Disjoint Open Subsets of the Remaider of the Freudenthal Compactification

 KIMURA , Takashi

Faculty of Education, Saitama University

Abstract

It is well-known that the Stone-Čech remainder $\beta \mathbb{N} - \mathbb{N}$ of the discrete space of cardinality \aleph_0 has a collection of cardinality \mathfrak{c} consisting of pairwise disjoint non-empty open subsets of $\beta \mathbb{N} - \mathbb{N}$. In this paper we consider an analogous theorem with respect to the Freudenthal compactification.

Keywords and phrases. Freudenthal compactification, cellularity, Souslin number.2010 Mathematics Subject Classification. Primary 54D35.

1 Introduction

The maximal compactification with zero-dimensional remainder is called the Freudenthal compactification. Every rim-compact space has the Freudenthal compactification.

It is well-known [5] (or see [2])that the space $\beta \mathbb{N} - \mathbb{N}$, the remainder of the Stone-Čech compactification of the discrete space of cardinality \aleph_0 , contains a collection of cardinality \mathfrak{c} consisting of pairwise disjoint non-empty open subsets of $\beta \mathbb{N} - \mathbb{N}$. In [1] W. W. Comfort and H. Gordon generalized this theorem. Their main theorem asserts that for a Tychonoff space X and a cardinal number \mathfrak{m} , $\beta X - X$ admits a collection of \mathfrak{m} pairwise disjoint non-empty open subsets of $\beta X - X$ if and only if X admits a collection of \mathfrak{m} cozero-sets with certain properties.

In this paper we consider an analogous theorem with respect to the Freudenthal compactification. More precisely we shall characterize a rim-compact space of which the remainder of the Freudenthal compactification is the discrete space with cardinality \mathfrak{m} .

Throughout the rest of this paper all spaces considered are assumed to be rim-compact. We denote by γX the Freudenthal compactification of a space X.

2 Preliminaries

An open (resp. closed) set A of a space X is called γ -open (resp. γ -closed) if the boundary $\operatorname{Bd}_X A$ is compact. A finite open cover consisting of γ -open subsets of a space X is called a γ -open cover of X.

A space X is *rim-compact* if X has a base consisting of γ -open subsets of X.

Let αX be a compactification of a space X and U an open subset of X. Then we set $O_{\alpha X}(U) = \alpha X - Cl_{\alpha X}(X - U)$.

The following proposition is a characterization of the Freudenthal compactifications which corresponds with those of the Stone-Čech compactifications.

Proposition 1. Let αX be a compactification of a space X with zero-dimensional remainder. Then the following conditions are equivalent:

(a) αX is the Freudenthal compactification of X.

- (b) $\operatorname{Cl}_{\alpha X} E \cap \operatorname{Cl}_{\alpha X} F = \operatorname{Cl}_{\alpha X} (E \cap F)$ for every pair E, F of γ -closed subsets of X.
- (c) $O_{\alpha X}(U) \cup O_{\alpha X}(V) = O_{\alpha X}(U \cup V)$ for every pair U, V of γ -open subsets of X.
- (d) $O_{\alpha X}(\mathcal{U}) = \{O_{\alpha X}(\mathcal{U}) : \mathcal{U} \in \mathcal{U}\}$ is an open cover of αX for every γ -open cover \mathcal{U} of X.

Proof. (a) \Rightarrow (b). Obviously $X \cap \operatorname{Cl}_{\gamma X} E \cap \operatorname{Cl}_{\gamma X} F = X \cap \operatorname{Cl}_{\gamma X} (E \cap F)$. Since

$$\operatorname{Cl}_{\gamma X} H \cap (\gamma X - X) = (\gamma X - \operatorname{Cl}_{\gamma X} (X - H)) \cap (\gamma X - X)$$

for every γ -closed subset H of X (see e.g. [6]), we have

$$(\gamma X - X) \cap \operatorname{Cl}_{\gamma X} E \cap \operatorname{Cl}_{\gamma X} F = (\gamma X - X) \cap \operatorname{Cl}_{\gamma X} (E \cap F).$$

Hence we have $\operatorname{Cl}_{\gamma X} E \cap \operatorname{Cl}_{\gamma X} F = \operatorname{Cl}_{\gamma X} (E \cap F).$

Implications (b) \Rightarrow (c) and (c) \Rightarrow (d) are obvious.

(d) \Rightarrow (a). Assume that $\alpha X \neq \gamma X$. Since $\alpha X - X$ is zero-dimensional, there is a continuous mapping f of γX onto αX which leaves the points of X fixed. Since $\alpha X \neq \gamma X$, there are two points $x, y \in \gamma X - X$ such that $x \neq y$ and f(x) = f(y).

