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Abstract
In this paper we prove that every compact tree-like space is regular supercompact. This is a
positive answer to a question of J. van Mill. As an application we obtain that the Stone-Cech com-
pactification and the Freudenthal compactification of a rim-compact tree-like space are regular su-

percompact.
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1. Introduction

The notion of supercompactness was introduced by J. de Groot in [5]. A collection of sets is
linked if every two members have a non-empty intersection. A collection of sets is binary if every
linked subcollection has a non- empty intersection. A space is supercompact if it has a binary sub-
base for its closed sets. By Alexander’s lemma, every supercompact space is compact. Many com-
pact spaces are supercompact. Examples of supercompact spaces are compact ordered spaces,
compact metrizable spaces([13] or see [9]) and compact tree-like spaces([4] and [15], or see [17]).
However, not all compact spaces are supercompact. M. G. Bell [2] proved that if the Stone-Cech
compactification 3.X of a space X is supercompact, then X is pseudocompact.

J. van Mill [17] introduced the notion of regular supercompact spaces in analogy with regular
Wallman spaces defined by E. F. Steiner [12]. A space is regular supercompact if it has a binary
subbase F for its closed sets such that the ring generated by F consists of regular closed sets. A
compact space is regular Wallman if it has a subbase F for its closed sets such that the ring gener-
ated by F consists of regular closed sets. Every regular supercompact space is supercompact as
well as regular Wallman. Every compact ordered space is regular supercompact. E. K. van Dou-
wen [14] proved that every compact metrizable space is regular supercompact. J. van Mill [17]
proved that a compact tree-like space X is regular supercompact in case X has the weight at most
2“ and asked whether all compact tree-like spaces are regular supercompact. In [6] the author an-
nounced that every compact tree-like space is regular supercompact. The purpose of this paper is
to give a proof of this result. J. Nikiel [11] also obtained this result, independently. As a corollary it
follows that the Stone-Cech compactification and the Freudenthal compactification of a rim-com-

pact tree-like space are regular supercompact. Some of the results and notation are taken from [7].

2. Lemmas
When A, BC X, AN B= () and both A and B are open in A U B, we frequently write A + B
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instead of A U B. We often write X — z instead of X — {z}.

A space is tree-like if it is connected and every two distinct points can be separated by a third
point.

Let X be a space and z, y, 2 € X. Then we say that z separates x and y if there exist open
subsets U and Vof X suchthatz € U,y € V,UN V=0 and X —{z} = U U V. In such a case we
simply write X — z=U (x)+ V (y).

For a, b € X we set

E(a, b) ={z € X : x separates a and b} and S(a, b) = E(a, b) U {a, b}.

Throughout the rest of this paper, the letter X will always denote a given non-empty compact
tree-like space.

Since X is not empty, we take a point z* € X. For x, y € X we define the relation x < ,* y if
and only if z € S(z*, y).

Throughout the rest of this paper, we shall fix a point x* € X and give a partial order < on X
by <.« We always X as a partially ordered set with <.

A subset C of X is called a segment if C is a component of X — z for some x € X. In partic-
ular, a component C' of X — x containing y is called a segment of y in X — x. A point z of X is
called an end-point if X — x is connected. We denote by F(X) the set of all end-points of X.

To prove our main theorem we need several lemmas.

2.1. Lemma X — x =J{S(z", z) : x € E(X)}.

Proof. Suppose not, i.e. y € X — U{S(z*, z) : « € E(X)}. By Zorn’s lemma, there is a maxi-
mal chain A’ containing y. We put A= A’ N {z € X : y < z}. Then each point of A is not an end-
point. For each x € A, let X — x = A,(z*) + B,, where A, is a segment. By [7, Lemma 9], note
that B, ={z€ X :z <z}

First we shall prove the following claim.

Claim. {A. : z € A} is an open cover of X.

Proof of Claim. By [8,Theorem IV.4, 3, Proposition III.2 or 18, Lemma 2.1]), A. is open in X
for each z € A. Hence it suffices to prove that {A. : z € A} is a cover of X. We distinguish tree
cases.

Case 1. x € A,.

