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Abstract

We begin with introducing superprocesses with branching rate functional and his-

torical superprocesses. We consider the notions of recurrence, transience and ex-

tinction property of measure-valued Markov processes. Then we prove the finite

time extinction for a class of measure-valued Markov processes.
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1. Superdiffusion with Branching Rate Functional

In this section we shall introduce the superdiffusion with branching rate func-

tional, which forms a general class of measure-valued Markov processes with dif-

fusion as a underlying spatial motion. We write ⟨µ, f⟩ =
∫
fdµ. MF = MF (Rd)

is the space of finite measures on Rd. Define a second order elliptic differential

operator L = 1
2
∇ · a∇ + b · ∇, and a = (aij) is positive definite and we assume

that aij, bi ∈ C1,ε = C1,ε(Rd). Here the space C1,ε indicates the totality of all

Hölder continuous functions with index ε (0 < ε 6 1), allowing their first order

derivatives to be locally Hölder continuous. Ξ = {ξ,Πs,a, s ≥ 0, a ∈ Rd} indicates a
L-diffusion. CAF stands for contunuous additive functional in Probability Theory.

Definition 1. (A Locally Admissible Class of CAF; cf. Dynkin (1994), [24])

A continuous additive functional K is said to be in the Dynkin class with index q

and we write K ∈ Kq, (some q > 0) if (a)

sup
a∈Rd

Πs,a

∫ t

s

ϕp(ξr)K(dr) → 0, (r0 ≥ 0) as s→ r0, t→ r0; (1)

(b) each N , ∃cN > 0 :

Πs,a

∫ t

s

ϕp(ξr)K(dr) 6 cN |t− s|qϕp(a), (for 0 6 s 6 t 6 N, a ∈ Rd). (2)

�

-155-

J. Saitama Univ. Fac. Educ.,                                                  61(2)：155-172 （2012）



When we write Cb as the set of bounded continuous functions on Rd, then C+
b is

the set of positive members g in Cb. The process X = {X,Ps,µ, s ≥ 0, µ ∈MF} is

said to be a superdiffusion with branching rate functional K or simply (L,K, µ)-

superprocess if X = {Xt} is a continous MF -valued time-inhomogeneous Markov

process with Laplace functional

Ps,µe
−⟨Xt,φ⟩ = e−⟨µ,v(s,t)⟩, 0 6 s 6 t, µ ∈MF , φ ∈ C+

b . (3)

Here the function v is uniquely determined by the log-Laplace equation

Πs,aφ(ξt) = v(s, a) + Πs,a

∫ t

s

v2(r, ξr)K(dr), 0 6 s 6 t, a ∈ Rd. (4)

2. Historical Superprocess

The historical superprocess was initially studied by E.B. Dynkin (1991) [23],

see also Dawson-Perkins (1991) [7]. C = C(R+,Rd) denotes the space of continuous

paths on Rd with topology of uniform convergence on compact subsets of R+. To

each w ∈ C and t > 0, we write wt ∈ C as the stopped path of w. We denote by Ct

the totality of all these paths stopped at time t. To every w ∈ C we associate the

corresponding stopped path trajectory w̃ defined by w̃t = wt for t ≥ 0. The image

of L-diffusion w under the map : w 7→ w̃ is called the L-diffusion path process.

Moreover, we define

C×
R ≡ R+×̂C· = {(s, w) : s ∈ R+, w ∈ Cs} (5)

and we denote by M(C×
R) ≡ M(R+×̂C·) the set of measures η on R+×̂C· which

are finite, if restricted to a finite time interval. Let K be a positive CAF of ξ. X̃ =

{X̃, P̃s,µ, s ≥ 0, µ ∈ MF (Cs)} is said to be a Dynkin’s historical superprocess (cf.