We shall construct a γ -open cover \mathcal{U} of X such that $O_{\alpha X}(\mathcal{U})$ is not an open cover of αX .

There are open subsets U, V of γX such that $x \in U \subset \operatorname{Cl}_{\gamma X} U \subset V, y \notin V$, $\operatorname{Bd}_{\gamma X} U \subset X$ and $\operatorname{Bd}_{\gamma X} V \subset X$. Let $U' = (\gamma X - \operatorname{Cl}_{\gamma X} U) \cap X, V' = V \cap X$ and p = f(x) = f(y). Then $\{U', V'\}$ is a γ -open cover of X. It is easy to show that $x \in \operatorname{Cl}_{\gamma X}(X - U')$. From closedness of f it follows that $p = f(x) \in \operatorname{Cl}_{\gamma X}(X - U')$. Similarly, we have $p = f(y) \in \operatorname{Cl}_{\gamma X}(X - V')$. Hence we have $p \notin O_{\gamma X}(U') \cup O_{\gamma X}(V')$. This is a contradiction. This proves Proposition 1.

3 The main theorems

Let X be a space and \mathfrak{m} a cardinal number. We say that X has $d(\mathfrak{m})$ provided that X admits a collection \mathcal{U} of pairwise disjoint non-empty open subsets of X for which $|\mathcal{U}| = \mathfrak{m}$.

The smallest cardinal number \mathfrak{m} such that every collection of pairwise disjoint open subsets of a space X has cardinality $\leq \mathfrak{m}$, is called the *Souslin number*, or *cellularity* of the space X.

A subset A of a space X is *relatively compact* if the closure $Cl_X A$ is compact.

As for the Freudenthal compactification we can obtain an analogous theorem to the theorem by W. W. Comfort and H. Gordon.

Theorem 2. Let X be a space and \mathfrak{m} a cardinal number. Then the following conditions are equivalent:

- (a) $\gamma X X$ has $d(\mathfrak{m})$.
- (b) X admits a collection {U_λ : λ ∈ Λ) of γ-open subsets of X, with |Λ| = m, for which
 (i) each U_λ is not relatively compact,
 - (ii) $\operatorname{Cl}_X U_{\lambda} \cap \operatorname{Cl}_X U_{\mu}$ is compact for distinct $\lambda, \mu \in \Lambda$.

Proof.

(a) \Rightarrow (b).

Let $\{V_{\lambda} : \lambda \in \Lambda\}$ be a collection of pairwise disjoint non-empty open subsets of $\gamma X - X$, where $|\Lambda| = \mathfrak{m}$. For each $\lambda \in \Lambda$ there is an open subset O_{λ} of γX such that $V_{\lambda} = O_{\lambda} \cap (\gamma X - X)$. Since V_{λ} is not empty, we can choose a point $p_{\lambda} \in V_{\lambda}$. We take an open subset W_{λ} of γX such that $p_{\lambda} \in W_{\lambda} \subset \operatorname{Cl}_{\gamma X} W_{\lambda} \subset O_{\lambda}$ and $\operatorname{Bd}_{\gamma X} W_{\lambda} \subset X$. Now we set $U_{\lambda} = W_{\lambda} \cap X$ for each $\lambda \in \Lambda$. Then $\{U_{\lambda} : \lambda \in \Lambda\}$ is the desired collection.

Obviously U_{λ} is γ -open and non relatively compact. Next, we shall show that $\operatorname{Cl}_X U_{\lambda} \cap \operatorname{Cl}_X U_{\mu}$ is compact for distinct $\lambda, \mu \in \Lambda$. It suffices to show that $\operatorname{Cl}_{\gamma X} U_{\lambda} \cap \operatorname{Cl}_{\gamma X} U_{\mu} \subset X$. Since

$$\operatorname{Cl}_{\gamma X} U_{\lambda} \cap \operatorname{Cl}_{\gamma X} U_{\mu} \cap (\gamma X - X) \subset O_{\lambda} \cap O_{\mu} \cap (\gamma X - X) \subset V_{\lambda} \cap V_{\mu} = \emptyset,$$

the set $\operatorname{Cl}_X U_\lambda \cap \operatorname{Cl}_X U_\mu$ is compact.

(b) \Rightarrow (a).

