with b ¢ ClzU the boundary BdzU of U is not hereditarily w.i.d.

Proof. Since C has no isolated point, the condition (1) holds. Let us set
S'=S - (AgUBg)and W =2"— (S"u{d . b'}).

Then we have Z' — §' = WU {d',b'}. By Example 2.1(3), S’ is totally disconnected, therefore so is S’ x C'. We
can regard W as the natural subspace of Y — S. By Lemma 2.4(3), W is countable-dimensional, therefore so is
Z'— S' Thus (Z' — ') x C is also countable-dimensional. By Lemma 2.3, Z is w.i.d. Hence the condition (2)
holds.

Let U be an open neighborhood of @ in Z with b ¢ Cl;U. Let us set

L=q"(BdUn(Z x{0})NS.
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Then L is a partition in S between Ag and By, therefore, by Fact 2.2, L is s.i.d. On the other hand, we can
regard L as a subspace of BdzU. Thus BdzU is not hereditarily w.i.d. Hence the condition (3) holds. Lemma

2.5 has been proved.

2.6. Construction. Let d be a metric on Z with d(a,b) = 1 and B a countable base for Z. For every n < w

let us set

Zn=2,an =a,b, =b,d, =d and B, =B,
A, ={(B,B"):B,B' € B, with BN B' =0 or B € B,,B" € B, for some i <n}

and
A= U{A" n < wh.
Since A is countable, it is easy to see that there is a bijection ¢ : w — {0} — A such that ¢(n) € [J{A; : ¢ <n}.
By Lemma 2.5(1), for every (n) = (By, B),) € A, inductively, we can take points z, € By, and y, € B, such
that
Ty yn & {2isyis @i bi i1 <nj.
Let us set
Z" =®{Zp:n<w}land D ={{an,vn}, {bn,yn} : 0 <n <w}.

Let T = Z" /D be the quotient set and p: Z” — T the quotient mapping.

2.7. Definition. Let .y € T and {z; : 0 <7 < n} a finite subset of T. Then {z;: 0 <7 < n} is a chain from
x to y if the following conditions are satisfied;

(1) = z0,y = 2z, and

(2) for every 7;0 < i <n — 1, there is {(i) < w such that p~'(z;) N Zy(iy # 0 and P (zig1) N Zoiy 7 0.

Then both p~'(z;) N Zy(;) and P (zig1) N Zy(;) are singletons, so we set
{ri} =p ' (2:) N Zyiy and {si} = p " (zig1) 0 Zogi).
2.8. Definition. For every z,y € T we set

n—1
plz,y) = inf{z dyiy(riysi) s {zi : 0 <0 < n}is a chain from = to y}.
=0

2.9. Lemma. Let p be as in Definition 2.8. Then p is a metric on T.
Proof. By the construction of p, it is obvious that p is a pseudometric on T. Thus it suffices to prove that
p(z,y) = 0 implies & = y.

Assume that there exist x,y € T such that p(z,y) = 0 and = # y. Since p~!(z) consists of at most two

points for every z € T, we set

p(z) = {2, gz} or {a'},
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where ' € Z, (2, Qi) = Qo(z) OF by(y), and m(x) # £(x), and
P~ y) =y 0w} or {y',

where y' € Z,, (), Qe(y) = Ai(y) OF by(yy, and m(y) # ((y).

Let us set
b ) by o) = ae)
Qo) = .
apzy i oy = biga
and
g ) by By =y
Me(y) —

apyy it Bocyy = bagy)-

We distinguish three cases.

Case 1. z # p(ag), p(bo)

Let us set
Ex = mln{dm(x)(‘le am(x)): dm(x)(ljv bm(@))}

and

1 if y = p(ag) or p(by)
Ey =

min{dp, ) (Y’ () )s dim(y) (' bim(y))}  otherwise.

Then, obviously, we have £, > 0 and ¢, > 0. We fix ¢ with
0 <& < min{e,, ey,1}.

Since p(x,y) = 0, there exists a chain {z; : 0 <7 < n} from x to y such that

n—1
D dygiy(rissi) <,
1=0

where r; and s; are as in Definition 2.7. Without loss of generality we can assume that
r; # s; for every 1;0 <1 <n—1,

and

0(1) # L(i + 1) for every 1;0 <1 <n—2.

By the assumption that £(z) £ £(1 4+ 1), if s; # as(;), be(iy, then rig1 = agiqry, or bygigr).
Claim. r; = ay;) or by for every 1;1 <1 <n — 1.