Sincey € A, x € U{A.: z€ A}

Case2.x ¢ Ayjandz € A

Since = € A, z is not an end-point of X. Thus z € B, for some z € X. Assume that B, N A =
(). Then z & A and, by [7, Lemma 9], = < 2. This implies that z & A’, therefore A’ is properly con-
tained in A’ U {z}. Let u be any point of A". If u & A, then u < z, because u < y. If u € A, then u &
B., because B, N A= 0.

Thus we have u < z, therefore u < z. Hence A’ U {z} is a chain, which contradicts the maxi-
mality of A’. We can take a point v € B, N A. Then = € A, , because z <v. Hence z € | J{A.: z €
A}
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Case3.x & Ayand = € A.

This case implies that = & A'. Since A’ is maximal, there is a point z € A’ such that z £ z and
z ¢ x. Then we see y < z, that is, z € A. Since z £ x, we have x € A.. Hence z € U{A.: z € A}.

This completes the proof of Claim.

Since X is compact, we can now take a finite subset {2, 2,, ... , 2} from A such that {A.. :
=1,2,...,n} covers X. Let z=max{z,, 25, ..., zn}. Then, by [7, Lemma 10], A.. C A. for each i.
Thus X = A, , this contradicts z € A.. Lemma 2.1 has been proved.

Let BC A C X. Then B is <-dense in A if for each z, y € A with z <y there is a point z € B

such that x <z <y.

2.2. Lemma For each a € X with a #F x*, there are disjoint subsets P and Q) of S(x*, a) such
that both P and Q) are <-dense in S(z", a).

Proof. Let S= {(z, y) : =, y € S(z*, a) and z < y}, and enumerate S as S = {(xa, ya) : @ < T },
where 7 is an ordinal number. Suppose that for each 3 < «, ps and g are taken and satisfy the fol-
lowing conditions (i) - (iv).

(i) ps s € E(xs, ys),

(il) Po N Qo =0, where P, ={ps: f<a} and Q.= {qs: f<a},

(iii) if P3 N E(xp, ys) # 0, then pg = p, , where y=min{d : p; € E(zp, ys)},

(iv)if Qs N E(xp, ys) # 0, then gs= g, , where y=min{d : ¢s € E(z3, ys)}.

We take p, and ¢, in ech of the following cases.

Case 1. Po N E(xq, ya) # 0 and Qo N E(xq, ya) # 0.

Let 3=min{d : p; € E(xa, yo)} and po = ps . Let v =min{4 : g5 € E(za, yo)} and ga = g .

Case 2. Py N E(a, yo) =0 and Qo N E(za, ya) = 0.

Since |E(za, ya)| > 2, we take pa, go € E(Ta, ya) With pa # qo.

Case 3. Po N E(xq, ya) # 0 and Qo N E(xq, ya) = 0.

Let 8=min{0 : ps € E(xa, ya)} and pa = pg . Assume that F(za, yo) C Pa. Let v = min{0 : p;
€ E(za, Yo) and ps # ps}. Obviously, 8 < . Then, by [7, Lemma 7], ps < p or p, < ps . Suppose
that ps < p,. Since E(ps, py) C FE(Za, Ya) C Pa, we take pe € E(pg, p,). Obviously, v < £ Then ¢ <
pe or pe < ge. If ge < pg, then ge < xa, because gc & E(xa, Ya). Thus ¢ < pg < ye , this contradicts (iii).
If pe < qe, then y, < g¢, because q¢ & E(xq, ya). Thus z¢ < p, < ye, this contradicts (iii). Similarly, if
py < ps , then we have a contradiction. Hence E(za, ya) ¢ P.. Thus we can take a point g, € E(za,
Ya) — Pa.

Case 4. Py N E(xa, yo) =0 and Qa N E(za, Ya) * 0.

Similarly as in Case 3.

In any case it is easy to see that p, and ¢, satisfy the conditions (i) - (iv).

We set P={po:a<7}and Q={q.: a<7}. Then Pand ) have all the required properties.
Lemma 2.2 has been proved.

Let U(X) be the collection of all segments of X. Then (X)) is a subbase for its open sets, be-

cause X is compact.
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2.3. Lemma There is a closure-distributive subcollection B of U(X) such that B is a subbase

for its closed sets.

