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Abstract

We study a class of historical superprocesses in the Dynkin sense. This class is

closely related to a group of superprocesses, namely, measure-valued branching

Markov processes, which are associated with stable random measure. Then we

prove the existence theorem for the class of historical superprocesses in Dynkin’s

sense.
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1. Introduction

The purpose of this paper is to investigate a class of historical superprocesses

in Dynkin’s sense. This class is closely related to another class of superprocesses,

namely, measure-valued branching Markov processes, which are associated with

stable random measure. Then it is proven that the class of historical superprocesses

in Dynkin’s sense exists under some suitable conditions. Now we shall begin with

introducing a fundamental relationship between superprocess and its associated

historical superprocess.

1.1 Superprocess with Branching Rate Functional

In this subsection we shall introduce the so-called superprocess with branching

rate functional, which forms a general class of measure-valued branching Markov

processes with diffusion as a underlying spatial motion. We write the integral of

measurable function f with respect to measure µ as ⟨µ, f⟩ =
∫
fdµ. For simplicity,

MF = MF (Rd) is the space of finite measures on Rd. Define a second order

elliptic differential operator L = 1
2
∇ · a∇+ b · ∇, and a = (aij) is positive definite

and we assume that aij, bi ∈ C1,ε = C1,ε(Rd). Here the space C1,ε indicates the

totality of all Hölder continuous functions with index ε (0 < ε 6 1), allowing their

first order derivatives to be locally Hölder continuous. Ξ = {ξ,Πs,a, s ≥ 0, a ∈
Rd} indicates a corresponding L-diffusion. Moreover, CAF stands for continuous

additive functional in Probability Theory.
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Definition 1. (A Locally Admissible Class of CAF; cf. Dynkin (1994), [17])

A continuous additive functional K is said to be in the Dynkin class with index q

and we write K ∈ Kq, (some q > 0) if (a)

sup
a∈Rd

Πs,a

∫ t

s

ϕp(ξr)K(dr) → 0, (r0 ≥ 0) as s→ r0, t→ r0; (1)

(b) each N , ∃cN > 0 :

Πs,a

∫ t

s

ϕp(ξr)K(dr) 6 cN |t− s|qϕp(a), (for 0 6 s 6 t 6 N, a ∈ Rd). (2)

�

When we write Cb as the set of bounded continuous functions on Rd, then C+
b is the

set of positive members g in Cb. The process X = {X,Ps,µ, s ≥ 0, µ ∈MF} is said

to be a superprocess (or superdiffusion) with branching rate functional K or simply

(L,K, µ)-superprocess if X = {Xt} is a continous MF -valued time-inhomogeneous

Markov process with Laplace transition functional

Ps,µe
−⟨Xt,φ⟩ = e−⟨µ,v(s,t)⟩, 0 6 s 6 t, µ ∈MF , φ ∈ C+

b . (3)

Here the function v is uniquely determined by the following log-Laplace equation

Πs,aφ(ξt) = v(s, a) + Πs,a

∫ t

s

v2(r, ξr)K(dr), 0 6 s 6 t, a ∈ Rd. (4)

1.2 Associated Historical Superprocess

The historical superprocess was initially studied by E.B. Dynkin (1991) [15],[16],

see also Dawson-Perkins (1991) [5]. C = C(R+,Rd) denotes the space of contin-

uous paths on Rd with topology of uniform convergence on compact subsets of

R+. To each w ∈ C and t > 0, we write wt ∈ C as the stopped path of w. We

denote by Ct the totality of all these paths stopped at time t. To every w ∈ C
we associate the corresponding stopped path trajectory w̃ defined by w̃t = wt for

t ≥ 0. The image of L-diffusion w under the map : w 7→ w̃ is called the L-diffusion

path process. Moreover, we define

C×
R ≡ R+×̂C· = {(s, w) : s ∈ R+, w ∈ Cs} (5)

and we denote by M(C×
R) ≡ M(R+×̂C·) the set of measures η on R+×̂C· which

are finite, if restricted to a finite time interval. Let K be a positive CAF of ξ. X̃ =

{X̃, P̃s,µ, s ≥ 0, µ ∈ MF (Cs)} is said to be a Dynkin’s historical superprocess (cf.
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Dynkin (1991), [16]) if X̃ = {X̃t} is a time-inhomogeneous Markov process with

state X̃t ∈MF (Ct), t ≥ s, with Laplace transition functional

P̃s,µe
−⟨X̃t,φ⟩ = e−⟨µ,v(s,t)⟩, 0 6 s 6 t, µ ∈MF (Cs), φ ∈ C+

b (C), (6)

where the function v is uniquely determined by the log-Laplace type equation

Π̃s,wsφ(ξ̃t) = v(s, ws) + Π̃s,ws

∫ t

s

v2(r, ξ̃r)K̃(dr), 0 6 s 6 t, ws ∈ Cs. (7)

We call this class of process an associted historical superprocess in Dynkin’s sense

in this article.