We set $V_{\lambda} = \operatorname{Cl}_{\gamma X} U_{\lambda} \cap (\gamma X - X)$ for each $\lambda \in \Lambda$. Then $\{V_{\lambda} : \lambda \in \Lambda\}$ is a collection of pairwise disjoint non-empty open subsets of $\gamma X - X$, with $|\Lambda| = \mathfrak{m}$.

Indeed, since $\operatorname{Cl}_{\gamma X} U_{\lambda} \cap (\gamma X - X) = (\gamma X - \operatorname{Cl}_{\gamma X} (X - U_{\lambda})) \cap (\gamma X - X)$, V_{λ} is open in $\gamma X - X$. From non relative compactness of U_{λ} it follows that V_{λ} is non-empty. By Proposition1, (a) \Leftrightarrow (b) and compactness of $\operatorname{Cl}_{X} U_{\lambda} \cap \operatorname{Cl}_{X} U_{\mu}$, we have

$$V_{\lambda} \cap V_{\mu} = \operatorname{Cl}_{\gamma X} U_{\lambda} \cap \operatorname{Cl}_{\gamma X} U_{\mu} \cap (\gamma X - X) = \operatorname{Cl}_{\gamma X} (\operatorname{Cl}_{X} U_{\lambda} \cap \operatorname{Cl}_{X} U_{\mu}) \cap (\gamma X - X)$$
$$= \operatorname{Cl}_{X} U_{\lambda} \cap \operatorname{Cl}_{X} U_{\mu} \cap (\gamma X - X) = \emptyset.$$

Hence $\gamma X - X$ has $d(\mathfrak{m})$. This completes the proof.

For a space $X \ R(X)$ denotes the set of all points having no compact neighborhood. A collection $\mathcal{G} = \{G_1, G_2, \dots, G_n\}$ of pairwise disjoint open subsets of a space X is called an *n*-star of X if (1) $X - G_1 \cup G_2 \cup \dots \cup G_n$ is compact and (2) $X - G_1 \cup G_2 \cup \dots \cup G_{i-1} \cup G_{i+1} \cup \dots \cup G_n$ is not compact for each $1 \le i \le n$. K. D. Magill [3] proved that a locally compact space has an n-point compactification if and only if X has an n-star. It is

easy to see that for a locally compact space X, the Freudenthal compactification is an n-point compactification if and only if X has an n-star and X has no n+1-star.

The following lemma is due to K. Morita [4].

Lemma 3. For a γ -closed subset F of a space X γF is homeomorphic to the closure of F in the space γX .

T. Terada [6] gave a characterization of a metrizable space having a compactification with countable discrete remainder. We characterize a space of which the remainder of the Freudenthal compactification is the discrete space with cardinality \mathfrak{m} .

Theorem 4. The remainder of the Freudenthal compactification of a space X is the discrete space with cardinality \mathfrak{m} if and only if X admits a collection $\{U_{\lambda} : \lambda \in \Lambda\}$ of γ -open subsets of X with $|\Lambda| = \mathfrak{m}$, for which

(i) $\operatorname{Cl}_X U_{\lambda}$ is non-compact, locally compact and has no 2-star for each $\lambda \in \Lambda$,

(ii) $\operatorname{Cl}_X U_{\lambda} \cap \operatorname{Cl}_X U_{\mu}$ is compact for distinct $\lambda, \mu \in \Lambda$,

(iii) $X - \bigcup \{U_{\lambda} : \lambda \in \Lambda\}$ is compact, and

(iv) for every γ -open subset U of X containing R(X) there is a finite subset Λ' of Λ such that $X - U \cup \bigcup \{U_{\lambda} : \lambda \in \Lambda'\}$ is compact.

Proof.

Suppose that $\gamma X - X$ is the discrete space with cardinality \mathfrak{m} . For each $x \in \gamma X - X$ there are open subsets V_x, W_x of γX such that $x \in V_x \subset \operatorname{Cl}_{\gamma X} V_x \subset W_x$ and $W_x \cap (\gamma X - X) = \{x\}$. Now we set $U_x = V_x \cap X$ for each $x \in \gamma X - X$. We shall prove that $\mathcal{U} = \{U_x : x \in \gamma X - X\}$ is the desired collection.

