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Abstract
Let X be a compact metric space and let Y be a non-compact, locally compact metric space. 

In this paper we give conditions on X and Y which characterize the product space X × Y having 
all compact metric spaces as remainders.
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1. Introduction
Throughout this paper all spaces are assumed to be completely regular and T1 unless other-

wise stated.
A space Y is a remainder of another space X if Y is homeomorphic to αX−X for some com-

pactification αX of X.
In the theory of compactifications one of the major problems has been that of characterizing 

when all members of a certain class of spaces can serve as remainders for each member of another 
class of spaces (cf. [2], [3], [6], [7], [8], [12] etc.).

Hatzenbuhler and Mattson [6] characterized spaces having all compact metric spaces as re-
mainders. In this paper we consider this problem on product spaces.

In [7] Hatzenbuhler and Mattson gave conditions (see Theore 3.1 below) on X and Y which 
characterize when all compact metric spaces are continuous images of βX×βY−X×Y, where βX 
is the Stone-Čech compactification of X. By Magill’s theorem, their conditions are sufficient in or-
der that the product space X×Y have all compact metric spaces as remainders. However, in gener-
al, βX×βY /=/  β (X×Y ), therefore their conditions need not be necessary. In [7] they asked whether 
their condition are not only sufficient but also necessary.

In this paper we give necessary and sufficient conditions on a compact metric space X and a 
metric space Y which characterize the product space X×Y having all compact metric spaces as re-
mainders.

2. Preliminaries
Since every space having a compactification with compact remainder is locally compact, we 

only consider locally compact spaces. The following theorem, which was proved by Magill [10], is 
a basic result on remainders of compactifications of locally compact spaces.
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2.1. Theorem (Magill [10]). For every locally compact space X and any compact space K the fol-
lowing conditions are equivalent;
(a) K is a remainder of X,
(b) K is a continuous image of βX−X,
(c) K is a continuous image of a remainder of X.

Since every compact metric space is a continuous image of the Cantor set, we obtain the fol-
lowing corollary.

2.2. Corollary. For every locally compact space X the following conditions are equivalent;
(a) X has all compact metric spaces as remainders,
(b) X has a compactification with the Cantor set as remainder,
(c) X has a compactification αX such that αX−X is a continuous preimage of the Cantor set.

Recall that a space X is scattered if every non-empty closed subset of X has an isolated point. 
The following lemma is easily, so we omit the proof.

2.3. Lemma. Let X be a compact, non-scattered, zero-dimensional space. Then there exists a con-
tinuous mapping from X to the Cantor set.

Telgársky ([14], p.64 Remark) proved the following lemma.

2.4. Lemma (Telgarsky [14]). Let f be a perfect mapping from a space X onto a space Y.
(a) If X is scattered, then so is Y.
(b) If Y is scattered and if f −1(y) is scattered for every y  Y, then X is scattered.

Let Y be a subspace of another space X. Then Y is zero-dimensionally embedded in X if there 
exists a collection U of open subsets of X satisfying the following conditions;

(i) {U ∩ Y : U  U} is a base for Y, and
(ii) BdX U ∩ Y = ∅ for every U  U.

The maximal compactification of a space X with zero-dimensionally embedded remainder is 
called the Freudenthal comapctification of X and denoted by X. Every locally compact space X 
has the Freudenthal compactification X. In the case when X is locally compact it is easy to see 
that for every compactification αX of X, αX−X is zero-dimensionally embedded in αX if and 
only if αX−X is zero-dimensional (see [1] p.273). In [8] Hatzenbuhler and Mattson pointed out 
the following theorem without the proof. They stated this theorem follows their theorem [6] which 
characterizes a space having all compact metric space as remainders. However, it is easy to show 
that this follows Lemmas 2.3 and 2.4.
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2.5. Theorem (Hatzenbuhler and Mattson [8]). A locally compact space X has all compact metric 
spaces as remainders if and only if the remainder X−X of the Freudenthal compactification of 
X is not scattered.
Proof. Suppose that X has all compact metric spaces as remainders. Then X has a compactifica-
tion αX with the Cantor set as remainder. Since the Cantor set is not scattered, by Lema 2.4(a), X 
−X is not scattered.

Conversely, if X−X is not scattered, then, by Lemma 2.3, the Cantor set is a continuous im-
age of X−X. Hence, by Corollary 2.2, X has all compact metric spaces as remainders.