2. Examples of Measure-Valued Processes

2.1 Dawson-Watanabe Superprocess

X = {Xt; t ≥ 0} is said to be the Dawson-Watanabe superprocess (cf. Watan-

abe (1968), [29], Dawson (1975), [1]) if {Xt} is a Markov process taking values

in the space MF (Rd) of finite measures on Rd, satisfying the following martingale

problem (MP): i.e., there exists a probability measure P ∈ P(MF (Rd)) on the

sapce MF (Rd) such that for all φ ∈ Dom(∆)

Mt(φ) ≡ ⟨Xt, φ⟩ − ⟨X0, φ⟩ −
∫ t

0

⟨Xs,
1

2
∆φ⟩ds (8)

is a P-martingale and its quadratic variation process is given by

⟨M(φ)⟩t = γ

∫ t

0

⟨Xs, φ
2⟩ds. (9)

Or equivalently, the Laplace transition functional of {Xt} is given by

Ee−⟨Xt,φ⟩ = e−⟨X0,u(t)⟩, for φ ∈ C+
b (R

d) ∩Dom(∆), (10)

where u(t, x) is the unique positive solution of evolution equation

∂u

∂t
=

1

2
∆u− 1

2
γu2, u(0, x) = φ(x). (11)

The Dawson-Watanabe superprocess Xt inherits the branching property from the

approximating branching Brownian motions (cf. Dawson (1993), [2]). Namely,

Pt(·, ν1 + ν2) = Pt(·, ν1) ∗ Pt(·, ν2), (12)

where Pt(·, µ) denotes the transition probability with the initial data µ. The

branching property extends in the obvious way to initial measures of the form

ν1 + · · · + νn. Conversely, for any integer n, the distribution of the superprocess
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started from initial measure µ is written as that of the sum of n independent

copies of the superprocesses each started from µ/n. This implies that the Dawson-

Watanabe superprocess is infinitely divisible.

The following proposition is well known. The statement is the analogue of

the classical Lévy-Khintchine formula (cf. Sato (1999), [28]: Theorem 8.1, p.37),

that characterizes the possible characteristic functions of infinitely divisible distri-

butions on Rd, in the measure-valued setting.

Theorem 2. (Canonical Representation Theorem) Let (E, E) be a Polish space,

and X be infinitely divisible Random measure on (E, E). Then there exist measures

Xd ∈ MF (E) and m ∈ M(MF (E)), m ̸= 0 such that for ∀φ ∈ Cb(E),
∫
{1 −

e−⟨ν,φ⟩}m(dν) < ∞ and

− logE[e−⟨X,φ⟩] = ⟨Xd, φ⟩+
∫

{1− e−⟨ν,φ⟩}m(dν). (13)

If m({0}) = 0, then Xd and m are unique. (cf. Etheridge (2000), [20]: Theorem

1.28, p.18)

It is natural to ask whether we can construct other processes in MF (Rd) (i.e.

superprocesses) with infinitely divisible distributions. As a matter of fact, using

the above canonical representation formula as a starting point, we can construct a

more general superprocess. To keep the notation as simple as possible, we restrict

our plan to time homogeneous Markov processes satisfying two conditions: (i)

branching property; (ii) infinite divisibility. Let us denote by Y = {Yt} a time

homogeneous Markov process. We have

Eµ[e
−⟨Yt,φ⟩] = e−⟨µ,Vtφ⟩. (14)

This operator Vt satisfies the property Vt+s = Vt ◦Vs. Comparing the formula (13)

and Eq.(14), we can write with the uniqueness of the canonical representation,

⟨µ, Vtφ⟩ =
∫
Rd

φ(y)Yd(µ, t, dy) +

∫
MF (Rd)

(1− e−⟨ν,φ⟩)m(µ, t, dν), (15)

where we put for simplicity

Yd(µ, t, dy) =

∫
Yd(x, t, dy)µ(dx), m(µ.t, dν) =

∫
m(x, t, dν)µ(dx).