Dynkin (1991), [23]) if X̃ = {X̃t} is a time-inhomogeneous Markov process with

state X̃t ∈MF (Ct), t ≥ s, with Laplace functional

P̃s,µe
−⟨X̃t,φ⟩ = e−⟨µ,v(s,t)⟩, 0 6 s 6 t, µ ∈MF (Cs), φ ∈ C+

b (C), (6)

where the function v is uniquely determined by the log-Laplace type equation

Π̃s,wsφ(ξ̃t) = v(s, ws) + Π̃s,ws

∫ t

s

v2(r, ξ̃r)K(dr), 0 6 s 6 t, ws ∈ Cs. (7)

3. Examples of Measure-Valued Processes

3.1 Dawson-Watanabe Superprocess

X = {Xt; t ≥ 0} is said to be the Dawson-Watanabe superprocess (cf. Watan-

abe (1968), [40], Dawson (1975), [1]) if {Xt} is a Markov process taking values

in the space MF (Rd) of finite measures on Rd, satisfying the following martingale
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problem (MP): i.e., there exists a probability measure P ∈ P(MF (Rd)) on the

sapce MF (Rd) such that for all φ ∈ Dom(∆)

Mt(φ) ≡ ⟨Xt, φ⟩ − ⟨X0, φ⟩ −
∫ t

0

⟨Xs,
1

2
∆φ⟩ds (8)

is a P-martingale and its quadratic variation process is given by

⟨M(φ)⟩t = γ

∫ t

0

⟨Xs, φ
2⟩ds. (9)

Or equivalently, the Laplace functional of {Xt} is given by

Ee−⟨Xt,φ⟩ = e−⟨X0,u(t)⟩, for φ ∈ C+
b (R

d) ∩Dom(∆), (10)

where u(t, x) is the unique positive solution of evolution equation

∂u

∂t
=

1

2
∆u− 1

2
γu2, u(0, x) = φ(x). (11)

The Dawson-Watanabe superprocess Xt inherits the branching property from the

approximating branching Brownian motions (cf. Dawson (1993), [2]). Namely,

Pt(·, ν1 + ν2) = Pt(·, ν1) ∗ Pt(·, ν2), (12)

where Pt(·, µ) denotes the transition probability with the initial data µ. The

branching property extends in the obvious way to initial measures of the form

ν1 + · · · + νn. Conversely, for any integer n, the distribution of the superprocess

started from initial measure µ is written as that of the sum of n independent

copies of the superprocesses each started from µ/n. This implies that the Dawson-

Watanabe superprocess is infinitely divisible.

The following proposition is well known. The statement is the analogue of

the classical Lévy-Khintchine formula (cf. Sato (1999), [39]: Theorem 8.1, p.37),

that characterizes the possible characteristic functions of infinitely divisible distri-

butions on Rd, in the measure-valued setting.

Theorem 2. (Canonical Representation Theorem) Let (E, E) be a Polish space,

and X be infinitely divisible Random measure on (E, E). Then there exist measures

Xd ∈ MF (E) and m ∈ M(MF (E)), m ̸= 0 such that for ∀φ ∈ Cb(E),
∫
{1 −

e−⟨ν,φ⟩}m(dν) < ∞ and

− logE[e−⟨X,φ⟩] = ⟨Xd, φ⟩+
∫

{1− e−⟨ν,φ⟩}m(dν). (13)

If m({0}) = 0, then Xd and m are unique. (cf. Etheridge (2000), [28]: Theorem

1.28, p.18)
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It is natural to ask whether we can construct other processes in MF (Rd) (i.e.

superprocesses) with infinitely divisible distributions. Using the above canonical

representation formula as a starting point, we introduce the construction of gen-

eral superprocess in a rather informal way. To keep the notation as simple as

possible, we restrict our plan to time homogeneous Markov processes satisfying

two conditions: (i) branching property; (ii) infinite divisibility. Let us denote by

Y = {Yt} a time homogeneous Markov process. We have

Eµ[e
−⟨Yt,φ⟩] = e−⟨µ,Vtφ⟩. (14)

This operator Vt satisfies the property Vt+s = Vt ◦Vs. Comparing the formula (13)

and Eq.(14), we can write with the uniqueness of the canonical representation,

⟨µ, Vtφ⟩ =
∫
Rd

φ(y)Yd(µ, t, dy) +

∫
MF (Rd)

(1− e−⟨ν,φ⟩)m(µ, t, dν), (15)

where we put for simplicity

Yd(µ, t, dy) =

∫
Yd(x, t, dy)µ(dx), m(µ.t, dν) =

∫
m(x, t, dν)µ(dx).

