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On Regular Supercompact Spaces
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Abstract
In this paper we prove that every compact tree-like space is regular supercompact. This is a 

positive answer to a question of J. van Mill. As an application we obtain that the Stone-Čech com-
pactification and the Freudenthal compactification of a rim-compact tree-like space are regular su-
percompact.
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1.  Introduction
The notion of supercompactness was introduced by J. de Groot in [5]. A collection of sets is 

linked if every two members have a non-empty intersection. A collection of sets is binary if every 
linked subcollection has a non- empty intersection. A space is supercompact if it has a binary sub-
base for its closed sets. By Alexander’s lemma, every supercompact space is compact. Many com-
pact spaces are supercompact. Examples of supercompact spaces are compact ordered spaces, 
compact metrizable spaces([13] or see [9]) and compact tree-like spaces([4] and [15], or see [17]). 
However, not all compact spaces are supercompact. M. G. Bell [2] proved that if the Stone-Čech 
compactification βX of a space X is supercompact, then X is pseudocompact.

J. van Mill [17] introduced the notion of regular supercompact spaces in analogy with regular 
Wallman spaces defined by E. F. Steiner [12]. A space is regular supercompact if it has a binary 
subbase F for its closed sets such that the ring generated by F consists of regular closed sets. A 
compact space is regular Wallman if it has a subbase F for its closed sets such that the ring gener-
ated by F consists of regular closed sets. Every regular supercompact space is supercompact as 
well as regular Wallman. Every compact ordered space is regular supercompact. E. K. van Dou-
wen [14] proved that every compact metrizable space is regular supercompact. J. van Mill [17] 
proved that a compact tree-like space X is regular supercompact in case X has the weight at most 
2ω and asked whether all compact tree-like spaces are regular supercompact. In [6] the author an-
nounced that every compact tree-like space is regular supercompact. The purpose of this paper is 
to give a proof of this result. J. Nikiel [11] also obtained this result, independently. As a corollary it 
follows that the Stone-Čech compactification and the Freudenthal compactification of a rim-com-
pact tree-like space are regular supercompact. Some of the results and notation are taken from [7].

2.  Lemmas
When A, B ⊂ X, A ∩ B =  and both A and B are open in A ∪ B, we frequently write A + B 
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instead of A ∪ B. We often write X  x instead of X  {x}.
A space is tree-like if it is connected and every two distinct points can be separated by a third 

point.
Let X be a space and x, y, z ∈ X. Then we say that z separates x and y if there exist open 

subsets U and V of X such that x ∈ U, y ∈ V, U ∩ V =  and X {z} = U ∪ V . In such a case we 
simply write X  z = U x+ V y.

For a, b ∈ X we set

	 E(a, b) = {x ∈ X : x separates a and b} and S(a, b) = E(a, b) ∪ {a, b}.

Throughout the rest of this paper, the letter X will always denote a given non-empty compact 
tree-like space.

Since X is not empty, we take a point x* ∈ X. For x, y ∈ X we define the relation x  x* y if 
and only if x ∈ S(x*, y).

Throughout the rest of this paper, we shall fix a point x* ∈ X and give a partial order  on X 
by x*. We always X as a partially ordered set with .

A subset C of X is called a segment if C is a component of X  x for some x ∈ X. In partic-
ular, a component C of X  x containing y is called a segment of y in X  x. A point x of X is 
called an end-point if X  x is connected. We denote by E(X) the set of all end-points of X.

To prove our main theorem we need several lemmas.

2. 1.  Lemma X  x = {S(x*, x) : x ∈ E(X)}.
Proof. Suppose not, i.e. y ∈ X  {S(x*, x) : x ∈ E(X)}. By Zorn’s lemma, there is a maxi-

mal chain A′ containing y. We put A = A′ ∩ {x ∈ X : y  x}. Then each point of A is not an end-
point. For each x ∈ A, let X  x = Axx* + Bx, where Ax is a segment. By [7, Lemma 9], note 
that Bx = {z ∈ X : x < z}.

First we shall prove the following claim. 
Claim. {Az : z ∈ A} is an open cover of X.
Proof of Claim. By [8,Theorem IV.4, 3, Proposition III.2 or 18, Lemma 2.1]), Az is open in X 

for each z ∈ A. Hence it suffices to prove that {Az : z ∈ A} is a cover of X. We distinguish tree 
cases.

Case 1. x ∈ Ay.
Since y ∈ A, x ∈ {Az : z ∈ A}.
Case 2. x ∈/  Ay and x ∈ A
Since x ∈ A, x is not an end-point of X. Thus z ∈ Bx for some z ∈ X. Assume that Bx ∩ A = 

. Then z ∈/  A and, by [7, Lemma 9], x < z. This implies that z ∈/  A′, therefore A′ is properly con-
tained in A′ ∪ {z}. Let u be any point of A′. If u ∈/  A, then u < z, because u < y. If u ∈ A, then u ∈/  
Bx, because Bx ∩ A = .