Moreover, we can derive an important relation from (15)

Vtφ(x) = Eδx [⟨Yt, φ⟩] +
∫

(1− e−⟨ν,φ⟩ − ⟨ν, φ⟩)m(x, t, dν). (16)
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When we denote by Pt the linear semigroup associated with Vt, then we have

Ptφ(x) = Eδx [⟨Yt, φ⟩],
∂Ptφ

∂t
(x)

∣∣∣∣
x=0

= Aφ(x). (17)

Under the integrable condition on m∫
⟨ν, 1⟩ ∧ ⟨ν, 1⟩21

t
m(x, t, dν) 6 C, (∃C > 0), ∀t < 1 (18)

and some proper measurability on the kernel n(x, dθ), a measure on (0,∞) satis-

fying
∫∞
0
θ∧ θ2n(x, dθ) <∞, the compactness argument (e.g. Le Gall (1999) [31])

allows us to obtain v(t, x) = Vtφ(x) satisfying

∂v

∂t
(t, x) = Av − b(x)v − c(x)v2

+

∫ ∞

0

(1− e−θv(t,x) − θv(t, x))n(x, dθ). (19)

Here A is the generator of a Feller semigroup, c ≥ 0 and b are bounded measurable

functions, and n : (0,∞)→ (0,∞) is a kernel satisfying the integrability condition,

where required is uniformity with respect to the parameter x. Note that the cor-

responding martingale problem has a unique solution. For the rigorous treatment,

see e.g. Fitzsimmons (1988) [21] and ElKaroui-Roelly (1991) [19]. Moreover, the

time inhomogeneous case is treated by Dynkin, Kuznetsov and Skorokhod (1994)

[18].

2.2 Stable Superprocess

Let α be a parameter such that (0 < α 6 2). X = {Xt; t ≥ 0} is called an

α-stable superprocess on Rd with branching of index 1+β ∈ (1, 2) (cf. Fleischmann

(1988), [22]) if X is a finite measure-valued stochastic process and the log-Laplace

equation appearing in the characterization of X is given by

∂u

∂t
= ∆αu+ au− bu1+β, (20)

where a ∈ R, b > 0 are any fixed constants, and ∆α = −(−∆)α/2 is fractional

Laplacian. The underlying spatial motion of superprocess X is described by a

symmetric α-stable motion in Rd with index α ∈ (0, 2]. Especially when α = 2,

then it just corresponds to the Brownian motion. While, its continuous-state

branching mechanism desribed by

v 7→ Ψ(v) = −av + bv1+β, v ≥ 0

belongs to the domain of attraction of a stable law of index 1 + β ∈ (1, 2]. The

branching is critical if a = 0. See also Mytnik-Perkins (2003), [26].
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2.3 Measure-Valued Diffusions

The operator L is defined by

L =
1

2

d∑
i,j=1

aij
∂2

∂xi∂xj
+

d∑
i=1

bi
∂

∂xi
on Rd. (21)

The coefficient a(x) = {aij(x)} is positive definite, and aij, bi ∈ Cε(Rd) with

ε ∈ (0, 1]. We suppose the following assumptions:

(A.1) the martingale problem (MP) for L is well-posed;

(A.2) the diffusion process {Yt} on Rd corresponding to L is conservative;

(A.3) {Tt} is C0-preserving.

Here C0(Rd) = {f ∈ C(Rd) : lim|x|→∞ f(x) = 0}, and {Tt} is the semigroup

corresponding to the L-diffusion Yt.

We shall explain briefly below the construction of measure-valued diffusions.

Each n ∈ N, consider Nn-particles with each of mass 1
n
, starting at points x

(n)
i ∈ Rd

(i = 1, 2, . . . , Nn). They are performing independent branching diffusions accord-

ing to the operator L with branching rate cn, (c > 0) and branching distribution

{p(n)k }∞k=1, where
∞∑
k=0

k · p(n)k = 1 +
γ

n
, (γ > 0)

and
∞∑
k=0

(k − 1)2p
(n)
k = m+ o(1), (m > 0), (n→ ∞).

Let Nn(t) be the number of particles alive at time t, and {x(n)i }Nn(t)
i=1 be their

positions. Define an MF (Rd)-valued process Xn(t) by

Xn(t) =
1

n

Nn(t)∑
i=1

δ
x
(n)
i (t)

. (22)

⟨µ, f⟩ means the integration of f relative to measure µ, i.e.,

∫
Rd

f(x)µ(dx). We

put α = cm and β = cγ.

Theorem 3. (Roelly-Coppoletta (1986), [30]) If

Xn(0) =
1

n

Nn∑
i=1

δ
x
(n)
i

⇒ µ ∈MF (Rd), (23)

then Xn(·) converges weakly to an MF (Rd)-valued process, which can be uniquely

characterized as the solution to the following martingale problem (MP): the process
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Xt ∈MF (Rd) satisfies X0 = µ, a.s. for ∀f ∈ C2
c (Rd)

Mt(f) ≡ ⟨Xt, f⟩ − ⟨X0, f⟩ −
∫ t

0

⟨Xs, Lf⟩ds− β

∫ t

0

⟨Xs, f⟩ds (24)

is a martingale with increasing process

⟨M(f)⟩t = 2α

∫ t

0

⟨Xs, f
2⟩ds. (25)