Moreover, we can derive an important relation from (15)

Vtφ(x) = Eδx [⟨Yt, φ⟩] +
∫

(1− e−⟨ν,φ⟩ − ⟨ν, φ⟩)m(x, t, dν). (16)

When we denote by Pt the linear semigroup associated with Vt, then we have

Ptφ(x) = Eδx [⟨Yt, φ⟩].

On the assumption that Vtφ and Ptφ are differentiable with respect to time, writing

∂Ptφ

∂t
(x)

∣∣∣∣
x=0

= Aφ(x),

we obtain

∂Vtφ

∂t
(x)

∣∣∣∣
t=0

= Aφ(x) + lim
t→0

1

t

∫
(1− e−⟨ν,φ⟩ − ⟨ν, φ⟩)m(x, t, dν). (17)

Under the integrable condition on m∫
⟨ν, 1⟩ ∧ ⟨ν, 1⟩21

t
m(x, t, dν) 6 C, (∃C > 0), ∀t < 1 (18)

and some proper measurability on the kernel n(x, dθ), a measure on (0,∞) sat-

isfying
∫∞
0
θ ∧ θ 2n(x, dθ) < ∞, the compactness argument (e.g. Le Gall (1999)
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[43]) allows us to pass to the limit as t → 0. Finally, we obtain v(t, x) = Vtφ(x)

satisfying

∂v

∂t
(t, x) = Av − b(x)v − c(x)v2

+

∫ ∞

0

(1− e−θv(t,x) − θv(t, x))n(x, dθ). (19)

Here A is the generator of a Feller semigroup, c ≥ 0 and b are bounded measurable

functions, and n : (0,∞)→ (0,∞) is a kernel satisfying the integrability condition,

where required is uniformity with respect to the parameter x. Such a superpro-

cess can indeed be constructed, and the corresponding martingale problem has a

unique solution. For the rigorous treatment, see e.g. Fitzsimmons (1988) [29] and

ElKaroui-Roelly (1991) [26]. Moreover, the time inhomogeneous case is treated by

Dynkin, Kuznetsov and Skorokhod (1994) [25].

3.2 Stable Superprocess

Let α be a parameter such that (0 < α 6 2). X = {Xt; t ≥ 0} is called an

α-stable superprocess on Rd with branching of index 1+β ∈ (1, 2) (cf. Fleischmann

(1988), [30]) if X is a finite measure-valued stochastic process and the log-Laplace

equation appearing in the characterization of X is given by

∂u

∂t
= ∆αu+ au− bu1+β, (20)

where a ∈ R, b > 0 are any fixed constants, and ∆α = −(−∆)α/2 is fractional

Laplacian. The underlying spatial motion of superprocess X is described by a

symmetric α-stable motion in Rd with index α ∈ (0, 2]. Especially when α = 2,

then it just corresponds to the Brownian motion. While, its continuous-state

branching mechanism desribed by

v 7→ Ψ(v) = −av + bv1+β, v ≥ 0

belongs to the domain of attraction of a stable law of index 1 + β ∈ (1, 2]. The

branching is critical if a = 0.

It is well known that in dimensions d < α
β

at any fixed time t > 0, the

measure Xt = Xt(dx) is absolutely continuous with probability one. That is,

there is a density function X̃t(x), x ∈ Rd, such that

Xt(dx) = X̃t(x)dx.

For the case d < α
β
, β ∈ (0, 1) and α = 2, if a = 0 (critical branching), it is proven

that a version of the density X̃t(x) of the measure Xt(dx) exists and satisfies, in a
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weak sense, the SPDE

∂

∂t
Xt(x) = ∆Xt(x) + (bXt−(x))

1/(1+β)L̇(t, x), (21)

where L̇ is a (1 + β)-stable noise without negative jumps, cf. Mytnik-Perkins

(2003), [36].