Similarly as the proof of Theorem 2, $\operatorname{Cl}_X U_x$ is non-compact and $\operatorname{Cl}_X U_x \cap \operatorname{Cl}_X U_y$ is compact for distinct $x, y \in \gamma X - X$. Obviously $X - \bigcup \{U_x : x \in \gamma X - X\}$ is compact. Since $\operatorname{Cl}_X U_x = \operatorname{Cl}_{\gamma X} U_x - \{x\}$, $\operatorname{Cl}_X U_x$ is locally compact. It is easy to see that $\operatorname{Cl}_X U_x$ is γ -closed. By Lemma 3, we have $\gamma(\operatorname{Cl}_X U_x) \approx \operatorname{Cl}_X U_x \cup \{x\}$. Thus $\operatorname{Cl}_X U_x$ has no 2-star. Since $\operatorname{Cl}_{\gamma X} (\gamma X - X) = (\gamma X - X) \cup R(X)$, $(\gamma X - X) \cup R(X)$ is compact. Let U be a γ -open subset of X containing R(X). Then we have $x \in O_{\gamma X}(U)$ for all but finitely many $x \in \gamma X - X$. Let Λ' be the set of all points $x \in \gamma X - X$ such that $x \notin O_{\gamma X}(U)$. Since $\gamma X - O_{\gamma X}(U) \cup \bigcup \{O_{\gamma X}(U_x) : x \in \Lambda'\} \subset X$, we have

$$X - U \cup \bigcup \{ U_x : x \in \Lambda' \} = \gamma X - O_{\gamma X}(U) \cup \bigcup \{ O_{\gamma} X(U_x) : x \in \Lambda' \},$$

therefore $X - U \cup \bigcup \{U_x : x \in \Lambda'\}$ is compact. Hence \mathcal{U} satisfies the conditions (i) - (iv).

Conversely, since $\operatorname{Cl}_X U_{\lambda}$ is γ -closed, $\gamma(\operatorname{Cl}_X U_{\lambda}) \approx \operatorname{Cl}_{\gamma X} U_{\lambda}$. Since $\operatorname{Cl}_X U_{\lambda}$ is non-compact, locally compact and has no 2-star, $\operatorname{Cl}_{\gamma X} U_{\lambda} \cap (\gamma X - X)$ is exactly one-point set. Thus we set $\operatorname{Cl}_{\gamma X} U_{\lambda} \cap (\gamma X - X) = \{x_{\lambda}\}$ for each $\lambda \in \Lambda$. Let $Y = X \cup \{x_{\lambda} : \lambda \in \Lambda\}$. Similarly as the proof of Theorem 2 $\{x_{\lambda}\}$ is open in $\gamma X - X$. Thus Y - X is the discrete space with cardinality \mathfrak{m} . Hence it suffices to show that $Y = \gamma X$. Assume that there is a point $x \in \gamma X - Y$. Since every point $x \in \bigcup \{U_{\lambda} : \lambda \in \Lambda\}$ has a compact neighborhood, we have $R(X) \subset X - \bigcup \{U_{\lambda} : \lambda \in \Lambda\}$, therefore R(X) is compact. From compactness of R(X) it follows that there is an open subset V of γX such that $R(X) \subset V$, $\operatorname{Bd}_{\gamma X} V \subset X$ and $x \notin \operatorname{Cl}_{\gamma X} V$. Let $U = V \cap X$. Then U is a γ -open subset of X containing R(X). Thus there is a finite subset Λ' of Λ such that $X - U \cup \bigcup \{U_{\lambda} : \lambda \in \Lambda'\}$ is compact. Since $\gamma X - X \subset \operatorname{Cl}_{\gamma X} U \cup \bigcup \{\operatorname{Cl}_{\gamma X} U_{\lambda} : \lambda \in \Lambda'\}$ and $x \notin \operatorname{Cl}_{\gamma X} U$, there is an element $\lambda \in \Lambda$ such that $x \in \operatorname{Cl}_{\gamma X} U_{\lambda}$. However, since $x \in \gamma X - Y$, this is a contradiction. Thus we have $Y = \gamma X$. Hence $\gamma X - X$ is the discrete space with cardinality \mathfrak{m} .

References

- [1] W. W. Comfort and H. Gordon, *Disjoint open subsets of* $\beta X X$, Trans. Amer. Math. Soc. 111(1964), 513-520.
- [2] R. Engelking, General Topology, Heldermann, Berlin, 1989.
- [3] K. D. Magill, N-point compactifications, Amer. Math. Monthly 72(1965), 1075-1081.
- [4] K. Morita, On bicompactifications of semibicompact spaces, Sci. Rep. Tokyo Kyouiku Daigaku, Sect A 4(1952), 200-207.
- [5] M. Nakamura and S. Kakutani, Banach limits and the Čech compactification of a countable discrete set, Proc. Imp. Acad. Tokyo 19(1943), 224-229.
- [6] T. Terada, On countable discrete compactifications, Gen. Top. Appl. 7(1977), 321-327.

(Received March 31, 2012) (Accepted May 18, 2012)