Such a process X = {Xt; t ≥ 0} = {Xt, t ≥ 0;Pα,β
µ , µ ∈ MF (Rd)} is called

a measure-valued diffusion with papameters {α, β, L}, or {α, β, L}-superprocess.
The next is the alternative characterization of measure-valued diffusion via the

log-Laplace equation. The MF (Rd)-valued diffusion X = {Xt} with parameters

(α, β, L) is characterized by the log-Laplace equation:

Eµ exp

{
−⟨Xt, g⟩ −

∫ t

0

⟨Xs, ψ⟩ds
}

= e−⟨µ,u(t)⟩ for ∀g ≥ 0, ψ ∈ C2
c (Rd) (26)

where u ≡ u(x, t) ∈ C2,1(Rd×[0,∞)) is the unique positive solution of the evolution

equation :

∂tu = Lu+ βu− αu2 + ψ, (x, t) ∈ Rd × [0,∞) (27)

u(·, 0) = g(·), u(·, t) ∈ C0(Rd).

Remark 4. (a) The existence of a classical solution u to the log-Laplace equation

follows from the method of semigroups by Pazy (1983) [27]. (b) For the non-

negativity of the solution u, the type of argument provided by Iscoe (1986) [24]

is used. (c) The uniqueness yields from the parabolic maximum principle in a

standard way, see e.g. Lieberman (1996) [25].

3. Superprocess Related to Random Measure

Suppose that p > d, and let ϕp(x) = (1 + |x|2)−p/2 be the reference function.

C = C(Rd) denotes the space of continuous functions on Rd, and define

Cp = {f ∈ C : |f | 6 Cf · ϕp,∃Cf > 0}. (28)

We denote by Mp = Mp(Rd) the set of non-negative measures µ on Rd, satisfying

⟨µ, ϕp⟩ =
∫
ϕp(x)µ(dx) <∞. (29)
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It is called the space of p-tempered measures. When Ξ = {ξt,Πs,a, s ≥ 0, a ∈ Rd}
is an L-diffusion, then we define the continuous additive functional Kη of ξ by

Kη = ⟨η, δx(ξr)⟩dr =
(∫

δX(ξr)η(dx)

)
dr for η ∈Mp (30)

or equivalently, we define

K[s, t] ≡ Kη[s, t] =

∫ t

s

dr

∫
η(dx)δx(ξr), η ∈Mp. (31)

Then Xη = {Xη
t ; t ≥ 0} is said to be a measure-valued diffusion with branching

rate functional Kη if for the initial measure µ ∈ MF , X satisfies the Laplace

functional of the form

Pη
s,µe

−⟨Xη
t ,φ⟩ = e−⟨µ,v(s)⟩, (φ ∈ C+

b ), (32)

where the function v ≥ 0 is uniquely determined by

Πs,aφ(ξt) = v(s, a) + Πs,a

∫ t

s

v2(r, ξr)Kη(dr), (0 < s 6 t, a ∈ Rd). (33)

Assume that d = 1 and 0 < ν < 1. Let λ ≡ λ(dx) be the Lebesgue measure on R,
and let (γ,P) be the stable random measure on R with Laplace functional

Pe−⟨γ,φ⟩ = exp

{
−
∫
φν(x)λ(dx)

}
, φ ∈ C+

b . (34)

Note that P-a.a ω realization, γ(ω) ∈ Mp under the condition p > ν−1. We

consider a positive CAF Kγ of ξ for P-a.a. ω. So that, thanks to Dynkin’s general

formalism for superprocess with branching rate functional (see Section 1), there

exists an (L,Kγ, µ)-superprocess X
γ when we adopt a p-tempered measure γ for

CAF Kη in (30) instead of η, as far as Kγ = Kγ(ω; dr) may lie in the class Kq for

some q > 0. Namely, we can get:

Theorem 5. Let Kγ ∈ Kq. For µ ∈ MF with compact support, there exists an

(L,Kγ, µ)-superprocess with branching rate functional Kγ, i.e.,

P− a.a.ω, ∃ Xγ = {Xγ,Pγ
s,µ, s ≥ 0, µ ∈MF}.

Example 6. For d = 1, a = 1 and b = 0, Xγ is a stable catalytic SBM. This

was initially constructed and investigated by Dawson-Fleischmann-Mueller (2000)

[3].

4. Historical Superprocess Related to Random Measure
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Since the initial measure µ has compact support, according to Dawson-Li-

Mueller : Ann. Probab. 23 (1995) [4], Xγ has the compact support property, with

the result that the range R(X) of Xγ is compact. We are going to work with

historical superprocesses. As a matter of fact, for the sake of convenient criterion,

we put the superprocessXγ lifted up to the historical superprocess setting X̃γ
t (dw).

For a path w ∈ C = C(R+,R), we consider the stopped path wt
· ∈ C defined by

wt
s = wt∧s, (s ≥ 0), cf. E.B. Dynkin: Probab. Theory Relat. Fields 90 (1991) [16].