4. Measure-Valued Diffusions

The operator L is defined by

L =
1

2

d∑
i,j=1

aij
∂2

∂xi∂xj
+

d∑
i=1

bi
∂

∂xi
on Rd. (22)

The coefficient a(x) = {aij(x)} is positive definite, and aij, bi ∈ Cε(Rd) with

ε ∈ (0, 1]. We suppose the following assumptions:

(A.1) the martingale problem (MP) for L is well-posed;

(A.2) the diffusion process {Yt} on Rd corresponding to L is conservative;

(A.3) {Tt} is C0-preserving.

Here C0(Rd) = {f ∈ C(Rd) : lim|x|→∞ f(x) = 0}, and {Tt} is the semigroup

corresponding to the L-diffusion Yt.

We shall explain briefly below the construction of measure-valued diffusions.

Each n ∈ N, consider Nn-particles with each of mass 1
n
, starting at points x

(n)
i ∈ Rd

(i = 1, 2, . . . , Nn). They are performing independent branching diffusions accord-

ing to the operator L with branching rate cn, (c > 0) and branching distribution

{p(n)k }∞k=1, where
∞∑
k=0

k · p(n)k = 1 +
γ

n
, (γ > 0)

and
∞∑
k=0

(k − 1)2p
(n)
k = m+ o(1), (m > 0), (n→ ∞).

Let Nn(t) be the number of particles alive at time t, and {x(n)i }Nn(t)
i=1 be their

positions. Define an MF (Rd)-valued process Xn(t) by

Xn(t) =
1

n

Nn(t)∑
i=1

δ
x
(n)
i (t)

. (23)

⟨µ, f⟩ means the integration of f relative to measure µ, i.e.,

∫
Rd

f(x)µ(dx). We

put α = cm and β = cγ.
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Theorem 3. (Roelly-Coppoletta (1986), [42]) If

Xn(0) =
1

n

Nn∑
i=1

δ
x
(n)
i

⇒ µ ∈MF (Rd), (24)

then Xn(·) converges weakly to an MF (Rd)-valued process, which can be uniquely

characterized as the solution to the following martingale problem (MP): the process

Xt ∈MF (Rd) satisfies X0 = µ, a.s. for ∀f ∈ C2
c (Rd)

Mt(f) ≡ ⟨Xt, f⟩ − ⟨X0, f⟩ −
∫ t

0

⟨Xs, Lf⟩ds− β

∫ t

0

⟨Xs, f⟩ds (25)

is a martingale with increasing process

⟨M(f)⟩t = 2α

∫ t

0

⟨Xs, f
2⟩ds. (26)

Such a process X = {Xt; t ≥ 0} = {Xt, t ≥ 0;Pα,β
µ , µ ∈ MF (Rd)} is called

a measure-valued diffusion with papameters {α, β, L}, or {α, β, L}-superprocess.
The next is the alternative characterization of measure-valued diffusion via the

log-Laplace equation. The MF (Rd)-valued diffusion X = {Xt} with parameters

(α, β, L) is characterized by the log-Laplace equation:

Eµ exp

{
−⟨Xt, g⟩ −

∫ t

0

⟨Xs, ψ⟩ds
}

= e−⟨µ,u(t)⟩ for ∀g ≥ 0, ψ ∈ C2
c (Rd) (27)

where u ≡ u(x, t) ∈ C2,1(Rd×[0,∞)) is the unique positive solution of the evolution

equation :

∂tu = Lu+ βu− αu2 + ψ, (x, t) ∈ Rd × [0,∞) (28)

u(·, 0) = g(·), u(·, t) ∈ C0(Rd).

Remark 4. (a) The existence of a classical solution u to the log-Laplace equation

follows from the method of semigroups by Pazy (1983) [37]. (b) For the non-

negativity of the solution u, the type of argument provided by Iscoe (1986) [33]

is used. (c) The uniqueness yields from the parabolic maximum principle in a

standard way, see e.g. Lieberman (1996) [35].

