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Abstract
In this paper we consider a class of deterministic nonlinear integral equations. While, we be-
gin with constructing a branching model, define a star-product and construct a tree-based star-
product functional. Finally we study the mathematical structure of the functional and prove that
the expectation of the functional with respect to a time-reversed law of the branching process sat-
isfies the original integral equations.
Key Words: Nonlinear integral equation, branching model, tree structure, star-product, branching

process, star-product functional.

1. Notations
For simplicity, let Dy := R3\ {0}, and we put R := [0, 00). For every a, 3 € C?, we use
the symbol « - 3 for the inner product, and we define e, := x/|z| for every x € Dy. In this article

we consider the following deterministic nonlinear integral equation:

)\ t
M u(t,) = uo(e) + 5 [ ds & [ pls, g (e, )y
0

t
+ %/ M £ (s, 2)ds, for V(t,z) € Ry x Dj. (1)
0

Here u = u(t, x)is an unknown function : R, x Dy — C3, A > 0,and vy : Dy — C3is the
initial data such that u(t, z)|1—o = uo(z). Moreover, f(t,z) : R, x Dy — C3is a given function
satisfying f(t, z)/|z|> = : f € L*(R.). The integrand p in (1) is given by

p(t,z,y;u) = u(z,y) - ex{ult, z —y) — ea(u(t, z —y) - €2)}- (2)

On the other hand, we consider a Markov kernel K: Dy— Dyx Dy. Actually, for every z € Dy,
K. (dx,dy) lies in the space P(Dy x Dy) of all probability measures on a product space Do x Dy,
When the kernel k is given by k(z, y)=1|z| ~>n(z, y), then we define K, as a Markov kernel satis-
fying that for any positive measurable function h = h(z,y)on Dy X Dy,

/ / Wz, y) K. (do, dy) = / Wz, 2 — 2)k(z, 2)da. 3)

Moreover, we assume that for every measurable functions f, g >0on R™,

/ h(|2])v(dz) / o(|2]) K. (d, dy) = / g(|2)v(d2) / h(yl) K. (de, dy) )
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holds, where the measure v is given by v(dz) =|z|3dz.

2. Principal theorem

In this section we shall state our main result, which asserts the existence and uniqueness of
solutions to the nonlinear integral equation (1). As a matter of fact, the solution u(¢, ) can be ex-
pressed as the expectation of a star-product functional, which is nothing but a probabilistic solution
constructed by making use of the below-mentioned branching particle systems and branching
models. Let

M0 (@) = T K Et s 10, (), 5)

be a probabilistic representation in terms of tree-based star-product functional with weight (ug, f).
For the details of the definition, see the succeeding sections. On the other hand, M (w) denotes
the corresponding x-product functional with weight (U, F). In fact, as to be seen in what follows,
in a similar manner as the case of a star-product functional we can construct a (U, F)-weighted
tree-based x-product functional MUE) (w), which is indexed by the nodes () of a binary tree.
Here we suppose that U=U(z) (resp. F=F(t,z))is a non-negative measurable function on
Dy (resp. Ry x Dy) respectively, and also that F/(-, ) € L'(R, ) for each . Indeed, in construc-
tion of the x-product functional, the product in question is taken as ordinary multiplication % in-
stead of the star-product % in the definition of star-product functional.

TreOREM 1. Suppose that [uo(z)| < U(z) for Vo and |f(t, 2)| < F(t, ) for Vt, z, and also
that for some T >0 (T >>1 sufficiently large),

ET@[MQU’D] <00, ae —z (6)

Then there exists a (uo, [)-weighted tree-based star ¥ -product functional M u0-f) (w), in-
dexed by a set of node labels accordingly to the tree structure which a binary critical branching

process Z = (t) determines. Furthermore, the function

u(t,z) = By [My"] (7)

gives a unique solution to the integral equation (1). Here Ey ,, denotes the expectation with respect

to a probability measure P, , as the time-reversed law of Z*= ().