Let Q(X) be the set of all quasi-components of a space X and let p : X → Q(X) be the natu-
ral projection of X onto Q(X). We give Q(X) the topology generated by

{U : U  Q(X) and p−1(U) is open-and-closed in X}

as a base for open sets. We call the space Q(X) with this topology the quasi-component space of 
X. It is easy to see that the quasi-component space Q(X) is zero-dimensional. For more detailed 
information about the Freudenthal compactification and the quasi-component space, the reader is 
referred to Aarts and Nishiura [1] and Dickson and McCoy [4].

3. Sufficient conditions
In [7] Hatzenbuhler and Mattson proved the following theorem

3.1. Theorem (Hatzenbuhler and Mattson [7]). All compact metric spaces are continuous image 
of βX×βY−X×Y if and only if
(i) βX or βY has all compact metric spaces as continuous images, or
(ii) one factor of X×Y has a compact quasi-component and the other has all compact metric 
spaces as remainders.

By Corollary 2.2, each of the above conditions (i) and (ii) is sufficient in order that the prod-
uct space X×Y have all compact metric spaces as remainders.

In this section we shall give some sufficient conditions on metric spaces X and Y in order that 
the product space X×Y have all compact metric spaces as remainders.

Let D be a pairwise disjoint collection of closed subsets of a space X. If the collection D′=D  
{{x} : xX−D} is an upper semi-continuous decomposition of X, then we denote by X/D 
the quotient space X/D′.

3.2. Theorem. Let X be a compact space. If a space Y has all compact metric spaces as remainders, then 
so does the product space X×Y .

Proof. By Corollary 2.2, Y has a compactification αY with the Cantor set as remainder. Let us set

D = {X×{y} : y  αY−Y} and α(X×Y )=(X×αY )/D.
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Then α(X×Y ) is a compactification of X×Y. The remainder α(X×Y )−X×Y is homeomorphic to 
the Cantor set. Thus, by Corollary 2.2, the product space X×Y has all compact metric spaces as re-
mainders.

3.3. Theorem. Let X be a space for which the quasi-component space Q(X) is compact and non- 
scattered. Then for every non-compact, locally compact space Y the product space X×Y has all 
compact metric spaces as remainders.
Proof. By Lemma 2.3, there exists a continuous mapping f from Q(X) onto the Cantor set C. Let 
ωY=Y  {∞} be the one-point compactification of Y. Then, obviously, βX×ωY is a compactifica-
tion of X×Y. Let  be the mapping from βX×ωY−X×Y to C defined by (x, y)=β(f ◦ p)(x) for 
every (x, y)βX×ωY−X×Y, where p : X→Q(X) is the natural projection and β(f ◦ p) is the 
Čech extension of f ◦ p. Then  is a continuous surjection. Hence, by Corollary 2.2, the product 
space X×Y has all compact metric spaces as remainders.

Steiner and Steiner [13] proved the following thereom.

3.4. Theorem (Steiner and Steiner [13], Corollary 3). Let X be an infinite discrete space and let 
K be a compact space with a dense subset of cardinality less than or equal to that of X. Then X 
has a compactification with K as remainder.

Using the same technique of the proof of Theorem 3.4, it is easy to show that the gollowing 
theorem, so we omit the proof.

3.5. Theorem. Let X be a locally compact space which can be represented as an infinite topologi-
cal sum. Then X has the Cantor set as rmainder, therefore X has all compact metric spaces as re-
mainders.

It is well-known that every locally compact, non-separable metric space can be represented as 
an infinite disjoint topological sum. Thus we obtain the following proposition.

3.6. Proposition. Let X and Y be locally compact metric spaces. If X or Y is not separable, then 
the product space X×Y has all compact metric spaces as remainders.

Because the purpose of this paper is to give conditions on metric spaces X and Y which char-
acterize the product space X×Y having all compact metric spaces as remainders, we only consider 
locally compact metric spaces X and Y.