4.1 Fundamental Properties

We denote by Zt = ⟨Xt, 1⟩ the total mass process. Under the probability

measure Pµ, Zt is a 1-dim diffusion process on [0,∞), corresponding to the operator

L = αx
∂2

∂x2
+ βx

∂

∂x
(29)
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satisfying Z0 = µ(Rd), (µ ∈ MF (Rd)). Standard techniques from the theory of

one-dimensional diffusion processes show that

Pµ(Zt > 0, ∀t ≥ 0, lim
t→∞

Zt = ∞) = 1− exp{−β
α
µ(Rd)} (30)

and also

Pµ(Zt = 0, ∀t≫ 1 : large) = exp{−β
α
µ(Rd)}. (31)

Definition 5. (a) The path X(·) survives
⇔ if Zt > 0 for ∀t ≥ 0.

(b) The path X(·) becomes extinct

⇔ if Zt = 0 for ∀t≫ 1: large.

The critical measure-valued diffusion is obtained by choosing γ = 0

i.e.
∞∑
k=0

k · p(n)k = 1. (32)

In that case, it follows that β ≡ cγ = 0. So that, we obtain

Pµ(Zt = 0, ∀t≫ 1 : large) = e−
β
α
µ(Rd) = 1, (33)

which implies that X(·) dies out with probability one.

4.2 Transience and Recurrence

Let X = {Xt; t ≥ 0} be a supercritical MF (Rd)-valued diffusion, and we

denote by supp(X) the support of the process X = {Xt}.

Definition 6. (a) supp(X) is recurrent if, for ∀µ ∈MF (Rd), ∀B ⊂ Rd: open set,

Pµ(Xt(B) > 0, ∃t ≥ 0|X(·) survives) = 1.

(b) supp(X) is transient if, for ∀µ ∈ MF (Rd), B ⊂ Rd: bounded such that

supp(µ) ∩ B̄ = ∅,
Pµ(Xt(B) > 0, ∃t ≥ 0|X(·) suvives) < 1.

For x0 ∈ Rd and R > 0 fixed, we choose a positive function ϕ such that

ϕ ≡ ϕ(x) ∈ C2,η(Rd \ B̄R(x0)) is the minimal positive solution to the equation

Lu+ βu− αu2 = 0 in Rd \ B̄R(x0), lim
|x−x0|→R

u(x) = ∞. (34)

Theorem 7. For each µ ∈MF (Rd), we have the following expression

Pµ(Xt(BR(x0)) = 0, for ∀t ≥ 0) = e−⟨µ,ϕ⟩. (35)
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Theorem 8. (Criterion)

(a) If inf
x∈Rd\B̄R(x0)

ϕ(x) ≥ β

α
, then supp(X) is recurrent.

(b) If lim inf
|x|→∞

ϕ(x) = 0, then supp(X) is transient.

This result (Theorem 8) is used to obtain the criteria which depend more explicitly

on the operator L.

Theorem 9. If the underlying L-diffusion Y = {Yt} is recurrent, then supp(X)

is also recurrent.

In order to treat the case of transience, we need to define the motions of generalized

principal eigenvalues.

4.3 Criticality Theory for Second Order Elliptic Operator

Let D ⊂ Rd be a domain, and λ ∈ R. We define

CL−λ(D) = {u ∈ C2(D) : (L− λ)u = 0, u > 0 in D}. (36)

Definition 10. (a) The operator L − λ on D is subcritical if it possesses a

positive Green’s function: in this case, CL−λ(D) ̸= ∅.
(b) The operator L−λ on D is critical if the operator L−λ on D does not possess

a positive Green’s function, but CL−λ(D) ̸= ∅.
(c) The operator L− λ on D is supercritical if the operator L− λ on D is neither

subcritical nor critical: i.e., CL−λ(D) = ∅.

Then there exists a number λc ≡ λc(D) ∈ (−∞, 0] such that L − λ on D is

subcritical for λ > λc(D), and L−λ on D is supercritical for λ < λc(D). However,

it is either subcritical or critical for λ = λc(D).

Definition 11. Such a number λc(D) is called the generalized principal eigen-

value (GPE) for L on D.

It is monotone non-decreasing as a function of D. Note that

λC(D) = inf{λ ∈ R : CL−λ(D) ̸= ∅}.

Remark 12. If D is bounded and its boundary ∂D is smooth, and if coefficients

aij’s and bi’s of L are smooth up to the boundary ∂D, then λc(D) = λ0, where

λ0 is the classical principal eigenvalue, namely, λ0 = supRe{σ((L,Dα))}. Let
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{Dn}∞n=1 be an increasing sequence of bounded domains such that Rd = ∪∞
n=1Dn.

