
‒ 115 ‒

The Limit Function and Characterization Equation for Fluctuation in 
The Tumour Angiogenic SDE Model

DÔKU, Isamu
Faculty of Education, Saitama University

MISAWA, Mikako
Graduate School of Education, Saitama University

Abstract
In this paper we study a tumour angiogenic SDE model, which describes the vessel dynamics 

of tips in tumour angiogenesis. We derive an explicit expression of the limit function in mean prin-
ciple and an explicit representation of the characterization equation in fluctuation for the tumour 
angiogenic SDE model.
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1.  Introduction
In Dôku-Misawa (2013) [1] we studied mean principle and fluctuation of SDE model for tu-

mour angiogenesis, see also Dôku (2011) [2] and Misawa (2013) [3]. In this paper we propose a 
new mathematical model which is a generalization of the previous tumour angiogenic SDE model 
in Dôku-Misawa (2013) [1], and derive an explicit expression of the limit function in the mean 
principle of the model, as well as an explicit representation of the characterization equation in the 
fluctuation.

We shall introduce below some notations, terminology and modelling of blood vessel net-
works in angiogenesis. Let  be the initial number of tips,  be the total number of tips at time 
t,  be the position of the i-th tip at time t with d = 3, and  be the moving velocity 
of the i-th tip at time t. Then the network of endothelial cells is expressed as the union of the tra-
jectories of the tips, namely,

	 � (1)

where  denotes the birth time of the i-th tip, that is to say, the time when an existing vessel 
branches and the i-th trajectory springs up. As is well known, the tip generating process is de-
scribed by a marked point process. However, in the standpoint of its analysis and applications, 
it is more convenient to give it as a probability measure on the product space between time 
space and position space. Hence, the corresponding process is given as a probability measure 

, i.e.,
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	 � (2)

where  is the birth time of the n-th tip and  is the spatial position of the n-th tip that has been 
newly born. For each i we write

	 � (3)

and for each j (j = 1, 2, 3) we have . Next we shall propose a new sto-
chastic differential equation (SDE) model which describes the blood vessel dynamics. Under these 
circumstances the formulation via a random model (i.e., an SDE model) on the vessel motion is 
given by the following simultaneous equations. As a matter of fact, for each i,

	 � (4)

where  is a three-dimensional Brownian motion (or 
Wiener process).  Next we refer to the concrete components of the afore-mentioned equations. 
Namely, C (t, x) denotes the concentration rate of TAF (tumour angiogenic factors), and f (t, x) is 
the fibronectin and/or their gradients. The positive constant  is a diffusion coefficient, and the 
term  is given by , where  is a switching parameter, and the pa-
rameter  takes only the 0 and 1 values. Actually, the state  indicates that no impingement 
is considered, while  means that the phenomenon of anastosis is taken into account.  is 
the indicator or characteristic function associated with the existing blood network status. Accord-
ing to several system biological or molecular biological observations, the coefficient term (or the 
drift term) a (t, x, v) of (4) is thought to be a function of C (t, x) and f (t, x). Here we suppose that 
it is given by

	 � (5)

There are surely various discussions for the term  to be described. Suggested by considerations 
of the bias depending on TAF and the fivronectin field of Plank- Sleeman (2004) [4], and also in-
spired by the argument on the magnitude of the chemotactic and haptotactic gradient for the reori-
entation of the cell increase of Stéphanou et al. (2006) [5], we adopt the function  of the follow-
ing form:

	 � (6)

with 
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	 � (7)

Note that

	 �
(8)

and also that the term  is considered to have a form

	 � (9)

For brevity’s sake, we abbreviate its individual tag number i in what follows. We also use the fol-
lowing notations.

	

where  is a three-dimensional Brownian motion independent of . Then 
our newly proposed tumour angiogenic SDE model for vessel tip dynamics (4) is equivalent to

	 � (10) 

and furthermore, for simplicity, we shall write it as follows:

	 � (11)

with, for T > 0,

	

This is nothing but an Itô type stochastic differential equation with respect to a Brownian motion, 
to which the usual stochastic calculus (or Iô calculus) can be applied.

2.  Main Results
According to the  general theory on stochastic differential equations (cf. Øksendal (1998) [6] 

or Ikeda-Watanabe (1989) [7]), in order to obtain the existence and uniqueness result for solutions 
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to the stochastic differential equation (SDE) of Itô type (11), we have only to assume the following 
conditions. For the function  by convention, we assume:

Assumption.   (A.1) (Restriction on growth) There exists a proper positive constant C > 0 
such that for  and 

	 � (12) 

(A.2)  (Lipschitz continuity) There exists a proper positive constant D > 0 such that for  
and 

	 � (13) 

Here note that  and  
, where M (6  6) denotes the totality of (6, 6)-type square matrices.

