On Regular Supercompact Spaces

KIMURA, Takashi

Faculty of Education, Saitama University

Abstract

In this paper we prove that every compact tree-like space is regular supercompact. This is a positive answer to a question of J. van Mill. As an application we obtain that the Stone-Čech compactification and the Freudenthal compactification of a rim-compact tree-like space are regular supercompact.

Keywords and phrases. tree-like, regular supercompact, regular Wallman **2010 Mathematics Subject Classification**. Primary 54D30.

1. Introduction

The notion of supercompactness was introduced by J. de Groot in [5]. A collection of sets is *linked* if every two members have a non-empty intersection. A collection of sets is *binary* if every linked subcollection has a non- empty intersection. A space is *supercompact* if it has a binary subbase for its closed sets. By Alexander's lemma, every supercompact space is compact. Many compact spaces are supercompact. Examples of supercompact spaces are compact ordered spaces, compact metrizable spaces([13] or see [9]) and compact tree-like spaces([4] and [15], or see [17]). However, not all compact spaces are supercompact. M. G. Bell [2] proved that if the Stone-Čech compactification βX of a space X is supercompact, then X is pseudocompact.

J. van Mill [17] introduced the notion of regular supercompact spaces in analogy with regular Wallman spaces defined by E. F. Steiner [12]. A space is regular *supercompact* if it has a binary subbase \mathcal{F} for its closed sets such that the ring generated by \mathcal{F} consists of regular closed sets. A compact space is *regular Wallman* if it has a subbase \mathcal{F} for its closed sets such that the ring generated by \mathcal{F} consists of regular closed sets. Every regular supercompact space is supercompact as well as regular Wallman. Every compact ordered space is regular supercompact. E. K. van Douwen [14] proved that every compact metrizable space is regular supercompact. J. van Mill [17] proved that a compact tree-like space X is regular supercompact. In [6] the author announced that every compact tree-like space is regular supercompact. In [6] the author announced that every compact tree-like space is regular supercompact. The purpose of this paper is to give a proof of this result. J. Nikiel [11] also obtained this result, independently. As a corollary it follows that the Stone-Čech compactification and the Freudenthal compactification of a rim-compact tree-like space are regular supercompact. Some of the results and notation are taken from [7].

2. Lemmas

When $A, B \subseteq X, A \cap B = \emptyset$ and both A and B are open in $A \cup B$, we frequently write A + B

instead of $A \cup B$. We often write X - x instead of $X - \{x\}$.

A space is *tree-like* if it is connected and every two distinct points can be separated by a third point.

Let X be a space and x, y, $z \in X$. Then we say that z separates x and y if there exist open subsets U and V of X such that $x \in U$, $y \in V$, $U \cap V = \emptyset$ and $X - \{z\} = U \cup V$. In such a case we simply write $X - z = U \langle x \rangle + V \langle y \rangle$.

For $a, b \in X$ we set

 $E(a, b) = \{x \in X : x \text{ separates } a \text{ and } b\} \text{ and } S(a, b) = E(a, b) \cup \{a, b\}.$

Throughout the rest of this paper, the letter X will always denote a given non-empty compact tree-like space.

Since X is not empty, we take a point $x^* \in X$. For $x, y \in X$ we define the relation $x \leq x^* y$ if and only if $x \in S(x^*, y)$.

Throughout the rest of this paper, we shall fix a point $x^* \in X$ and give a partial order \leq on X by \leq_{x^*} . We always X as a partially ordered set with \leq .

A subset C of X is called a *segment* if C is a component of X - x for some $x \in X$. In particular, a component C of X - x containing y is called a *segment of* y in X - x. A point x of X is called an *end-point* if X - x is connected. We denote by E(X) the set of all end-points of X.

To prove our main theorem we need several lemmas.

2.1. Lemma $X - x = \bigcup \{ S(x^*, x) : x \in E(X) \}.$

Proof. Suppose not, i.e. $y \in X - \bigcup \{S(x^*, x) : x \in E(X)\}$. By Zorn's lemma, there is a maximal chain A' containing y. We put $A = A' \cap \{x \in X : y \leq x\}$. Then each point of A is not an endpoint. For each $x \in A$, let $X - x = A_x \langle x^* \rangle + B_x$, where A_x is a segment. By [7, Lemma 9], note that $B_x = \{z \in X : x < z\}$.