3.7. Lemma. Let X be a locally compact separable metric space. If the quasi-component space 
Q(X) is not compact, then X can be represented as an infinite disjoint topological sum.
Proof. Since X is locally compact and second-countable, X is σ-compact, therefore so is Q(X). 
Let Q(X)={Yi : i < ω}, where Yi is compact. Since Q(X) is zero-dimensional and Lindelöf, 
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Q(X) is strongly zero-dimensional (see [5], Theorem 1.6.5). Thus there exists a zero-dimensional 
compactification Y of Q(X). Take a point y  Y−Q(X). For every i < ω we take an open-and-
closed subset Ui of Y such that y  Ui, Ui ∩ Yi = ∅, and Ui  Ui−1, where U−1 =Y. Let us set Zi = 
Ui−1 − Ui for every i < ω. Since Zi =/  ∅ for infinitely meny i < ω, we can assume that Zi /=/  ∅ for 
every i < ω. Thus we have Q(X) = ⊕{Zi : i < ω}, where Zi /=/  ∅. Let us set Xi = p−1(Zi) for every 
i < ω, where p : X → Q(X) is the natural projection. Then, obviously, we have X = ⊕{Xi : i < 
ω}, where Xi =/  ∅. This completes the proof of Lemma 3.7.

3.8. Theorem. Let X be a locally compact separable metric space for which the quasi-component 
space Q(X) is not compact. Then for every locally compact space Y the product space X × Y has 
all compact metric spaces as remainders.

Proof. By Lemma 3.7, X can be represented as an infinite disjoint topological sum, therefore so 
can X×Y . Hense, by Theorem 3.5, the product space X×Y has all compact metric spaces as re-
mainders.

4.  A characterization of the Freudenthal compactification
In this section we shall give a necessary and sufficient condition in order that a compactifi-

cation of a locally compact space with scattered remainder be equivalent to the Freudenthal 
compactification.

Let α1X and α2X be compactifications of a space X. We say that α1X is equivalent to α2X if 
there exists a homeomorphism f : α1X → α2X such that f (x) = x for every x  X, and write 
α1X = α2X. If there exists a continuous mapping f : α1X → α2X such that f (x) = x for every x 
 X, then we write α1X ≥ α2X. We write α1X > α2X if α1X = α2X and α1X =/  α2X.

A compactification αX of a space X is called an n-point compactification if αX − X consists 
of n points. Following Magill [9] we say that a pairwise disjoint collection {G1, G2, · · · , Gn} of 
open subsets of a space X is an n-star of X provided;
(1) K = X − (G1  G2  · · ·  Gn) is compact and
(2) K  Gi is not compact for every i = 1, 2, · · · , n.

Magill [9] characterized a locally compact space having an n-point compactification as fol-
loes.

4.1 Theorem (Magill [9]). A locally compact space X has an n-point compactification if and only 
if X has an n-star.

For every closed subset F of a space X we denote by Fd the set of all accumulation points of 
F. For a space X, inductively, we can define the closed subset X(α) for every ordinal α as follows;

X(0) = X,
X(α+1) = (X(α))d and
X(λ) = ∩{X(α) : α < λ} for a limit ordinal λ.
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A space X is scattered if and only if X(α) = ∅ for some ordinal α. For every point x of a scat-
tered space X the rank of x in X, denoted by rank (x; X), is the maxmail ordinal α with x  X(α). 
It is easy to see that for every point x of a scattered space X there exists a neighborhood U of x in 
X such that rank (y; X) < rank (x; X) for every y  U with y =/  x.

4.2. Theorem. Let αX be a compactification of a locally compact space X such that αX−X is 
scattered. Then αX is equivalent to the Freudenthal compactification X if and only if αX − {x} 
has no 2-point compactification for every x  αX − X.

Proof. Necessity. We shall prove that X − {x} has no 2-point compactification for every x  X 
− X. Assume that X − {x} has a 2-point compactification Y = (X − {x})  {a, b} for some x 
 X − X. Then Y is a compactification of X. It is easy to see that X < Y and Y − X is zero-di-
mensional. This contradicts the maximality of the Freudenthal compactificatiom. Hence X − {x} 
has no 2-point compactification for every x  X − X.

Sufficiency. Since X is locally compact, αX−X is compact. Thus αX−X is zero-dimension-
al, because αX−X is scattered. Hence we have X ≥ αX ; let f : X→αX be the continuous 
mapping such that f (x) = x for every x  X. Assume that X > αX. Then there exists a point x 
 αX−X such that |f−1(x)| ≥ 2. Let us set

λ = min{rank (x; αX−X) : x  αX−X and |f−1(x)| ≥ 2}.

Take a point x  αX−X such that λ= rank (x; αX−X). We shall prove that αX−{x} has a 
2-point compactification. Since f −1(x) is zero-dimensional and |f −1(x)| ≥ 2, there exists open-
and-closed subsets A and B in f −1(x) such that f −1(x) = A  B, A ∩ B = ∅, A =/  ∅ and B =/  ∅. 
Let us set

D = {f −1(y) : y  αX with y =/  x}  {A, B}.