Then we can show the existence of the corresponding historical superprocess in

the Dynkin sense, namely, we can prove that ∃ {X̃γ, P̃γ
s,µ, s ≥ 0, µ ∈MF (Cs)}.

Theorem 7. (Main Result) Let Kγ be a positive CAF of ξ lying in the Dynkin

class Kq. Then there exists a historical superprocess in the Dynkin sense

X̃γ = {X̃γ, P̃γ
s,µ, s ≥ 0, µ ∈MF (Cs)}.

In fact, X̃γ = {X̃γ, P̃γ
s,µ, s ≥ 0, µ ∈ MF (Cs)} is a time-inhomogeneous Markov

process with state X̃γ
t ∈MF (Ct), t ≥ s, with Laplace transition functional

P̃γ
s,µ exp

{
−⟨X̃γ

t , φ⟩
}
= e−⟨µ,v(s,t)⟩, 0 6 s 6 t, µ ∈MF (Cs), φ ∈ C+

b (C),
(35)

where the function v is uniquely determined by the log-Laplace type equation

Π̃s,wsφ(ξ̃t) = v(s, ws) + Π̃s,ws

∫ t

s

v2(r, ξ̃r)K̃γ(ω; dr), 0 6 s 6 t, ws ∈ Cs. (36)

Remark 8. There is another important key point, i.e., decomposition of initial

measures. Suppose that the initial measure has a finite deconposition µ =
∑

i µi.

If we can show finite time extinction for each initial measure Xγ
0 = µi, then the

branching property implies finite time extinction for Xγ
0 = µ. Therefore it is very

useful that the stable random measure γ admits a representation of sum of discrete

points.

5. Proof of Main Result

Roughly speaking, in order to prove our principal result Theorem 7, we need to

apply Theorem 5 (the existence theorem for superprocess related to stable random

measure) to historical process.

5.1 Reformulation

In this subsection for convenience we shall adopt some notation and termi-

nology from Dynkin (1991) : Ann. Probab. 19 (1991) [15]. Let (Et,Bt) be a

measurable space that describes the state space of the underlying process ξ at

time t (which can usually be imbedded isomorphically into a compact metrizable
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space C), and Ê be the global state space given by the set of pairs t ∈ R+ and

x ∈ Et. The symbol B(Ê) denotes the σ-algebra in Ê, generated by functions

f : Ê → R. Note that

Ê(I) = {(r, x) : r ∈ I, x ∈ Er} ∈ B(Ê)

for every interval I. The sample spaceW is a set of paths (or trajectories) ξt(w) =

wt for each w ∈ W . Furthermore, F(I) is the σ-algebra generated by ξt(w) for

t ∈ I. Let w(I) denote the restriction of w ∈ W to I, and W (I) be the image of

W under this mapping. Especially when F◦(I) is the σ-algebra inW (I) generated

by ξt, t ∈ I, then B ∈ F◦(I) is equivalent to the inverse image of B under the

mapping w 7→ w(I) belongs to F(I). Let r < t < u. Suppose that w1 ∈ W [r, t]

and w2 ∈ W [t, u]. Then we write w = w1 ∨ w2 if ws = w1
s for s ∈ [r, t] and if

ws = w2
s for s ∈ [t, u]. Moreover,

Ξ̃ = (ξ6t,FΞ̃(I), Π̃r,w(6r)) = (ξ(−∞, t],FΞ̃(I), Π̃r,w(−∞,r])

is the historical process for ξ = (ξt,F(I),Πr,a). Under those circumstances, it

suffices to prove the following assertion Theorem 9 in order to prove the main

result Theorem 7.

Thorem 9. Let Ξ̃ be a historical process, K̃γ = K̃γ(ω) be its CAF associated to

stable random measure γ with properties:

(a) For every q > 0, r < t and x ∈ Er,

Π̃r,x(6r)e
qK̃γ(ω;(r,t)) <∞.

(b) For every t0 < t, there exists a positive constant C such that

Π̃r,x(6r)K̃γ(ω; (r, t)) 6 C

holds for r ∈ [t0, t), x ∈ Er. Put ψt(x, z) = bt(x)z2 = 1 × z2. Then there exists a

Markov process

Mγ = (Mγ
t ,G(I), P γ

r,µ)

on the space M6t = MF (Ct) of all finite measures on (W,F∗
6t) = (W,F∗(−∞, t])

with the universal completion F∗
6t of σ-algebra, such that for every t ∈ R+ and

φ ∈ F∗
6t,

P γ
r,µ exp {−⟨Mγ

t , φ⟩} = e−⟨µ,v(r,·)⟩, 0 6 r 6 t, µ ∈ M6r, (37)

where vr(w6r) = v(r, w(−∞, r]) is a progressive function determined uniquely by

the equations

vr(x6r) + Π̃r,x(6r)

∫ t

r

ψs(ξ6s, v
s(ξ6s))K̃γ(ω; ds) = Π̃r,x(6r)φ(ξ6t) for r 6 t (38)

vr(x6r) = 0 for r > t.