First we shall prove the following claim.

Claim. $\{A_z : z \in A\}$ is an open cover of X.

Proof of Claim. By [8, Theorem IV.4, 3, Proposition III.2 or 18, Lemma 2.1]), A_z is open in X for each $z \in A$. Hence it suffices to prove that $\{A_z : z \in A\}$ is a cover of X. We distinguish tree cases.

```
Case 1. x \in A_y.
Since y \in A, x \in \bigcup \{A_z : z \in A\}.
```

Case 2. $x \notin A_y$ and $x \in A$

Since $x \in A$, x is not an end-point of X. Thus $z \in B_x$ for some $z \in X$. Assume that $B_x \cap A = \emptyset$. Then $z \notin A$ and, by [7, Lemma 9], x < z. This implies that $z \notin A'$, therefore A' is properly contained in $A' \cup \{z\}$. Let u be any point of A'. If $u \notin A$, then u < z, because u < y. If $u \in A$, then $u \notin B_x$, because $B_x \cap A = \emptyset$.

Thus we have u < x, therefore u < z. Hence $A' \cup \{z\}$ is a chain, which contradicts the maximality of A'. We can take a point $v \in B_x \cap A$. Then $x \in A_v$, because x < v. Hence $x \in \bigcup \{A_z : z \in A\}$.

Case 3. $x \notin A_y$ and $x \notin A$.

This case implies that $x \notin A'$. Since A' is maximal, there is a point $z \in A'$ such that $x \notin z$ and $z \notin x$. Then we see $y \leq z$, that is, $z \in A$. Since $z \notin x$, we have $x \in A_z$. Hence $x \in \bigcup \{A_z : z \in A\}$.

This completes the proof of Claim.

Since X is compact, we can now take a finite subset $\{z_1, z_2, ..., z_n\}$ from A such that $\{A_{z_i} : i = 1, 2, ..., n\}$ covers X. Let $z = \max\{z_1, z_2, ..., z_n\}$. Then, by [7, Lemma 10], $A_{z_i} \subset A_z$ for each i. Thus $X = A_z$, this contradicts $z \notin A_z$. Lemma 2.1 has been proved.

Let $B \subset A \subset X$. Then B is *<-dense* in A if for each $x, y \in A$ with x < y there is a point $z \in B$ such that x < z < y.

2.2. Lemma For each $a \in X$ with $a \neq x^*$, there are disjoint subsets P and Q of $S(x^*, a)$ such that both P and Q are <-dense in $S(x^*, a)$.

Proof. Let $S = \{(x, y) : x, y \in S(x^*, a) \text{ and } x < y\}$, and enumerate S as $S = \{(x_\alpha, y_\alpha) : \alpha < \tau\}$, where τ is an ordinal number. Suppose that for each $\beta < \alpha$, p_β and q_β are taken and satisfy the following conditions (i) - (iv).

(i) $p_{\beta}, q_{\beta} \in E(x_{\beta}, y_{\beta}),$

(ii) $P_{\alpha} \cap Q_{\alpha} = \emptyset$, where $P_{\alpha} = \{p_{\beta} : \beta < \alpha\}$ and $Q_{\alpha} = \{q_{\beta} : \beta < \alpha\}$,

(iii) if $P_{\beta} \cap E(x_{\beta}, y_{\beta}) \neq \emptyset$, then $p_{\beta} = p_{\gamma}$, where $\gamma = \min\{\delta : p_{\delta} \in E(x_{\beta}, y_{\beta})\}$,

(iv) if $Q_{\beta} \cap E(x_{\beta}, y_{\beta}) \neq \emptyset$, then $q_{\beta} = q_{\gamma}$, where $\gamma = \min\{\delta : q_{\delta} \in E(x_{\beta}, y_{\beta})\}$.

We take p_{α} and q_{α} in ech of the following cases.