Thus we have u < x, therefore u < z. Hence A′ ∪ {z} is a chain, which contradicts the maxi-
mality of A′. We can take a point v ∈ Bx ∩ A. Then x ∈ Av , because x < v. Hence x ∈ {Az : z ∈ 
A}.
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Case 3. x ∈/  Ay and x ∈/  A.
This case implies that x ∈/  A′. Since A′ is maximal, there is a point z ∈ A′ such that x  z and 

z  x. Then we see y  z, that is, z ∈ A. Since z  x, we have x ∈ Az. Hence x ∈ {Az : z ∈ A}.
This completes the proof of Claim.
Since X is compact, we can now take a finite subset {z1, z2, … , zn} from A such that {Azi : i 

= 1, 2, … , n} covers X. Let z = max{z1, z2,  … , zn}. Then, by [7, Lemma 10], Azi ⊂ Az for each i. 
Thus X = Az , this contradicts z ∈/  Az. Lemma 2.1 has been proved.

Let B ⊂ A ⊂ X. Then B is <-dense in A if for each x, y ∈ A with x < y there is a point z ∈ B 
such that x < z < y.

2.2. Lemma For each a ∈ X with a ≠ x*, there are disjoint subsets P and Q of S(x*, a) such 
that both P and Q are <-dense in S(x*, a).
Proof. Let S = {(x, y) : x, y ∈ S(x*, a) and x < y}, and enumerate S as S = {(xα, yα) : α < τ }, 
where τ is an ordinal number. Suppose that for each β < α, pβ and qβ are taken and satisfy the fol-
lowing conditions (i) - (iv).

(i) pβ, qβ ∈ E(xβ , yβ),
(ii) Pα ∩ Qα = , where Pα = {pβ : β < α} and Qα = {qβ : β < α},
(iii) if Pβ ∩ E(xβ, yβ) ≠ , then pβ = pγ , where γ = min{δ : pδ ∈ E(xβ, yβ)},
(iv) if Qβ ∩ E(xβ, yβ) ≠ , then qβ = qγ , where γ = min{δ : qδ ∈ E(xβ, yβ)}.

We take pα and qα in ech of the following cases.
Case 1. Pα ∩ E(xα, yα) ≠  and Qα ∩ E(xα, yα) ≠ .
Let β = min{δ : pδ ∈ E(xα, yα)} and pα = pβ . Let γ = min{δ : qδ ∈ E(xα, yα)} and qα = qγ .
Case 2. Pα ∩ E(xα, yα) =  and Qα ∩ E(xα, yα) = .
Since |E(xα, yα)|  2, we take pα, qα ∈ E(xα, yα) with pα ≠ qα.
Case 3. Pα ∩ E(xα, yα) ≠  and Qα ∩ E(xα, yα) = .
Let β = min{δ : pδ ∈ E(xα, yα)} and pα = pβ . Assume that E(xα, yα) ⊂ Pα. Let γ = min{δ : pδ 

∈ E(xα, yα) and pδ ≠ pβ}. Obviously, β < γ. Then, by [7, Lemma 7], pβ < pγ or pγ < pβ . Suppose 
that pβ < pγ. Since E(pβ, pγ) ⊂ E(xα, yα) ⊂ Pα, we take pξ ∈ E(pβ, pγ). Obviously, γ < ξ. Then qξ < 
pξ or pξ < qξ. If qξ < pξ, then qξ < xα, because qξ ∈/  E(xα, yα). Thus xξ < pβ < yξ , this contradicts (iii). 
If pξ < qξ, then yα < qξ, because qξ ∈/  E(xα, yα). Thus xξ < pγ < yξ, this contradicts (iii). Similarly, if 
pγ < pβ , then we have a contradiction. Hence E(xα, yα) ⊂/ Pα. Thus we can take a point qα ∈ E(xα, 
yα)  Pα.

Case 4. Pα ∩ E(xα, yα) =  and Qα ∩ E(xα, yα) ≠ .
Similarly as in Case 3.
In any case it is easy to see that pα and qα satisfy the conditions (i) - (iv).
We set P = {pα : α < τ } and Q = {qα : α < τ }. Then P and Q have all the required properties. 

Lemma 2.2 has been proved.
Let U(X) be the collection of all segments of X. Then U(X) is a subbase for its open sets, be-

cause X is compact.
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2.3. Lemma There is a closure-distributive subcollection B of U(X) such that B is a subbase 
for its closed sets.