Furthermore, we define λc,∞ = limn→∞ λc(Rd \ D̄n) (6 λc), and it is called the

generalized principal eigenvalue at ∞.

4.4 Local Extinction

Theorem 13. (one-dimensional case)

(i) If β < −λc,∞, then supp(X) is transient.

(ii) If β > −λc,∞, then supp(X) is recurrent.

(iii) If β = −λc,∞ = −λc, then supp(X) is transient.

Theorem 14. (Multidimensional case)

If β < −λc,∞ or if β = −λc,∞ = −λc, then supp(X) is transient.

Remark 15. There is an example which illustrates the assertion that it is possible

to obtain “transience” in multidimensional case even if β > −λc,∞, cf. Pinsky

(1996), [38].

Definition 16. The support supp(X) exhibits local extinction if for each µ ∈
MF (Rd) and each bounded set B ⊂ Rd, there exists a finite random time ζB <∞,

Pµ-a.s. such that Xt(B) = 0 for ∀t ≥ ζB.

As a matter of fact, the notion of “local extinction” is not equivalent to “tran-

sience”. It is a rather stronger condition, compared to transience.

Theorem 17. The local extinction of supp(X) occurs if and only if β 6 −λc.

Remark 18. Thus, if λc ̸= λc,∞ and β ∈ (−λc,−λc,∞), then supp(X) is transient.

But supp(X) does not exhibit local extinction. When we denote by λ
(β)
c the GPE

for L+ β on Rd, then Theorem 17 implies that local extinction occurs if and only

if λ
(β)
c 6 0 according to the terminology of Pinsky (1996) [38].

Example 19. (Case study) We consider the operator L = 1
2

d2

dx2 + b0
d
dx

on R,
where b0 ̸= 0 is a constant. Then L just corresponds to a transient diffusion Y =

{Yt}. Since d = 1, we define λc,∞ = limn→∞ λc((n,∞)) and λc,−∞ = λc((−∞,−n)).
Then we obtain λc = λc,∞ = λc,−∞ = − b20

2
. Note that L− λc is critical. If β <

b20
2
,

then the Grenn’s function for L+ β = L− (−β) is given by

G−β(x, y) =
2π√
b20 − 2β

exp{−(b20 − 2β)1/2|y − x| − b0(x− y)}. (37)

(a) If β ∈ (0,
b20
2
), then supp(X) is transient, and also supp(X) exhibits local

extinction.

(b) If β =
b20
2
, then supp(X) is transient, and supp(X) exhibits local extinction.

(c) If β >
b20
2
, then supp(X) is no more transient, but it is recurrent.
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5. Principal Results on Extinction Properties

Case I is the result proved by D.A. Dawson and K. Fleischmann in Z. Wahrsch.

Verw. Geb. 70 (1985), [3], where the super-Brownian motion (SBM) X starting

from Lebesgue measure λ satisfies weak local extinction in lower dimensions. Pre-

cisely,

(a) When d = 1, 2, for any compact set A,

Xt(A) → 0 in probability as t→ ∞.

(b) However, when d ≥ 3, then X is persistent, i.e., the limiting random measure

X∞ satisfies

Pλ[X∞] = λ.

Case II is about the result that a (1 + β)-SBM X (with 0 < β 6 1) admits

weak local extinction. In fact,

(a) X is persistent if and only if dβ > 2.

However,

(b) if dβ = 2, then

Xt(A) → 0 in probability (t→ ∞).

This was proved in D.A. Dawson and K. Fleischmann: Stoch. Proc. Appl. 30

(1988), [4].

Case III is the result by I. Iscoe: Ann. Probab. 16 (1988), [34], where a

1-dimensional (1+1)-SBM X satisfies alomost sure local extinction. That is,

Pλ − a.s. Xt(A) = 0 for t large enough.

It is interesting to note that the Laplace functional of the weighted occupation

time for for SBM can also be expressed in terms of the solution to a nonlinear

PDE of similar type, cf. I. Iscoe: Probab. Th. Relat. Fields 71 (1986), [33].