Case 1. $P_{\alpha} \cap E(x_{\alpha}, y_{\alpha}) \neq \emptyset$ and $Q_{\alpha} \cap E(x_{\alpha}, y_{\alpha}) \neq \emptyset$. Let $\beta = \min\{\delta : p_{\delta} \in E(x_{\alpha}, y_{\alpha})\}$ and $p_{\alpha} = p_{\beta}$. Let $\gamma = \min\{\delta : q_{\delta} \in E(x_{\alpha}, y_{\alpha})\}$ and $q_{\alpha} = q_{\gamma}$. Case 2. $P_{\alpha} \cap E(x_{\alpha}, y_{\alpha}) = \emptyset$ and $Q_{\alpha} \cap E(x_{\alpha}, y_{\alpha}) = \emptyset$. Since $|E(x_{\alpha}, y_{\alpha})| \ge 2$, we take $p_{\alpha}, q_{\alpha} \in E(x_{\alpha}, y_{\alpha})$ with $p_{\alpha} \neq q_{\alpha}$. Case 3. $P_{\alpha} \cap E(x_{\alpha}, y_{\alpha}) \neq \emptyset$ and $Q_{\alpha} \cap E(x_{\alpha}, y_{\alpha}) = \emptyset$.

Let $\beta = \min\{\delta : p_{\delta} \in E(x_{\alpha}, y_{\alpha})\}$ and $p_{\alpha} = p_{\beta}$. Assume that $E(x_{\alpha}, y_{\alpha}) \subset P_{\alpha}$. Let $\gamma = \min\{\delta : p_{\delta} \in E(x_{\alpha}, y_{\alpha}) \text{ and } p_{\delta} \neq p_{\beta}\}$. Obviously, $\beta < \gamma$. Then, by [7, Lemma 7], $p_{\beta} < p_{\gamma}$ or $p_{\gamma} < p_{\beta}$. Suppose that $p_{\beta} < p_{\gamma}$. Since $E(p_{\beta}, p_{\gamma}) \subset E(x_{\alpha}, y_{\alpha}) \subset P_{\alpha}$, we take $p_{\xi} \in E(p_{\beta}, p_{\gamma})$. Obviously, $\gamma < \xi$. Then $q_{\xi} < p_{\xi}$ or $p_{\xi} < q_{\xi}$. If $q_{\xi} < p_{\xi}$, then $q_{\xi} < x_{\alpha}$, because $q_{\xi} \notin E(x_{\alpha}, y_{\alpha})$. Thus $x_{\xi} < p_{\beta} < y_{\xi}$, this contradicts (iii). If $p_{\xi} < q_{\xi}$, then $y_{\alpha} < q_{\xi}$, because $q_{\xi} \notin E(x_{\alpha}, y_{\alpha})$. Thus $x_{\xi} < p_{\beta} < y_{\xi}$, this contradicts (iii). Similarly, if $p_{\gamma} < p_{\beta}$, then we have a contradiction. Hence $E(x_{\alpha}, y_{\alpha}) \notin P_{\alpha}$. Thus we can take a point $q_{\alpha} \in E(x_{\alpha}, y_{\alpha}) - P_{\alpha}$.

Case 4. $P_{\alpha} \cap E(x_{\alpha}, y_{\alpha}) = \emptyset$ and $Q_{\alpha} \cap E(x_{\alpha}, y_{\alpha}) \neq \emptyset$.

Similarly as in Case 3.

In any case it is easy to see that p_{α} and q_{α} satisfy the conditions (i) - (iv).

We set $P = \{p_{\alpha} : \alpha < \tau\}$ and $Q = \{q_{\alpha} : \alpha < \tau\}$. Then P and Q have all the required properties. Lemma 2.2 has been proved.

Let $\mathcal{U}(X)$ be the collection of all segments of X. Then $\mathcal{U}(X)$ is a subbase for its open sets, because X is compact.

2.3. Lemma There is a closure-distributive subcollection \mathcal{B} of $\mathcal{U}(X)$ such that \mathcal{B} is a subbase for its closed sets.