-258-



5.2 Key Lemma

First of all we define some spaces which are used later. Let H be the cone

of all bounded functions f ∈ B with the topology of bounded convergence, where

we say that a sequence {fn} of B-measurable functions converges boundedly to f

as n tends to infinity, if fn → f pointwise and if fn are uniformly bounded. In

addition, we define Hc = H ∩ {f : 0 6 f 6 c}. In order to prove Theorem 5 we

need the following key lemma (Lemma 10), which plays an important role in the

succeeding subsection. Based upon the discussion on approximation in terms of

branching particle systems (cf. §2, Chapter 3, pp.45–52 in Dynkin (1994) [17]),

we suppose that the function vrt (β, x) satisfies

vrt (β, x) + Πr,x

∫ t

r

ψs
β(ξs, v

s
t (β, ξs))Kγ(ω; ds) = Πr,xFβ(ξt) (39)

with Fβ(x) =
1
β
(1− e−βf(x)).

Lemma 10. (Key Lemma) Let Kγ be the CAF of the underlying L-diffusion ξ

as stated in Theorem 5. For β > 0, we assume that ψt
β(x, z) converges to ψt(x, z)

uniformly on the set (t, x) ∈ Ê, z ∈ [0, c] for every c ∈ (0,∞). Then the function

vrt (β, x) given by (39) converges uniformly on every set r ∈ [t0, t) and f ∈ Hc to

the unique solution vr(x) of the following integral equation

vr(x) + Πr,x

∫ t

r

ψs(ξs, v
s(ξs))Kγ(ω; ds) = Πr,xf(ξt) for r 6 t (40)

vr(x) = 0 for r > t.

Example 11. We give a typical example for ψt
β(x, z) to converge to ψt(x, z)

uniformly on the set.

ψt
β(x, z) =

bt(x)

k(k − 1)
{(1 − βz)k − 1 + kβz

}
β−2

+

∫ 1/β

0

(e−uz − 1 + zu)nt(x, du)

and

ψt(x, z) =
1

2
bt(x)z2 +

∫ ∞

0

(e−uz − 1 + zu)nt(x, du)

where bt(x) is a bounded progressive function and nt(x, du) is a kernel from

(Ê,B∗(Ê)) to (0,+∞) such that∫ 1

0

u2 · nt(x, du) and

∫ ∞

1

u · nt(x, du)
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are bounded functions on Ê and
∫∞
N
u·nt(x, du) → 0 uniformly in (t, x) as N → ∞.

�

Proof of Lemma 10. We have

0 6 vrt (β, x) 6 Πr,xf(ξt) 6 c (41)

for all f ∈ Hc. By virtue of the assumption, for every ε > 0 there exists a positive

constant β0 such that

|ψs
β(x, z)− ψs(x, z)| 6 ε (42)

holds for all β ∈ I0 = (0, β0), (s, x) ∈ Ê and z ∈ [0, c]. Since the function ψt(x, z)

is locally Lipschitz in z uniformly in (t, x), it is obvious to see that there exists a

constant Kc > 0 such that

|ψt(x, z1)− ψt(x, z2)| 6 Kc|z1 − z2| (43)

for all z1, z2 ∈ [0, c] and (t, x) ∈ Ê. On this account, a simple computation with

(42) and (43) leads to

|ψs
β(x, v

s
t (β, y))− ψs

β1
(x, vst (β1, y))| (44)

6 |ψs
β(x, v

s
t (β, y))− ψs(x, vst (β, y))|+ |ψs(x, vst (β, y))− ψs(x, vst (β1, y))|

+ |ψs(x, vst (β1, y))− ψs
β1
(x, vst (β1, y))|

6 2ε+Kc|vst (β, y)− vst (β1, y)|

for all β, β1 ∈ (0, β0), f ∈ Hc and all (s, x), (s, y) ∈ Ê. We deduce from (39), (41)

and properties of Kγ that

|vrt (β, x)− vrt (β1, x)| 6 ∥Fβ − Fβ1∥+ 2εC1

+ C2 · Πr,x

∫ t

r

|vst (β, x)− vst (β1, x)| ·Kγ(ω; ds) (45)

holds for ∃C1, C2 > 0. So that, the generalized Gronwall inequality applied to (45)

allows us to obtain

|vrt (β, x)− vrt (β1, x)| 6 (∥Fβ − Fβ1∥+ 2εC1)Πr,xe
C2·Kγ(ω;(r,t)). (46)