Case IV treats the case of a measure-valued diffusion X with constant param-

eters α, β. Let λc be the generalized principal eigenvalue for

L =
1

2

∑
i,j

aij∂i∂j +
∑
i

bi∂i on Rd.

Assume that Xt is a supercritical measure-valued diffusion. The support supp(X)

of the process exhibits local extinction if and only if

β 6 −λc.

This result was obtained by R.G. Pinsky in Ann. Probab. 24 (1996), [38].
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Case V is about an (L, β, α,D)-superprocess X. The support supp(X) of the

process X exhibits local extinction if and only if there exists a positive solution

u > 0 to the equation

(L+ β)u = 0 on D.

This was proved in J. Engländer and R.G. Pinsky: Ann. Probab. 27 (1999), [27].

Case VI is devoted to a new type of result, where a (1+1)-SBM X exhibits a

stronger version of a.s. local extinction. Indeed, for ∀a (0 < a < 1),

Xt([−ta, ta]) = 0 holds Pµ − a.s. for t : large enough.

This is the result shown by K. Fleischmann, A. Klenke and J. Xiong: J. Theoret.

Probab. 19 (2006), [31].

The last Case VII is also about the result of a stronger version of a.s. local

extinction. Let X be a (1 + β)-SBM with Lebesgue initial measure λ. Suppose

that d < 2
β
, and let g(t) be a nondecreasing and right-continuous radius and let

Bg(t) denote a closed ball in Rd with radius g(t). X. Zhou proved in Stoch. Proc.

Appl. 118 (2008) [41] that

Xt(Bg(t)) = 0 holds Pλ − a.s. for ∀t : large enough,

provided that the integrability condition∫ ∞

1

g(y)dy−1−1/βdy <∞

is satisfied.

6. Finite Time Extinction

Suppose that p > d, and let ϕp(x) = (1 + |x|2)−p/2 be the reference function.

C = C(Rd) denotes the space of continuous functions on Rd, and define

Cp = {f ∈ C : |f | 6 Cf · ϕp,∃Cf > 0}. (38)

We denote by Mp = Mp(Rd) the set of non-negative measures µ on Rd, satisfying

⟨µ, ϕp⟩ =
∫
ϕp(x)µ(dx) <∞. (39)

It is called the space of p-tempered measures. When ξ = {ξt, Ps,a, s ≥ 0, a ∈ Rd}
is an L-diffusion, then we define the continuous additive functional Kη of ξ by

Kη = ⟨η, δx(ξr)⟩dr =
(∫

δX(ξr)η(dx)

)
dr for η ∈Mp (40)
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or equivalently, we define

K[s, t] ≡ Kη[s, t] =

∫ t

s

dr

∫
η(dx)δx(ξr), η ∈Mp. (41)

Then Xη = {Xη
t ; t ≥ 0} is said to be a measure-valued diffusion with branching

rate functional Kη if for the initial measure µ ∈ MF , X satisfies the Laplace

functional of the form

Pη
s,µe

−⟨Xη
t ,φ⟩ = e−⟨µ,v(s)⟩, (φ ∈ C+

b ), (42)

where the function v ≥ 0 is uniquely determined by

Ps,aφ(ξt) = v(s, a) + Ps,a

∫ t

s

v2(r, ξr)Kη(dr), (0 < s 6 t, a ∈ Rd). (43)

Assume that d = 1 and 0 < ν < 1. Let λ ≡ λ(dx) be the Lebesgue measure on R,
and let (γ,P) be the stable random measure on R with Laplace functional

Pe−⟨γ,φ⟩ = exp

{
−
∫
φν(x)λ(dx)

}
, φ ∈ C+

b . (44)

Note that P-a.a ω realization, γ(ω) ∈ Mp under the condition p > ν−1. We

consider a positive CAF Kγ of ξ for P-a.a. ω. So that, thanks to Dynkin’s general

formalism for superprocess with branching rate functional (see Section 1), there

exists an (L,Kγ, µ)-superprocess X
γ when we adopt a p-tempered measure γ for

CAF Kη in (40) instead of η, as far as Kγ may lie in the class Kq for some q > 0.