Proof. Enumerate E(X) as E(X) = {xα : α < τ }, where τ is an ordinal number. Let Xα = S(x*, xα) 
 {S(x*, xβ) : β < α}. Obviously, Xα ∩ Xβ =  for α ≠ β, and, by Lemma 2.1, X = {Xα : α < 
τ}. By Lemma 2.2, we can take two disjoint <-dense subsets P ′α and Q′α in S(x*, xα) and set Pα = 
P ′α ∩ Xα, Qα = Q′α ∩ Xα, P = ∪{Pα : α < τ } and Q = {Qα : α < τ }. For each p ∈ Pα, let Bp be 
a segment of xα in X  p. For each q ∈ Qα, let Aq be a segment of x* in X  q.

Let us set B = {Aq : q ∈ Q} ∪ {Bp : p ∈ P}. We shall prove that B is a closure-distributive 
subbase for its open sets.

Since for each B ∈ B, BdB = {q} or {p} according B = Aq or Bp. Since P ∩ Q = , we have 
BdB0 ∩ BdB1 =  for B0, B1 ∈ B with B0 ≠ B1. Hence B is closure-distributive.

We need the following claim to prove that B is a subbase for its open sets.
Claim. For x, y ∈ X with x < y there are a point z ∈ E(x, y) and an ordinal number α < τ 

such that E(x, z) ⊂ Xα.
Proof of Claim. Let α = min{β : E(x, y) ∩ S(x*, xβ) ≠ }. By [7, Lemma 6], S(x, y) ∩ S(y, 

xα) ∩ S(xα, x) is one point set {z}. Assume that there is a point w ∈ E(x, z)  Xα. Since X = {Xβ 
: β < τ }, we take a β with w ∈ Xβ . Then E(x, y) ∩ S(x*, xβ) ≠ . From the minimality of α it fol-
lows that α < β. Since w ∈ E(x, z), x* < x < w < z < xα. Thus w ∈ S(x*, xα). This contradicts w ∈ 
Xβ . Hence E(x, z) ⊂ Xα. This completes the proof of Claim.

Next, we shall prove that B is a subbase for its open sets. Since U(X) is a subbase for its open 
sets, it suffices to prove that for each x ∈ X and U ∈ U(X) with x ∈ U there is a B ∈ B such that x 
∈ B ⊂ U.

Let U be a segment of x in X  z. There are two cases to consider.
Case 1. x* ∈ U.
Let S(x, z) ∩ S(z, x*) ∩ S(x*, x) = {y}. By Claim, E(y, w) ⊂ Xα for some w ∈ E(y, z) and 

some α < τ. We take a point q ∈ Qα such that y < q < w. Then, by [7, Lemmas 3 and 10], x ∈ Aq ⊂ 
U.

Case 2. x* ∈/  U.
Since x ∈ U, by [7, Lemma 9], this case implies that z < x. Hence, by Claim, E(z, w) ⊂ Xα 

for some w ∈ E(z, x) and some α < τ. We take a point p ∈ P such that z < p < w. Similarly, we 
have x ∈ Bp ⊂ U.

In any case we can take an element B ∈ B such that x ∈ B ⊂ U. Hence B is a subbase for its 
open sets. Lemma 2.3 has been proved.

3.  The main result
We are now in a position to establish our main theorem.

3.1. Theorem Every compact tree-like space is regular supercompact.
Proof. By Lemma 2.3, there is a closure-distributive subbase B for its open sets such that B ⊂ 
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U(X). Let F = {Cl(∩B′) : B′ is a finite subcollection of B}. Then F is a subbase for its closed sets, 
since X is compact. Since B is closure-distributive, by [7, Lemma 12], F is binary, moreover the 
ring generated by F consists of regular closed sets. Hence X is regular supercompact. Theorem 3.1 
has been proved.

Since every regular supercompact space is regular Wallman, we have

3.2. Corollary Every compact tree-like space is regular Wallman.
This is also a positive answer to a question of J. van Mill [16], who proved that every com-

pact tree-like space of weight at most 2ω is regular Wallman.
K. R. Allen [1] proved that the Freudenthal compactification of a rim-compact tree-like space 

is tree-like. Our next corollary is a direct consequence of this result and Theorem 3.1.

3.3. Corollary The Freudenthal compactification of a rim-compact tree-like space is regular 
supercompact (hence it is regular Wallman).

In [16] J. van Mill proved that if a rim-compact tree-like space Y has at most 2ω closed sub-
sets, then βX is regular Wallman. K. Misra [10] extended this result to the case that Y is a rim-
compact tree-like space of weight at most 2ω , Moreover, he proved that for a rim-compact tree-
like space Y, βY is regular Wallman if and only if Y has a compactification which is regular 
Wallman. Thus we obtain the following corollary.

3.4. Corollary The Stone-Čech compactification of a rim-compact tree-like space is regular 
Wallman.
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