We may apply an elementary inequality to get

∥Fβ − Fβ1∥ 6 ∥Fβ − f∥+ ∥f − Fβ1∥ 6 (β + β1)∥f∥2/2, (47)

paying attention to the fact that |Fβ(x)− f(x)| 6 1
2
βc2 with 0 6 f(x) 6 c for all

x. Since ψs
β(x, v

s
t (β, x)) converges to ψ

s(x, vs(x)) uniformly on the set of s ∈ [r, t]
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and x ∈ Es, passage to the limit β → 0 in (39) is legitimate so as to derive the

integral equation (40). Lastly the uniqueness of the solution vr(x) for (40) yields

again from the generalized Gronwall inequality. �

5.3 Proof of Theorem 5

For every probability measure M on MF (E) (i.e. M ∈ P(MF (E)) ), the

formula

LM(f) =

∫
MF (E)

e−⟨ν,f⟩M(dν), f ∈ H (48)

defines a continuous functional on H, which is called the Laplace functional of the

measure M . We denote by πµ the Poisson random measure on (Ê,B(Ê)) with

intensity µ, and notice that∫
e⟨ν,f⟩πµ(dν) = exp{⟨µ, ef − 1⟩}

holds, where ⟨η, v⟩ =
∫
Ê
v(r, x)η(dr, dx). Based upon the existence argument for

superprocess (cf. §4, Chapter 3 of Dynkin (1994) [17]), the formula

Qβ
πη/β

exp{−⟨βYt, f⟩} = e−⟨η,vt(β)⟩ (49)

with β > 0 and a counting measure Yt, means that

LMβ
(f) = exp{−⟨η, vt(β)⟩} (50)

where Mt = MF (Et), and Mβ(·) is a probability measure on (Mt,B(Mt)) =

(MF (Et), B(MF (Et))), that is to say, Mβ ∈ P(Mt), which is defined by

Mβ(C) = Qβ
πη/β

({βYt ∈ C}), ∀C ∈ B(Mt). (51)

Let η be an admissible measure on Ê, concentrated on Ê≥t0 and satisfying that

η(Ê6t) < ∞ for all t > 0. We write such a measure as η ∈ M(Ê). Then by the

key lemma (Lemma 10) a uniform convergence

⟨η, vt(β)⟩ → ⟨η, vt⟩

on each setHc is induced naturally. On the other hand, a general theory on Laplace

functionals (cf. e.g. §3.4, Chapter 3, pp.50–51 in Dynkin (1994) [17]) guarantees

that, if LMn(f) → L(f) uniformly on each set Hc, then the limit L is the Laplace

functional of a probability measure. According to this argument, there exists a

probability measure P(η; t, ·) on (Mt,B(Mt)) such that∫
e−⟨ν,f⟩P(η; t, dν) = e−⟨η,v⟩. (52)
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For an arbitrary η ∈ M(Ê), we consider restrictions ηn of η to Ê[n, n+1), namely,

ηn = η � Ê[n, n + 1), and we write P(η; t, ·) for ∀ η ∈ M(Ê) as the convolution

of measures P(ηn; t, ·). Since the formula (52) is valid for ηn, it is also true for

η ∈ M(Ê). Hence it follows by Fatou’s lemma that∫
⟨ν, 1⟩P(η; t, dν) 6 lim

λ↓0

1

λ

∫
(1− e−λ⟨ν,1⟩)P(η; t, dν) (53)

6 η(Ê6t) <∞

and therefore it turns out that the measure P(η; t, ·) is concentrated on Mt. Take

a measure µ ∈ Mr, and let ηr be the image of µ under the mapping τ : x 7→ (r, x)

from Er to (Ê, B(Ê)). While we write the transition probability as

P̂(r, µ; t, ·) = P(Xγ
t ∈ (·)|Xγ

r = µ).

On this account, the formula

P̂(r, µ; t, ·) = P̂(r, τ−1(ηr); t, ·) = P(ηr; t, ·) (54)

determines a Markov transition function P̂ by virtue of the well-known argument

seen e.g. in the proof of Theorem 3.1 in Dynkin, E.B. : Trans. Amer. Math. Soc.