Proof. Enumerate E(X) as $E(X) = \{x_{\alpha} : \alpha < \tau\}$, where τ is an ordinal number. Let $X_{\alpha} = S(x^*, x_{\alpha}) - \bigcup \{S(x^*, x_{\beta}) : \beta < \alpha\}$. Obviously, $X_{\alpha} \cap X_{\beta} = \emptyset$ for $\alpha \neq \beta$, and, by Lemma 2.1, $X = \bigcup \{X_{\alpha} : \alpha < \tau\}$. By Lemma 2.2, we can take two disjoint <-dense subsets P'_{α} and Q'_{α} in $S(x^*, x_{\alpha})$ and set $P_{\alpha} = P'_{\alpha} \cap X_{\alpha}$, $Q_{\alpha} = Q'_{\alpha} \cap X_{\alpha}$, $P = \cup \{P_{\alpha} : \alpha < \tau\}$ and $Q = \bigcup \{Q_{\alpha} : \alpha < \tau\}$. For each $p \in P_{\alpha}$, let B_p be a segment of x_{α} in X - p. For each $q \in Q_{\alpha}$, let A_q be a segment of x^* in X - q.

Let us set $\mathcal{B} = \{A_q : q \in Q\} \cup \{B_p : p \in P\}$. We shall prove that \mathcal{B} is a closure-distributive subbase for its open sets.

Since for each $B \in \mathcal{B}$, $BdB = \{q\}$ or $\{p\}$ according $B = A_q$ or B_p . Since $P \cap Q = \emptyset$, we have $BdB_0 \cap BdB_1 = \emptyset$ for $B_0, B_1 \in \mathcal{B}$ with $B_0 \neq B_1$. Hence \mathcal{B} is closure-distributive.

We need the following claim to prove that \mathcal{B} is a subbase for its open sets.

Claim. For $x, y \in X$ with x < y there are a point $z \in E(x, y)$ and an ordinal number $\alpha < \tau$ such that $E(x, z) \subset X_{\alpha}$.

Proof of Claim. Let $\alpha = \min\{\beta : E(x, y) \cap S(x^*, x_\beta) \neq \emptyset\}$. By [7, Lemma 6], $S(x, y) \cap S(y, x_\alpha) \cap S(x_\alpha, x)$ is one point set $\{z\}$. Assume that there is a point $w \in E(x, z) - X_\alpha$. Since $X = \{X_\beta : \beta < \tau\}$, we take a β with $w \in X_\beta$. Then $E(x, y) \cap S(x^*, x_\beta) \neq \emptyset$. From the minimality of α it follows that $\alpha < \beta$. Since $w \in E(x, z), x^* < x < w < z < x_\alpha$. Thus $w \in S(x^*, x_\alpha)$. This contradicts $w \in X_\beta$. Hence $E(x, z) \subset X_\alpha$. This completes the proof of Claim.

Next, we shall prove that \mathcal{B} is a subbase for its open sets. Since $\mathcal{U}(X)$ is a subbase for its open sets, it suffices to prove that for each $x \in X$ and $U \in \mathcal{U}(X)$ with $x \in U$ there is a $B \in \mathcal{B}$ such that $x \in B \subset U$.

Let U be a segment of x in X - z. There are two cases to consider.

Case 1. $x^* \in U$.

Let $S(x, z) \cap S(z, x^*) \cap S(x^*, x) = \{y\}$. By Claim, $E(y, w) \subset X_{\alpha}$ for some $w \in E(y, z)$ and some $\alpha < \tau$. We take a point $q \in Q_{\alpha}$ such that y < q < w. Then, by [7, Lemmas 3 and 10], $x \in A_q \subset U$.

Case 2. $x^* \notin U$.

Since $x \in U$, by [7, Lemma 9], this case implies that z < x. Hence, by Claim, $E(z, w) \subset X_{\alpha}$ for some $w \in E(z, x)$ and some $\alpha < \tau$. We take a point $p \in P$ such that $z . Similarly, we have <math>x \in B_p \subset U$.

In any case we can take an element $B \in \mathcal{B}$ such that $x \in B \subset U$. Hence \mathcal{B} is a subbase for its open sets. Lemma 2.3 has been proved.

3. The main result

We are now in a position to establish our main theorem.