(A.3) (Initial value) The initial value Z is a random variable and is independent of the -algebra 
, and satisfies the integrability condition

	 � (14)

Then it is well known as the theorem on existence and uniqueness of solutions to SDEs that 
under the assumptions (A.1), (A.2) and (A.3), the SDE (11) possesses the unique solution which 
is t-continuous and satisfies (i) -adapted where  and (ii) 

| . On this account, we prove the following first main result. For simplicity we set

	 � (15)

Theorem 1. (Existence and uniqueness of solution to SDE) Assume (A.3). We also  suppose  
that

	 � (16)

	 � (17)

Then SDE (11) possesses the unique solution  such that (a)  is t-continuous, (b) 
-adapted, and (c)  satisfies the integrability condition

	 � (18)

We use the scaling to the model relative to  > 0, and consider a scaled process 
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. In this stage we are very concerned on the asymptotic behavior 
of  as . In order to analyze the asymptotic behaviors and derive the mean principle 
for our SDE model, we need the following conditions.

	 � (19)

	 � (20)

	 .� (21)

For , u such that ,

	 � (22)

where  is defined by . Then we call  is integrally continuous at  with re-
spect to .

We are now in a position to state the second main result in this paper, which supplies with an 
explicit expression of the limit function in mean principle.  Although our SDE model (4) (or (10), 
(11)) is an extension of the tumour angiogenic model treated in Dôku-Misawa (2013) [1] and Mi-
sawa (2013) [3], this result sharpens the previous mean principle theorem (cf. Theorem 22, §4.2 in 
[1]).

Theorem 2.  Suppose  the  same  conditions (16) and (17) as  in  Theorem 1. In addition, we 
assume (19), (20), (21) and (22).
(a) Under the hypothesis that -a.s., there exists a 
proper function  such that

	 � (23)

holds uniformly in y.
(b) Moreover,  is a solution of the Cauchy problem for deterministic dynamic differen-
tial equation

	 � (24)

then the convergence in law  holds as  approaches to zero.
(c) The limit function  is given concretely by

	 � (25)
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with  for  and . Here we set 
.

Next we shall introduce the third main result in this paper, which provides with an explicit 
representation of the characterization equation for the fluctuation of the rescaled tumour angio-
genic SDE model.  Before stating the theorem, we define the fluctuation quantity based upon the 
fundamental results in Lemma 6 and in the proof of Theorem 2 (see below):  i.e., (i) vanishing of 
the Itô type stochastic integral of rescaled function

	 � (26)

(ii) the limiting equality of the SDE model

	 � (27)

As a matter of fact, we define the fluctuation as

	 � (28)

for  and  .
Theorem 3. We assume (16), (17), (19), (20), (21) and (22).

(a) There  exist  some  proper  functions , P-a.s., and , P-a.
s. such that

	 � (29)

	 and      � (30)

(b) The fluctuation  converges in law to some process  as .
(c) The limit process  satisfies the following SDE :

	 � (31)

(d) Actually, the limit functions in (29) and (30) which determine the characterization equation of 
the fluctuation, are explicitly presented as

	    and� (32)

	 � (33)
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If we rewrite the definition (28) of fluctuation, then we immediately obtain

	 � (34)

Here  is the solution of the ordinary differential equation like , so that, the 
solution curve (parametrized by time t) is a smooth curve with respect to t. The expression (34) 
suggests that the rescaled process  (which satisfies a SDE (42) below) is obtained by adding a 
random quantity (fluctuation)  to the curve  additively for each t.  In other words, the 
random quantity  (controlled by our SDE model) can be regarded as the sum structure being 
decomposed as the deterministic term  and randomly perturbed term.

3.  Proof of Theorem 1
In order to prove the existence and uniqueness of solutions to SDE (11), it suffices to show 

the restriction on growth (A.1) and the Lipschitz continuity (A.2) under the conditions (16), (17). 
In what follows we shall verify it when , P-a.s and , P-a.s. for simplicity. 
Moreover, it is sufficient to show it for a simpler case

	 � (35)

instead of . In fact, we have

	 �

	     and   �

Finally we would like to show the estimate results just similar to a type of  
for some constant . It follows from the condition (16) that

	 � (36)

Similarly, using (20) we obtain
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	 � (37)

where we have employed an elementary inequality  with . 
While, when  and , then we get

	

Since we have

	

by using a simple inequality , we can obtain easily together with 
(17)

	

where we have put . Hence, we have verified that

	

Thus we attain the establishment of the restriction on growth and Lipschitz continuity from the 
conditions (16) and (17).� □
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4.  Proof of Theorem 2
Let  be an index set.  For convention, we use the following notations.  Let us consider the 

Itô type stochastic differential equation with parameter 

	

and we write its solution as  with . We assume that the drift term  
and the diffusion term  satisfy the same conditions as those stated in the existence and unique-
ness theorem (Theorem 1) for the previous SDE (11). For  we consider a scaled process 

, and we are very concerned on the asymptotic behaviour of  as 
. We need the following two technical lemmas.