We shall prove this claim by the inductionon 7 =1,2,--- ,n— 1,

First, we shall show that r1 = ay) or by(yy. Suppose that ro = 2. Then we have m(x) = £(0), therefore we
have

dm(I)(Il,So) = dg(o)(ro,So) <e < ég.
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Thus we have so # a0y, beo). This implies 1 = ayq) or byyy. Suppose that ro # z'. Then we have ro = ay(y)

and {(z) = £(0), therefore we have
Aoy (o), s0) = dogoy(ro, so) < e < 1.

Thus we have sg # O/f(o)' Since ro # sg, we have sg # ayo). Thus we have so # as(0),bs(o). This implies
ry = aé(l) or bé(l).
Next, suppose that r; = ay;) or by;);1 < @ < n — 2. Since dy;)(ri,si) < ¢ < 1 and r; # s;, we have

5i # gy, beiy - Hence we have rip1 = ay(i41) or by(iy1). Claim has been proved.

Case 1-1. y # p(ag), p(bo).

Suppose that s,,_1 = y’. Then we have m(y) = {(n — 1) and

g > dl(n—l)(rn—lzsn—l) > mln{dm(y)(yl~ am(y))v dm(y) (ylv bm(y)) =&y-

This is a contradiction.

Suppose that s,—1 = By(;,—1). Then we have

€ > dytn—1)(rn—1,50—-1) = de(n—1))(Ae(n—1), be(n—1)) = 1.
This is a contradiction.

Case 1-2. y = p(ag).

This case implies {(n — 1) = 0. Thus we have s,_; = ap and r,_1 = bg. Hence we have
€ > dyn—1y(rn—1,5n-1) = do(ao,bo) = 1.

This is a contradiction.

Case 1-3. y = p(bo).

Similarly as in Case 1-2.

Case 2. © = p(ag)
If y # p(bo) then y # p(ag), p(bo). Thus we get a contradiction similarly as in Case 1. Suppose that y = p(bg).
Then there exists a chain {z; : 0 < i < n} from x to y such that

n—1
Z doiy(riysi) < 1and £(z) # £(1 4 1) for every ;0 < <n — 2.
=0

If n = 1 then we have ro = ag and sg = by. Thus we have

1 > df(o)(ro,SQ) = do(ao,bo) = ].

Suppose that n > 2. Since ((1) # ((0), we have r; ¢ Zg. Similarly as in Case 1, we can show that r; = a;
or by for every 10 <1 <n — 1. By the construction of T', £(i) < {(i 4 1) for every i:0 < i < n — 2. Thus we
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have {(n — 1) # 0. Hence we have s,_1 € Zg. On the other hand, by the assumption that y = p(by), we have

Sn—1 = bg. This is a contradiction.

Case 3. = = p(ly)
Similarly as in Case 2.

In any case we obtain a contradiction. Hence p(z,y) = 0 implies # = y. Lemma 2.9 has been proved.

3 Main result

Throughout the rest of this paper we regard T as the metric space with the metric p defined in Definition
2.8.

In this section we shall prove that the metric space T is a counterexample to a Krasinkiewicz’s problem.

3.1. Lemma. Let p,Z,, and T be as in Section 2. Then p|Z,, : Z,, = T is an embedding for every n < w.

Proof. To prove this lemma it suffices to prove the following claim.

Claim. For every € Z,, there exists ¢ > 0 satisfying the following condition (*);
() for every y € Z, with d,(x,y) < e the equality p(p(2),p(y)) = dn(2,y) holds.
By the construction of p, it is obvious that the inequality p(p(2),p(y)) < dn(2,y) holds.

Case 1. © # ay, by.

Let us set ¢ = min{d,(z,an),dn(z,0,)}. Assume that there exists y € Z, such that p(p(z),p(y)) <
dp(z,y) < e. We take a chain {z : 0 < i < m} from p(z) to p(y) such that S 7" doiiy(ri,si) < e, ri #
s; for every i;0 < i < m—1, and (i) # £(i + 1) for every ;0 <i < m — 2.

Similarly as the proof of Lemma 2.9, we have
i = agqy OF by for every i:0 <7 <m —1, and n < L(0) < (1) <--- < {(m —1).
On the other hand, since p(s;—1) =y € Z, and $y—1 # rm—1, we have

apm—1) I Tm—1 = bpm—1)

Sm—1 =

bo(m—1)  H Tm—1 = Gpm—1).
Thus we have
L>e>dym—1)(rm—1s8m—1) = detm—-1)(@r(m—-1)s be(m—-1)) = L.
This is a contradiction.

Case 2. z =a, and n > 1.