Then we shall prove that D is an upper semi-continuous decomposition of X. To this end, it suf-
fices to show that for every open subset O in X with A  O there exists an open subset W in X 
such that A  W  O and D  W for every D  D with D ∩ W =/  ∅. Take an open neighborhood 
U of x in αX such that rank (y; αX−X) < λ for every y  U ∩ (αX−X) with y =/  x. Let us set W 
= f −1(U) ∩ O ∩ (αX−B). Then, obviously, we have A  W  O. Let D  D with D ∩ W =/  ∅ 
and D =/  A. Then we have D ∩ f −1(U ) =/  ∅. Therefore f (D) ∩ U =/  ∅. Take a point y  f (D) ∩ U. 
Since y  U, we have rank (y; αX−X) < λ. This implies that f −1(y) is a singleton. Thus we have 
D = f −1(y) = {y}  W . Hence D is an upper semi-continuous decomposition of X. Let Y be the 
quotient space X/D. Then Y is a 2-point compactification of αX−{x}. This is a contradiction. 
Hence αX is equivalent to the Freudenthal compactification.

We should point out that the assumption that αX−X is scattered can not be replaced by the 
assumption that αX−X is zero-dimensional.
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4.3. Example. There exists a compactification αX of a locally comapct, separable metric space 
X satisfying the following conditions;
(1) αX−X is zero-dimensional,
(2) αX=/ X, and
(3) αX−{x} has no 2-point compactification for every x  αX−X.

Let S1 be the circle. Fix a point a  S1. Let us set X = (S1−{a})×C, where C is the Cantor 
set. Then the space αX=S1×C is a compactification of X. Obviously, αX−X={a}×C is zero- di-
mensional. Since S1−{a} ≈ (−1, 1), we have X=(S1−{a})×C ≈(−1, 1)×C. Thus the space α′X 
=[−1, 1]×C is a comapctification of X. Obviously, α′X−X={−1, 1}×C is zero-dimensional and 
αX<α′X. Hense we have αX =/  X.

We shall prove that αX−{x} has no 2-point compactification for every x  αX−X. Assume 
that αX−{x} has a 2-point compactification for some x=(a, c){a}×C=αX−X. Then, by Theo-
rem 4.1, there exists a 2-star {G1, G2} of αX−{x}. Since K=(αX−{a})−G1G2 is compact, we 
can take an open subset U in S1 and an open subset V in C such that x=(a, c)  U×V  αX−K= 
G1G2{x}. We may assume that x=(a, c)=(0, c)  (−1, 1)×C≈U×V. Then we have (−1, 
1)×C−{(0, c)}  G1G2. Since G1 and G2 are disjoint open subsets of αX−{x}, we have (−1, 
1)×{t}G1 or (−1, 1)×{t}  G2 for every t  C−{c}. Thus it is easy to see that

(−1, 1)×U(c; ε)−{(0, c)}  G1 or (−1, 1)×U(c; ε)−{(0, c)}  G2

for some ε > 0, where U (c; ε) is the ε-neighborhood of c in C. Suppose that (−1, 1)×U(c; ε)− 
{(0, c)}  G1. Then we have K   G2 ⊂ αX−V for some open neighborhood V of x in αX. Thus K 
 G2 is compact. This is a contradiction. Hence αX−{x} has no 2-point compactification for ev-
ery x  αX−X.

5. The Freudenthal compactification of X × Y
Let X be a compact metric space and let Y be a non-compact, locally compact metric space. 

In section 3 we proved that the following condition is sufficient in order that the product space X 
×Y have all compact metric spaces as remainders;
(1) the quasi-component space Q(X) is not scattered, or
(2) the space Y has all compact metric spaces as remainders.

In this section we shall prove that the above condition is not only sufficient but also neces-
sary.

We begin with the following thereom.