3. Branching model and tree-like structure

In this section we consider a continuous time binary critical branching process Z%=(t) on Dy,
whose branching rate is given by a parameter A|z|% whose branching mechanism is binary with
equi-probability, and whose descendant branching particle behavior (or distribution) is determined
by the kernel K. Next, taking notice of the tree structure which the process Z%=(t) determines,

we denote the space of marked trees

w=(t, (tm), (Tm), (Nm),m € V) 3)

by Q. Furthermore, we write the time-reversed law of Z%(¢) being a probability measure on 2 as
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Figure 1: Binary Branching

P, € P(£2). Here t denotes the birth time of common ancestor, and the particle ,, dies when

Nm = 0, while it generates two descendants X1, T2 When 7, = 1. On the other hand,

V= J{1,2}

£>0

is a set of all labels, namely, finite sequences of symbols with length ¢, which describe the whole
tree structure given. For w € Q we denote by N (w) the totality of nodes being branching points of
tree, and let N, (w) be the set of all nodes m being a member of V\ N (w), whose direct predeces-
sor lies in N (w) and which satisfies the condition ¢,,(w) >0, and let N_(w) be the same set as de-

scribed above, but satisfying ¢,,,(w) < 0. Finally we put

N(w) = Ny (w) UN_(w). ©)

4. Star-product functional and *-product functional

In what follows we shall introduce a tree-based star-product functional in order to construct a
probabilistic solution to the class of integral equations (1). First of all, we denote by the symbol
Proj*(-) a projection of the objective element onto its orthogonal part of the 2z component in C3,
and we define a Y -product of 3, y for z € Dy as

Bk .y = —i(B - e.)Proj* (7). (10)

We shall define ©™(w) for each w € (2 realized as follows. When m € N, (w), then O™ (w)=
F(tm(w), T (w)), while ©™(w) = o (zm(w))if m € N_(w). Then we define

Emaams (@) = Epg g0, [l(w) := 0™ (W) Kk, O™ (W), (1)

where as for the product order in the star-product %, when we write m < m/ lexicographically
with respect to the natural order <, the term ©™ labelled by m necessarily occupies the left-hand

side and the other ©™ labelled by m’ occupies the right-hand side by all means. And besides, as
abuse of notation we write
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Figure 2: Example: A realized Tree

Egn,@(w) = E?m@[uo,f](w> = 0™ (w), (12)

especially when m € V is a label of single terminal point in the restricted tree structure in question.

Under these circumstances, we consider a random quantity which obtained by executing the
star-product % inductively at each node in A/ (w), and we call it a tree-based Y -product function-

al, and we express it symbolically as
M0 (@) = [T Hetan Zm om0, (), (13)

where m; € N (w) and my, m3 € N(w), and by the symbol [ [ % (as a product relative to the star-
product) we mean that the star-products %’s should be succeedingly executed in a lexicographical
manner with respect to x5 such that m € N (w) N {|m| = ¢ — 1} when |m,| = ¢.

ExampLE 1. Now let us suppose that a tree structure wy (€ €2) has been realized here (see Fig-
ure 2). Next we shall classify those nodes in the realized tree w;. As a matter of fact, as to those
two particles located at 11 and 215 with nodes of the level |m| = ¢ =2 accompanied by the pivot-

ing node x1, we can construct
5%1,12@11) = @ll<wl)*[z1]@12(wl)

by a star-product ug (211 (w1)) K[z, to(212(w1)) in accordance with the rule, because both m; =11
and mo =12 lie in N_(w). As to the node x;, how to construct Z(w, ) is the almost same thing as
described above. In fact, it goes similarly because 21 lies in NV, (w; ) and zg19 lies in N_(w; ). Ac-

cording to the rule, it follows that
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Figure 3: Classification of Nodes

@211(w1) = f(t211(wl>7$211(wl>) and @212(011) = u(T212(w1)),
hence =31 515(wi) is given by f(ta11(wr), 2211 (w1) ) K [z21) U0 (T212(w1)), see Figure 3. Conse-

quently, we obtain finally

Miuo,ﬁ (Wl) _ (uo(g;n)*[zl]uo(xu)) *[maﬂ

_ . (14)
{ <f<t211, $211)*[g;21]uo($212)> K [20) f (L22, $22)} :

5. Sketch of proof

In this section we are first going to construct a (U, F')-weighted tree-based *-product func-
tional ML) (w), which is indexed by the nodes (x,,) of a binary tree. Here recall that U=U ()
(resp F'=F(t x))is a non-negative measurable function on Dy (resp. R, x Dy) respectively,
and also that F'(-, ) € L* (R, ) for each x. Moreover, in construction of the functional, the product
is taken as ordinary multiplication * instead of the star-product ¥ .

