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Star-Product Functional  
and Related Integral Equations
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Abstract
In this paper we consider a class of deterministic nonlinear integral equations. While, we be-

gin with constructing a branching model, define a star-product and construct a tree-based star-
product functional. Finally we study the mathematical structure of the functional and prove that 
the expectation of the functional with respect to a time-reversed law of the branching process sat-
isfies the original integral equations.
Key Words: Nonlinear integral equation, branching model, tree structure, star-product, branching 

process, star-product functional.

1.  Notations
For simplicity, let , and we put . For every , we use 

the symbol  for the inner product, and we define  for every . In this article 
we consider the following deterministic nonlinear integral equation:

  
(1)

Here  is an unknown function : , , and  is the 
initial data such that . Moreover,  is a given function 
satisfying . The integrand p in (1) is given by

  (2)

On the other hand, we consider a Markov kernel . Actually, for every , 
 lies in the space  of all probability measures on a product space . 

When the kernel k is given by , then we define  as a Markov kernel satis-
fying that for any positive measurable function  on ,

  (3)

Moreover, we assume that for every measurable functions  on ,

  (4)
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holds, where the measure ν is given by .

2.  Principal theorem
In this section we shall state our main result, which asserts the existence and uniqueness of 

solutions to the nonlinear integral equation (1). As a matter of fact, the solution u(t, x) can be ex-
pressed as the expectation of a star-product functional, which is nothing but a probabilistic solution 
constructed by making use of the below-mentioned branching particle systems and branching 
models. Let

  (5)

be a probabilistic representation in terms of tree-based star-product functional with weight . 
For the details of the definition, see the succeeding sections. On the other hand,  denotes 
the corresponding *-product functional with weight (U, F ). In fact, as to be seen in what follows, 
in a similar manner as the case of a star-product functional we can construct a (U, F )-weighted 
tree-based *-product functional , which is indexed by the nodes  of a binary tree. 
Here we suppose that   is a non-negative measurable function on 

 respectively, and also that  for each x. Indeed, in construc-
tion of the *-product functional, the product in question is taken as ordinary multiplication * in-
stead of the star-product ★ in the definition of star-product functional.

Theorem 1. Suppose that  for  and  for , x, and also 
that for some ,

  (6)

Then there exists a -weighted tree-based star ★ -product functional , in-
dexed by a set of node labels accordingly to the tree structure which a binary critical branching 
process  determines. Furthermore, the function

  (7)

gives a unique solution to the integral equation (1). Here  denotes the expectation with respect 
to a probability measure  as the time-reversed law of .

3.  Branching model and tree-like structure
In this section we consider a continuous time binary critical branching process  on , 

whose branching rate is given by a parameter , whose branching mechanism is binary with 
equi-probability, and whose descendant branching particle behavior (or distribution) is determined 
by the kernel . Next, taking notice of the tree structure which the process  determines, 
we denote the space of marked trees

  (8)

by Ω. Furthermore, we write the time-reversed law of  being a probability measure on Ω as 
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. Here t denotes the birth time of common ancestor, and the particle  dies when 
, while it generates two descendants  when . On the other hand,

 

is a set of all labels, namely, finite sequences of symbols with length , which describe the whole 
tree structure given. For  we denote by  the totality of nodes being branching points of 
tree, and let  be the set of all nodes m being a member of , whose direct predeces-
sor lies in  and which satisfies the condition , and let  be the same set as de-
scribed above, but satisfying . Finally we put

  (9)

4.  Star-product functional and *-product functional
In what follows we shall introduce a tree-based star-product functional in order to construct a 

probabilistic solution to the class of integral equations (1). First of all, we denote by the symbol 
 a projection of the objective element onto its orthogonal part of the z component in , 

and we define a ★ -product of  for  as

  (10)

We shall define  for each  realized as follows. When , then  
, while  if . Then we define

  (11)

where as for the product order in the star-product ★ , when we write  lexicographically 
with respect to the natural order , the term  labelled by m necessarily occupies the left-hand 
side and the other  labelled by  occupies the right-hand side by all means. And besides, as 
abuse of notation we write

Figure 1: Binary Branching
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  (12)

especially when  is a label of single terminal point in the restricted tree structure in question.

Under these circumstances, we consider a random quantity which obtained by executing the 
star-product ★ inductively at each node in , and we call it a tree-based ★ -product function-
al, and we express it symbolically as

  (13)

where  and , and by the symbol ★ (as a product relative to the star-
product) we mean that the star-products ★’s should be succeedingly executed in a lexicographical 
manner with respect to  such that  when .

example 1. Now let us suppose that a tree structure  has been realized here (see Fig-
ure 2). Next we shall classify those nodes in the realized tree . As a matter of fact, as to those 
two particles located at  and  with nodes of the level  accompanied by the pivot-
ing node , we can construct

 

by a star-product  in accordance with the rule, because both  
and  lie in . As to the node , how to construct  is the almost same thing as 
described above. In fact, it goes similarly because  lies in  and  lies in . Ac-
cording to the rule, it follows that

Figure 2: Example: A realized Tree
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hence  is given by , see Figure 3. Conse-

quently, we obtain finally

  (14)

 □

5.  Sketch of proof
In this section we are first going to construct a (U, F )-weighted tree-based *-product func-

tional , which is indexed by the nodes  of a binary tree. Here recall that  
 is a non-negative measurable function on  respectively, 

and also that  for each x. Moreover, in construction of the functional, the product 
is taken as ordinary multiplication * instead of the star-product ★ .

In what follows we shall give an outline of the proof of Theorem 1. We need the following 
technical lemma, which plays an essential role in the proof.

lemma 2.  For  and , the function  satisfies

  (15)

Proof of lemma 2. By making use of the conditional expectation we can decompose the func-

Figure 3: Classification of Nodes
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tion  as follows:

  

(16)

Next we are going to take into consideration an equivalence between the event  and 
. Indeed, as to the first term in the third line of (16), since the condition  means that 

T never lies in an interval , and since  leads to a non-random functional ex-
pression
 
the tree-based *-product functional is allowed to have a simple representation:

  

(17)

As to the third term, we need to note the following things. A particle generates two offsprings or 
descendants  with probability  under the condition ; since , when the branching 
occurs at , then, under the conditioning operation at , the Markov property guarantees that 
the lower tree structure below the first generation branching node point (or lo-cation)  is inde-
pendent of that below the location  with realized , hence a tree-based *-product functional 
branched after time s is also probabilistically independent of the other tree-based *-product func-
tional branched after time s; and besides, the distributions of  and  are totally controlled by the 
Markov kernel . Therefore, an easy computation provides with an impressive expression

 

Note that as for the second term, it goes almost similarly as the computation of the second one. Fi-
nally, summing up we obtain

  

(18)

On this account, if we multiply both sides of (18) by exp , then the required expression 
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(15) in Lemma 2 can be derived, which completes the proof. □

As a matter of fact, the mapping :  is non-decreasing, so 
that, it proves to be that

  (19)

holds for  and , where  is a measurable set on which the validity of 
 may be kept. Another important aspect for the proof consists in establishment of 

the following -control inequality. That is to say, we have

  (20)

because of the validity of a simple inequality

 

On the other hand, it is derived that the space of solutions to (1) is formed by the condition

 

A similar discussion as above leads to

  
(21)

Finally we can deduce that  satisfies the integral equation (1), and this 
 is a solution lying in the space . Actually,  is a space of all functions , 

being continuous in t and measurable such that
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