5.1. Theorem. Let X be a compact connected space and let Y be a locally compact space which 
does not have all compact metric spaces as remainders. Then the equlity

 (X×Y )=(X×Y )/D

holds, where D={X×{y} : y  Y−Y }.
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Proof. Let α(X×Y )=(X×Y )/D and let π : X×Y → α(X×Y ) be the projection. Since α(X× 
Y )−X×Y≈Y−Y, by Theorem 2.5, α(X×Y )−X×Y is scattered. Thus, by Theorem 4.2, it suffic-
es to prove that α(X×Y )−{y*} has no 2-point compactification for every y* α(X×Y )−X×Y. 
Here we set {y*}=π(X×{y}) for every y  Y−Y. Assume that there exists a point y0  Y−Y 
such that the space Z=α(X×Y )−{y*0} has a 2-point compactification. By Theorem 4.1, we can 
take a 2-star {U, V } of Z, Then the set U  V  {y*0}=α(X×Y )−(Z−U  V ) is open in α(X×Y), 
because Z−U  V is compact. Since X is compact and since X×{y0}=π−1(y*0) π−1(U  V  
{y*0}), we can take an open subset W in Y such that X×{y0} X×Wπ−1(U  V  {y*0}). For 
every y  W−{y0} we have X×{y}X×(W−{y0})π−1(U  V )=π−1(U)  π−1(V ). On the other 
hand, X×{y} is connected and π−1(U) ∩ π−1(V )=∅. This implies that X×{y}  π−1(U ) or X×{y} 
 π−1(V ) for every y  W−{y0}. Let us set U′={y  Y−{y0} : X×{y} π−1(U )} and V ′={y Y 
−{y0} : X×{y} π−1(V )}. Then we have W−{y0} U ′V ′. We shall prove that {U, V} is a 2-star 
of Y−{y0}. Obviously, U ′ and V ′ are disjoint open subsets in Y−{y0}. Since (Y−{y0})−U ′  
V ′  (Y−{y0})−(W−{y0})=Y−W, the space K=(Y−{y0})−U′  V ′ is compact. Next we shall 
show that K  U′ is not compact. Let q : α(X×Y ) → Y be the natural mapping defined by q(z)= 
y, where z = y*  α(X×Y )−X×Y or z =(x, y)  X×Y. Since q(Z−V )  (Y−{y0})−V ′, we have

(Z−U  V )  U=Z−V

　　　　　　　 q−1((Y−{y0})−V ′)
　　　　　　　= q−1((Y−{y0})−U′  V ′)  U′)
　　　　　　　= q−1(K  U′).

On the other hand, {U, V} is a 2-star of Z. Thus (Z−U  V )  U is not compact. This implies that 
K  U′ is not compact. Similarly, K  V ′ is not compact. Thus {U′, V ′} is a 2-star of Y− {y0}. 
Hence, by Theorem 4.1, Y−{y0} has a 2-point compactification. However, by Theorem 4.2, this 
is a contradiction. This completes the proof of Theorem 5.1.

Nowinski [11] proved that (X×Y )=(X×Y )/D, where D={X×{y} : y  Y−Y}, in the 
case when X is a compact conected space and Y is a locally compact weakly paracompact space. 
Hence in Theorem 5.1, the assumption that Y does not have all compact metric spces as remainders 
can be replaced by the assumption that Y is weakly paracompact.

5.2. Question. Let X be a compact connected space and let Y be a locally compact space. Let D 
={X×{y} : y  Y−Y}. Does the equality (X×Y )=(X×Y )/D hold?

5.3. Theorem. Let X be a compact metric space for which the quasi-component space Q(X) is 
scattered and let Y be a locally compact space which does not have all compact metric spaces as 
remainders. Then the equality

(X×Y )=(X×Y )/D

holds, where D={F×{y} : F  Q(X) and y  Y−Y} .
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Therefore, the product space X×Y does not have all compact metric spaces as remainders.

Proof. Let α(X×Y )=(X×Y )/D and π : X×Y → α(X×Y ) be the projection. Since α(X×Y )−
X×Y ≈ Q(X)×(Y−Y ), by Theorem 2.5, α(X×Y )−X×Y is scattered. Thus, by Theorem 4.2, it 
suffices to prove that α(X×Y )−{(F, y)*} has no 2-point compactification for every point (F, y)* 
of α(X×Y )−X×Y. Here we set {(F, y)*}=π(F×{y}) for every F  Q(X) and for any y  Y− 
Y. Assume that there exists a point (F, y)*  α(X×Y )−X×Y such that the space Z=α(X×Y )−
{(F, y)*} has a 2-point compactification αZ=Z  {a, b}. Let us set F̃=π(F×Y ). Since F is 
compact and connected, by Theorem 5.1, we have F̃=(X×Y ). By Theorem 4.2, F̃ −{(F, y)*} 
has no 2-point compactification. Thus we may assume that ClαZ(F̃ −{(F, y)*})=(F̃ −{(F, y)*}) 
 {a}, because F̃ −{(F, y)*} is a non-compact closed subset of Z. We distinguish two cases.