314 (1989), pp.255–282. Thus we attain that Theorem 5 (insisting the existence

theorem for superprocess Xγ = {Xγ
t } related to stable random measure γ(ω))

holds for any Markov process Xγ with this transition function P̂ . �

5.4 Proof of Theorem 9

As stated in the assertion of Theorem 9, set ψ = ψt(x, z) as special branching

mechanism. The historical superprocess Mγ = (Mγ
t , G(I), P γ

r,µ) with parameters

(Ξ̃, K̃γ, ψ) can be obtained from the superprocess Xγ with the almost same

parameters (Ξ, Kγ, ψ) by the direct construction. First of all we define the finite-

dimensional distributions of the random measure Mγ
t as

µt1t2···tn(A1×A2×· · ·×An) =Mγ
t ({w(t1) ∈ A1, w(t2) ∈ A2, . . . , w(tn) ∈ An}) (55)

for time partition∆ = {tk} with t1 < t2 < · · · < tn 6 t and A1 ∈ Bt1 , A2 ∈ Bt2 , . . . ,

An ∈ Btn . Actually, this µt1···tn determines uniquely the probability distribution on

B(Et1 × · · · × Etn). To this end we replace Xγ
t1 by its restriction X̂γ

t1 (= Xγ
t1 � A1)

to A1 and run the superprocess during the time interval [t1, t2] starting from X̂γ
t1 .

Moreover we can proceed analogously until getting a Z ∈ Mt and then take Z(Et)

as the value for (55). Then we construct a measure Mγ
t on M6t by applying the

Kolmogorov extension theorem to the family (55) {µt1···tn}. Indeed, if {µt1···tn}
satisfies the consistency condition:

µt1···tk−1tk+1···tn(A1 × · · · × Ak−1 × Ǎk × Ak+1 × · · · × An) (56)

= µt1···tk−1tktk+1···tn(A1 × · · · × Ak−1 × Etk × Ak+1 × · · · × An)
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for k = 1, 2, . . . , n and Ak ∈ Btk (k = 1, 2, . . . , n), where the symbol ∨ means

exclusion of the number or item crowned with ∨ from the set N = {1, 2, . . . , n},
then the Kolmogorov extension theorem guarantees that there exists a unique

probability measure P on (Ω̂,B(Ω̂)) such that the finite-dimensional distribution

of Mγ
t ∈ M6t is equal to {µt1···tn}. Here Ω̂ is given by

Ω̂ = (M6t)
[0,∞) = {ω|ω(·) : [0,∞) → M6t}. (57)

It is said that the historical superprocess can be obtained from branching

particle systems (= BPS), however it cannot be obtained from BPS by the limit

procedure (cf. e.g. §1.2 in Dynkin (1991) [15]) applied to the Markov process

Y = {Yt(·)} indicating the number of particles alive at time t in a set (·). As a

matter of fact, it can be obtained from BPS by the limit procedure applied to the

special process Y = {Yt}. In fact, as a function of t, Yt is a measure-valued process

in functional spaces W6t = W (−∞, t] (called historical path space). Moreover,

note that the complete picture of a branching particle system is given not by the

process Yt but by the random tree composed of the paths of all particles. We sgall

give below a rough sketch about construction of Yt. Now let us pick up a particle

< P > at time t at a point z. Its genealogy can be represented by a scheme

(r, x) → (s1, y1) → (s2, y2) → · · · → (sk, yk) → (t, z). (58)

The rabels (si, yi) indicates the birth time and birth place of the particle < P >

and its ancestors, and the label (r, x) refers to the immigration time and place of

the first member of the family. An arrow a from (s, y) to (s′, y′) corresponds to

a path w ∈ W6t which we call the historical path for < P > , and note that we

usually set wt = ∂ for t < r with an extra state ∂. The historical paths of all

particles which are alive at time t form a configuration in W6t which can also be

described by an integer-valued measure Yt on W6t. In this way, as a function of t,

Yt is constructed as a measure-valued process in functional spaceW6t. Lastly some

comments on progressivity of transition probablity should be mentinoed. Indeed,

a natural question is to ask whether that kind of progressivity for the underlying

Markov process Ξ = {ξ} implies an analogous condition for the historical process

Ξ̃. Here the condition in question is as follows.

Condition. (TPP) The transition probabilities are progressive, i.e. the func-

tion

f t(x) = 1{t<u}Πt,x(ξu ∈ B)

is progressive for every u ∈ R+ and B ∈ Bu. �
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Take a set B = {w : w(t1) ∈ A1, . . . , w(tn) ∈ An} with t1 < t2 < · · · < tn = u.

Then it is easy to see from the progressivity of ξ that

1{t<u}Π̃t,x(6t)(ξ6u ∈ B) = Πt,xt(w(t1) ∈ A1, · · · , w(tn) ∈ An), t < t1 (59)

= 1A1(xt1) · Πt1,xt1
(w(t2) ∈ A2, · · · , w(tn) ∈ An), t ∈ [t1, t2)

= · · · · · · · · ·
= 1A1(xt1) · · · 1Ai

(xti) · Πti,xti
(w(ti+1) ∈ Ai+1, · · · , w(tn) ∈ An), t ∈ [ti, ti+1)

= · · · · · · · · ·
= 0, t ≥ u.

Therfore, the condition (TPP) is satisfied even for the historical process Ξ̃ as far

as it may be valid for the underlying process ξ. �
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