Lemma 4.  We assume that the term  is integrally continuous at . If for ,

	 � (38)

then the convergence in law  holds as  tends to  .
Proof. For  in the index set , we consider the parametrized SDE

	 � (39)

Then we have an integral form of (39)

	 � (40)

The assertion yields from the limit procedure  in (40), because the proof goes almost simi-
larly as in the proof of Theorem 20 in [1].	�  □

Lemma 5. For the parameter , let  be the solution to the initial value problem for 
the scaled Itô type SDE

	 � (41)

Then the rescaled process  satisfies the following integral equation :

	 � (42)

where we put  in the above expression.
Proof. In the case of , it is necessary to think of what will happen in 

the stochastic differential term after we change  into . Actually, we readily obtain
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	 � (43)

On the other hand,  when  is a one-dimensional Brownian motion,  then the scaling property 
of the Brownian motion (cf. Durrett (1996) [8]) yields immediately to the equivalence in law: 

. Hence, a similar rule remains valid even for the term  
with three-dimensional Brownian motion for each component. That is to say, it follows that

	 �

Therefore we can deduce from (43) that

	 � (44)

Immediately, (44) reads equivalently

	 � (45)

When we rewrite the above (45) into an integral form, then the required expression (42) can be ob-
tained.� □

By virtue of the assumption on integral continuity of the drift term F , the passage to the limit 
 allows us to get

	 � (46)

for arbitrary pairs  such that . On the other hand, by the scaling we have

	 � (47)

since we have
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with  and  is a continuous function in s.  Moreover, we can calculate a little bit 
further by making use of the hypothesis (23):

	 � (48)

This implies that the real body of the limit function  in mean principle is given by , 
where we have employed in the above a transformation of variables .

Lemma 6. We have the following convergence in law

	 � (49)

for every .

Proof. By the definition of G, since , we readily get

	 � (50)

This means that the restriction on growth condition for the diffusion term is satisfied. Consequent-
ly, we can have an estimate

	 � (51)

The first equality in the above computation is due to the Itô isometry, cf.  Ikeda- Watanabe (1989) 
[7].� □

Next we observe from (42) in Lemma 5 that

	 � (52)

Therefore, an application of Lemma 6 to (52) yields to
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� (53)

By Lemma 4, when we write the limit of  as , then  converges in law to  for 
every  as , and from (53) we get

	 � (54)

which implies that the limit  is a solution of the Cauchy problem for the ordinary differential 
equation  with the initial value . This completes the proof of Theorem 
2.� □

5.  Proof of Theorem 3
For the initial data of SDE model, we can assume without loss of generality that , 

P-a.s. , cf. see (11). Then we have

�

	    � (55)

where we made use of the expression (34).
(As to ) : We decompose the term  into three distinct terms, and investigate each compo-

nent one by one by taking the limit procedure . As a matter of fact, we get

	 � (56)

As to the term , paying attention to the expansion

	 � (57)
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we readily obtain

	 � (58)

where we applied the expansion formula (57) to the three integrand terms in . Hence it follows 
by definition of infinitesimal of higher order that

	 � (59)

Next, as to , by transformation of variables  we have

	 � (60)

Moreover, employing another transformation of variables , noting the equivalence between 
limit  and limit , the expression (60) can be reduced to

	 � (61)

And besides, taking the uniformness in y of the limit procedure (23) in Theorem 2 into account, 
we observe easily that (61) vanishes and , because we applied the expression

	

Lastly, for the term , we may apply the transformation of variables  together with integral 
continuity of F to obtain

	 � (62)

This implies that there exists a function  such that (29) holds; 
i.e.,
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	 � (63)

Here we regard  as z in the above-mentioned calculation.  And also note that we are very con-
cerned on the convergence in law of the fluctuation  as the parameter  approach-
es to zero.

(As to I2) :      Resorting to Itô’s isometry for the Itô type stochastic integral with respect to a 
Brownian motion, we obtain

	 � (64)

Hence, it follows immediately from (64) that

	 � (65)

In fact, we have , and when we put ,  and  

, then the scaled term  can be rewritten into

	

so that, we finally get .  On this account, we can deduce from (65) that

	 � (66)

because we made use of the Itô isometry again in the above computation, but this time we applied 
it for the above term in the reverse direction. Thus we attain at last that

	 � (67)

with the result that, for ,
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where  and we define the notation  as  for 
. Then from the definition of fluctuation  and its decomposition

	

we observe that the last stochastic integral in the above vanishes  as  tends to zero. When 
we write the limit process of  as , then under the circumstances , P-a.s., from (55) 
the aforementioned discussion on convergence in law yields to

	 � (68)

as .  Since , summing up, we thus attain the derivation of the stochastic inte-
gral equation that should satisfy the limit process  appearing in the limiting procedure  

 for the fluctuation . That is to say,

	 � (69)

When we rewrite it into a differential form, then we observe that  is a stochastic process which 
is characterized by the following Itô type SDE :

	 � (70)

� □
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