In what follows we shall give an outline of the proof of Theorem 1. We need the following
technical lemma, which plays an essential role in the proof.

Lemma 2. For 0 < t < T and x € Dy, the function V (t, ) :Et,ﬂ,j[]\/IﬂSU’F> (w)] satisfies

i

MV (¢ 2)= U(m)+/ ds)\%eAS‘UP{F(s, x) —|—/V(s, y)V(s, z) K.(dy, dz)} (15)

Proof of lemma 2. By making use of the conditional expectation we can decompose the func-
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tion V' (¢, x) as follows:
V(t,z) = B [M"F) (w)]
0] + Epo[M{PF) (W), ty > 0]
0] + By [MP(w), ty >0, ny = 0]

)

+ By [MT (), t5 >0, ny = 1]. (16)

Next we are going to take into consideration an equivalence between the event ¢4 <0 and
T ¢ [0,t] Indeed, as to the first term in the third line of (16), since the condition ¢4 <0 means that
T never lies in an interval [0, ¢], and since m=¢ € N_(w) leads to a non-random functional ex-

pression

= 0% ="U(x),
the tree-based x-product functional is allowed to have a simple representation:

By o[ M) 1y 0] = By o M) - 14, <)) = U(x) - Pa(ty < 0)
P(T' ¢ 0,t]) =U(z) - P(T € (t,00))

U(z) -
U(x) / fr(s)ds = U(x) /t Az e 2517 ds
U(x) - exp{—At|z[*}. (17)

X

xz

As to the third term, we need to note the following things. A particle generates two offsprings or
descendants x1, x5 with probability % under the condition 7y =1; since 4 >0, when the branching
occurs at £, = s, then, under the conditioning operation at ¢4, the Markov property guarantees that
the lower tree structure below the first generation branching node point (or lo-cation) z; is inde-
pendent of that below the location x5 with realized w € €2, hence a tree-based *-product functional
branched after time s is also probabilistically independent of the other tree-based *-product func-
tional branched after time s; and besides, the distributions of x; and x5 are totally controlled by the
Markov kernel K. Therefore, an easy computation provides with an impressive expression

1 t

Eyo M{") > 0,1, = 1] = o / ds)|z|2eMel(t=9).
0

X // Esyil?l[M*] ’ Es,zg [M*]Kx(dxl,de)

Note that as for the second term, it goes almost similarly as the computation of the second one. Fi-

nally, summing up we obtain
V(t,x) = By [MF ()]

2 )\ 2
= U(x)r —\t|z| +/ |~’E| o~ al (t—s)F(S z)ds

/ M2l erzes // 5,9)V (s, 2) Ko (dy, dz)ds. (18)

On this account, if we multiply both sides of (18) by exp{At|z|*}, then the required expression
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(15) in Lemma 2 can be derived, which completes the proof. (]

As a matter of fact, the mapping : [0,7] > t — eN*'V (¢, z) € R, is non-decreasing, so
that, it proves to be that

M) (w)] < M ()] (19)

holds for Vt€[0,T] and x € E., where E. is a measurable set on which the validity of
E,, [MéU’m] <00 may be kept. Another important aspect for the proof consists in establishment of
the following M -control inequality. That is to say, we have

M ()] < [MEP (W) 20)
because of the validity of a simple inequality
jwik 0] < Jw] - |v] for w,v € C* and x € Dy.

On the other hand, it is derived that the space of solutions to (1) is formed by the condition

T
/ ds/ lu(s,y)| - Ju(s, 2)| K. (dy,dz) < oo for z € E,.
0

A similar discussion as above leads to

u(t,z) = Et,gC[M,(:O’ﬁ(w)} = e_Mm'Zuo(x) + /t ds )\|33|2€—/\(t—5)|ﬂs|2><
’ 1)

X % {ﬂsv ) + ZEs,ml [ M| % (21 Es o [ My ) Ko (dy, dig) o

Finally we can deduce that u(t, ) = tx[Mf ) (w)] satisfies the integral equation (1), and this
u(t, x) is a solution lying in the space D. Actually, D is a space of all functions : R x Dy — C?,

being continuous in ¢t and measurable such that

| as [ s asolialdy. ) < oo, ae.
0
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