3.1. Theorem *Every compact tree-like space is regular supercompact.*

Proof. By Lemma 2.3, there is a closure-distributive subbase \mathcal{B} for its open sets such that $\mathcal{B} \subseteq$

 $\mathcal{U}(X)$. Let $\mathcal{F} = \{ Cl(\cap \mathcal{B}') : \mathcal{B}' \text{ is a finite subcollection of } \mathcal{B} \}$. Then \mathcal{F} is a subbase for its closed sets, since X is compact. Since \mathcal{B} is closure-distributive, by [7, Lemma 12], \mathcal{F} is binary, moreover the ring generated by \mathcal{F} consists of regular closed sets. Hence X is regular supercompact. Theorem 3.1 has been proved.

Since every regular supercompact space is regular Wallman, we have

3.2. Corollary Every compact tree-like space is regular Wallman.

This is also a positive answer to a question of J. van Mill [16], who proved that every compact tree-like space of weight at most 2^{ω} is regular Wallman.

K. R. Allen [1] proved that the Freudenthal compactification of a rim-compact tree-like space is tree-like. Our next corollary is a direct consequence of this result and Theorem 3.1.

3.3. Corollary *The Freudenthal compactification of a rim-compact tree-like space is regular supercompact (hence it is regular Wallman).*

In [16] J. van Mill proved that if a rim-compact tree-like space Y has at most 2^{ω} closed subsets, then βX is regular Wallman. K. Misra [10] extended this result to the case that Y is a rim-compact tree-like space of weight at most 2^{ω} , Moreover, he proved that for a rim-compact tree-like space Y, βY is regular Wallman if and only if Y has a compactification which is regular Wallman. Thus we obtain the following corollary.

3.4. Corollary *The Stone-Čech compactification of a rim-compact tree-like space is regular Wallman.*

References

- [1] K. R. Allen, Dendritic compactification, Pacific J. Math. 57(1975), 1-10.
- [2] M. G. Bell, Not all compact Hausdorff spaces are supercompact, Gen. Top. Appl. 8(1978), 151-155.
- [3] A. E. Brouwer, *Tree-like Spaces and Related Connected Topological Spaces*, Math. Centre Tracts 75, Ams- terdam, 1977.
- [4] A. E. Brouwer and A Schrijver, A characterization of supercompactness with an application to treelike spaces, Report Mathematical Centre ZW 34/74, Amsterdam, 1974.
- [5] J. de Groot, Supercompactness and superextensions, in Constructions to extension theory of topological structures, Symp. Berlin 1967, Dentscher Verlag Wiss., Berlin, 1969, 89-90.
- [6] T. Kimura, Every compact tree-like space is regular supercompact, Questions Answers Gen. Top. 2(1984), 69-72.
- [7] T. Kimura, Some properties of compact tree-like spaces, J. Saitama Univ.(Faculty of Education) 62(2013),179-182.
- [8] H. Kok, Connected Orderable Spaces, Math. Centre Tracts 49, Amsterdam, 1974.
- [9] C. F. Mills, A simpler proof that compact metric spaces are supercompact, Proc. Amer. Math. Soc. 73(1979), 388-390.
- [10] K. Misra, A note on tree-like spaces and regular Wallman propery, Kynugpook Math. J. 22(1982),

113-115.

- [11] J. Nikiel, Toplogies on pseudo-trees and applications, Mem. Amer. Math. Soc. 82(416)(1989).
- [12] E. F. Steiner, Wallman spaces and compactifications, Fund. Math. 61(1968), 295-304.
- [13] M. Strok and A. Szymanski, Compact metric spaces have binary subbases, Fund. Math. 89(1975), 81-91.
- [14] E. K. van Douwen, Special bases for compact metrizable spaces, Fund. Math. 111(1981), 201-209.
- [15] J. van Mill, A topological characterization of products of compact tree-like spaces, Report 36, Wisk. Sem. Vrije Universiteit, Amsterdam, 1975.
- [16] J. van Mill, A note on Wallman compactifications, Nieuw Arch. Wisk. (3) 24(1976), 168-172.
- [17] J. van Mill, Supercompactness and Wallman Spaces, Math. Centre Tracts 85, Amsterdam, 1977.
- [18] J. van Mill and W Wattel, Dendrons, in Topology and Ordered Structures, Math. Centre Tracts 142, Amsterdam, 1981, 59-81.
- [19] G. T. Whyburn, Analytic Topology, New York, 1942