Let us set

p~ip(bn) = Zi = {c},

p~'plan) = Zp = {c'}, and

e = min{di(ag,c), di(bx, ), dp (agr, '), dp (bgr, ).
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Assume that there exists y € Z,, such that p(p(z),p(y)) < dn(z,y) < e. We take a chain {z; : 0 < i < m}
from p(x) to p(y) such that E?;El doiy(riysi) < e, ri # s forevery 1;0 < 1 < m — 1, and £(i) # (i +
1) for every 1;0 <7 <m — 2.

Similarly as the proof of Lemma 2.9, we have r; = ay;y or by(;) for every 7;0 <7 <m —1. Assume that ¢ = s; for
some 7;0 <7 < m — 1. Then we have ((1) = k. Since r; = ay;y or by, we have & > dy;)(ri, s;) = di(ri,c) > e.
This is a contradiction. Thus we have ¢ # s; for every 7;0 < ¢ < m — 1. This implies that b, #* r; for every
;0 <4 <m — 1. Since rm—1 = ag(m-1) OF bp(m—1)s Sm—1 = Bo(m—1) = Qe(m—1) O be(m—1), {(y) = {(m — 1) and
Fm—1 7% Sm—1, We have

1> dl(mfl)(rm—1:3m—1) = dl(y)(al(y)vbl(y)> =1
This is a contradiction.

Case 3. z = b, and n > 1.

Similarly as in Case 2, we obtain a contradiction.

Case 4. z = qaqg.

Assume that there exists y € Zg such that p(p(x),p(y)) < do(z,y) < 1. We take a chain {z; : 0 < ¢ < m}
from p(x) to p(y) such that 27;51 doiiy(riysi) < 1,1y # s;forevery ;0 < 7 < m — 1, and £(i) # (1 +
1) for every i;0 < ¢ < m — 2. Similarly as the proof of Lemma 2.9, we have r; = ay;y or by, for every

i;0 <7 < m — 1. In particular, we have ry,—1 = @g(pm—1) O by(yn—1). Since p(spm—1) =y € Zo, we have

) am—ry Hrme1 = bimn)

Sm—1 =
bom—1)y H rm—1 = apm_n)-

Then we have
1> df(m—l)(rmflasmfl) = df(m—l)(af(m—l)vbf(m—l)) =1L

This is a contradiction.

Case 5. z = bg.
Similarly as in Case 4, we obtain a contradiction.

In any case we get a contradiction. Hence the condition (*) holds. Lemma 3.1 has been proved.

3.2. Lemma. The metric space T 1s w.1.d.
Proof. By Lemmas 2.5(2) and 3.1, T is the union of countable w.i.d. subspaces p(Z,). Hence, by [8] (or see
[11]), T is w.i.d. Lemma 3.2 has been proved.

3.3. Lemma. Every separator L of T is not hereditarily w.i.d.

Proof. Since L is a separator, there exist two non-empty open subsets U and V of T such that T—L=UUV
and UNU = . Then we can take ¢(n) = (B,B’) € A such that B C p~}(U) and B’ C p~}(V). Let us set
U' = p Y (U)N Z,. Then we can assume that a, € U’ and b, ¢ Clyz, U’. By Lemma 2.5(3), Bdy, U’ is not
hereditarily w.i.d. Since p~!(Bdy,U’) C L and , by Lemma 3.1, p~!(Bdy, U’) is homeomorphic to Bdz, U’, L

is not hereditarily w.i.d. Lemma 3.3 has been proved.
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By Lemmas 3.2 and 3.3, we obtain the following example, which is a negative answer to a problem of

Krsinkiewicz [7].

3.4. Example. There exists a space T satisfying the following conditions (1) and (2);
(1) T is w.i.d., and

(2) T can not be separated by any hereditarily w.i.d. subspace of T.

The space T in Example 3.4 is not compact. If this space T has a w.i.d. compactification X, then X
satisfies the conditions (1) and (2) in Example 3.4. Borst [1] introduced the concept of small weakly infinite-
dimensionality, and he proved that a space X has a w.i.d. compactification if and only if X is small weakly

infinite-dimensional.
3.5. Problem. Is the space T wn Ezample 3.4 small weakly infinite-dimensional %

It is well-known [3, 1.9.8] that every n-dimensional compact space contains a n-dimensional Cantor-manifold.

Furthermore, every s.i.d. compact space contains an infinite dimensional Cantor-manifold.

3.5. Problem. Let X be a w.i.d. compact space which is not hereditarily w.i.d. Does X contains a compact

subspace satisfying the conditions (1) and (2) in Ezample 3.4 ¢
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