Proof. Enumerate F(X) as F(X) = {x. : « <7 }, where 7 is an ordinal number. Let X, = S(z*, z)
— U{S(a*, xp) : B<a}. Obviously, Xo N X3 =0 for a # (3, and, by Lemma 2.1, X = }{ X, : a <
7}. By Lemma 2.2, we can take two disjoint <-dense subsets P!, and Q% in S(z*, z.) and set P, =
P'oNXa, Qa=Q'« N Xo, P=U{Py:a<71}and Q={Q.: a <7} Foreachp€ P, let B, be
a segment of x, in X — p. For each g € Q)., let A, be a segment of " in X — ¢.

Letusset B={A,:q€ Q} U {B,: p € P}. We shall prove that 5 is a closure-distributive
subbase for its open sets.

Since for each B € B, BdB = {q} or {p} according B = A, or B,. Since PN Q = (), we have
BdB, N BdB, = 0 for B, B, € B with B, # B,. Hence B is closure-distributive.

We need the following claim to prove that B is a subbase for its open sets.

Claim. For x, y € X with x < y there are a point z € E(x, y) and an ordinal number o < 7
such that E(x, z) C X,.

Proof of Claim. Let o = min{$3 : E(z, y) N S(z*, z5) # 0}. By [7, Lemma 6], S(z, y) N S(y,
xa) N S(za, ) is one point set {z}. Assume that there is a point w € E(x, z) — Xa. Since X = { X3
: <1}, we take a 3 with w € X . Then E(z, y) N S(z*, 25) # (). From the minimality of « it fol-
lows that o < (. Since w € E(z, z), " <z <w < z < 2. Thus w € S(z*, x,). This contradicts w €
X3 . Hence E(x, z) C Xa. This completes the proof of Claim.

Next, we shall prove that B is a subbase for its open sets. Since (X)) is a subbase for its open
sets, it suffices to prove that for each € X and U € U(X) with x € U there is a B € B such that
e BcU.

Let U be a segment of z in X — 2. There are two cases to consider.

Case l.z € U.

Let S(z, z) N S(z, z*) N S(z*, x) = {y}. By Claim, E(y, w) C X, for some w € E(y, z) and
some « < 7. We take a point g € (), such that y < ¢ <w. Then, by [7, Lemmas 3 and 10], x € A, C
U.

Case 2. 2" ¢ U.

Since z € U, by [7, Lemma 9], this case implies that z < z. Hence, by Claim, F(z, w) C X,
for some w € E(z, ) and some a < 7. We take a point p € P such that z < p < w. Similarly, we
have z € B, C U.

In any case we can take an element B € B such that x € B C U. Hence B is a subbase for its

open sets. Lemma 2.3 has been proved.

3. The main result
We are now in a position to establish our main theorem.

3.1. Theorem Every compact tree-like space is regular supercompact.

Proof. By Lemma 2.3, there is a closure-distributive subbase B for its open sets such that B C
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U(X). Let F={CI(NB') : B’ is a finite subcollection of B}. Then F is a subbase for its closed sets,
since X is compact. Since B is closure-distributive, by [7, Lemma 12], F is binary, moreover the
ring generated by F consists of regular closed sets. Hence X is regular supercompact. Theorem 3.1
has been proved.

Since every regular supercompact space is regular Wallman, we have

3.2. Corollary Every compact tree-like space is regular Wallman.

This is also a positive answer to a question of J. van Mill [16], who proved that every com-
pact tree-like space of weight at most 2 is regular Wallman.

K. R. Allen [1] proved that the Freudenthal compactification of a rim-compact tree-like space

is tree-like. Our next corollary is a direct consequence of this result and Theorem 3.1.

3.3. Corollary The Freudenthal compactification of a rim-compact tree-like space is regular
supercompact (hence it is regular Wallman).

In [16] J. van Mill proved that if a rim-compact tree-like space Y has at most 2 closed sub-
sets, then $X is regular Wallman. K. Misra [10] extended this result to the case that Y'is a rim-
compact tree-like space of weight at most 2“ , Moreover, he proved that for a rim-compact tree-
like space Y, Y is regular Wallman if and only if Y has a compactification which is regular
Wallman. Thus we obtain the following corollary.

3.4. Corollary The Stone-Cech compactification of a rim-compact tree-like space is regular
Wallman.
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