Namely, we can get:

Theorem 20. Let Kγ ∈ Kq. For µ ∈ MF with compact support, there exists an

(L,Kγ, µ)-superprocess with branching rate functional Kγ, i.e.,

P− a.a.ω, ∃Xγ = {Xγ,Pγ
s,µ, s ≥ 0, µ ∈MF}.

Theorem 21. (Main Result) Suppose that p > 1/ν. Let µ ∈ MF with compact

support. Then the superprocess Xγ with branching rate functional Kγ dies out for

finite time with pwobability one. That is to say,

P− a.a. γ, Pγ
0,µ(X

γ
t = 0, ∃t > 0) = 1 (45)

holds.

Example 22. For d = 1, a = 1 and b = 0, Xγ is a stable catalytic SBM. This

was initially constructed and investigated by Dawson-Fleischmann-Mueller (2000).
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7. Sketch of the Proof

Since the initial measure µ has compact support, according to Dawson-Li-

Mueller : Ann. Probab. 23 (1995) [6], Xγ has the compact support property, with

the result that the range R(X) of Xγ is compact. We are going to work with

historical superprocesses. As a matter of fact, for the sake of convenient criterion,

we put the superprocessXγ lifted up to the historical superprocess setting X̃γ
t (dw).

For a path w ∈ C = C(R+,R), we consider the stopped path wt
· ∈ C defined by

wt
s = wt∧s, (s ≥ 0), cf. E.B. Dynkin: Probab. Theory Relat. Fields 90 (1991) [23].

Then we can show the existence of the corresponding historical superprocess in

Dynkin sense, namely, we can prove that ∃ {X̃γ, P̃s,µ, s ≥ 0, µ ∈MF (Cs)}.

Theorem 23. There exists a Dynkin’s historical superprocess

X̃γ = {X̃γ, P̃γ
s,µ, s ≥ 0, µ ∈MF (C2)}.

We want to show that

lim
t→∞

P̃γ
0,µ(X̃

γ
t ̸= 0) = 0, P− a.s. (46)

Moreover, we define

CK = {w ∈ C : |ws| < K, ∀s ≥ 0} for K ≥ 1.

By the compact support property, we have

lim
K→∞

inf
t≥0

P̃γ
0,µ

(
supp(X̃γ

t ) ⊆ CK

)
= 1, P− a.a.ω. (47)

The goal is to show that, P-a.s., P̃γ
0,µ(X̃

γ
t ̸= 0) vanishes for large t. Hence it suffices

to show that, for ∀K: large

lim
t→∞

P̃γ
0,µ(X̃

γ
t ̸= 0 and supp(X̃γ

t ) ⊂ CK) = 0. (48)

By emplying the periodic extension technique γ → γK , it suffices to show finite

time extinction of the historical Dynkin-superprocess X̃γK
with fixed periodic ex-

tension γK : i.e.

lim
t→∞

P̃γK

0,µ(X̃
γK

t ̸= 0) = 0, each fixed K > 1.

As a matter of fact, we can show the above expression by using the comparison of

extinction probabilities of Dawson-Fleischmann-Mueller: Ann. Probab. 28 (2000)

[5] and also by a similar technique on finite time extinction of catalytic branching

process of Fleischmann-Mueller (2000) [32]. There is another important key point,

i.e., decomposition of initial measures. Suppose that the initial measure has a

finite deconposition µ =
∑

i µi. If we can show finite time extinction for each

-168-



initial measure Xγ
0 = µi, then the branching property implies finite time extinction

for Xγ
0 = µ. Therefore it is very useful that the stable random measure γ admits

a representation of sum of discrete points. After all, we obtain

Proposition 24. For a fixed sample γ(ω)

lim
t→∞

P̃γ
0,µ(X̃

γ
t ̸= 0 and supp(X̃γ

t ) ⊆ CK) = 0.

Finally, through the projection technique (cf. Dawson-Perkins (1991) [7]; Dôku

(2003) [9]), we obtain the following result. For P-a.a. ω,

Pγ
0,µ(X

γ
t = 0 for some t > 0) = 1

which means that the process Xγ exhibits finite time extinction.
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