Case 1. F is open in X.
In this case Z−F̃ is compact. Thus we have

αZ=ClαZZ
     = ClαZ (Z−F̃ )  ClαZ (F̃ −{(F, y)*})
     = (Z−F̃ )  (F̃ −{(F, y)*})  {a}
     = Z  {a}
     = αZ−{b}.

This is a contradiction.
Case 2. F is not open in X.
In this case F is not an isolated point of Q(X). Since Q(X) is scattered, the set of all isolated 

points of Q(X) is dense in Q(X). Since X is a compact metric space, so is Q(X). Thus we can 
take a sequence {Ei : i<ω} of isolated points of Q(X) which converges to F. Let us set Ẽi=π(Ei 
×Y ) for every i < ω. Since b /  ClαZ (F̃ −{(F, y)*}), we take an open subset U in αZ such that b 
 U  ClαZU  αZ−ClαZ (F̃−{(F, y)*}). Then we have a, b /  BdαZU, therefore we have BdαZU 
 Z. Let us set U′=U ∩ Z. Since BdZU′  BdαZU, BdZU′ is compact. On the other hand, since b  
U, we have b  ClαZU′. This implies that ClZU′ is not compact. Since ClZU′  ClαZU  αZ − ClαZ 
(F̃ −{(F, y)*}), we have ClZU′ ∩ (F̃ −{(F, y)*})= ∅. This imples that
(*)        Clα(X×Y )U′ ∩ F̃ ={(F, y)*}.
For every i < ω let us set Ui = U′ ∩ Ẽi.

Claim. {BdẼiUi : i < ω} is discrete in Z.

Take a point z  Z. Suppose that z  F̃. Then the set W=Z−ClZU′ is an open neighborhood 
of z in Z such that W ∩ BdẼiUi= ∅ for every i < ω.

Suppose that z /  F̃. Then we have
z = (x, y′)  X×Y with x /  F , or
z = (G, y′)*  α(X×Y )−X×Y ≈ Q(X)×(Y−Y ) with F =/  G.

Since {Ei : i < ω} converges to F, in any case there exists an open subset V of X such that x  V 
(resp. GV ), V ∩ F = ∅ and V ∩ Ei = ∅ for all but finitely many i < ω. Since {Ẽi : i < ω} is pair-
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wise disjoint, we can take an open neighborhood W of z in Z such that W ∩ BdẼiUi= ∅ for all but 
at most one i < ω. Hence {BdẼiUi : i < ω} is discrete in Z.

On the other hand, since BdẼiUi  BdZU′ and BdZU′ is compact, BdẼiUi= ∅ for all but fi-
nitely many i < ω. Thus we can assume that BdẼi Ui = ∅ for all i < ω. Thus Ui is open-and-closed 
in Ẽi for every i < ω. Let q : α(X×Y ) → Y be the mapping defined by

q(z) = y, where π−1(z) = {(x, y)} or F ×{y},

for every z  α(X×Y ). Let us set Vi = q(Ui) for every i < ω. Then it is easy to see that Vi is open-
and-closed in Y. By (*),
(**) for every neighborhood O of y in Y there exists n < ω such that Vi  O for every i with n ≤ 
i. Let i1 = 0. Take a point x1  Vi with x1 =/  y and a neighborhood O1 of y in Y with x1 /  O1. By 
(**), for every n with 0 < n < ω, inductively, we can take a point xin  Y−{y}, a neighborhood 
On of y in Y and in < ω such that in < in+1, xn  Vin, xn /  On, On+1  On and Vin+1

  On. Let us 
set Dn =(Vin−{Vim : n < m})−{y}, for every n < ω, where Vi0

 = Y . Then we have xn  Dn 
for every n with 0 < n < ω, therefore Dn =/  ∅. Since Vi is open-and-closed in Y, Dn is closed in 
Y−{y}. We shall show that Dn is open in Y−{y}. To this end it suffices to show that {Vim : n 
< m}−{y} is closed in Y−{y}. For a point z  ClY ({Vim : n < m})−{y} we take a neighbor-
hood O of z in Y with y /  ClY O. Then, by (**), there exists k < ω such that Vi  Y−ClY O for 
every i > k. This implies that z  ClY Vi for some  with n <  and i ≤ k. Thus Dn is open-and-
closed in Y−{y}. Hence we have Y−{y}= ⊕{Dn : n < ω}. By Theorem 3.5, Y−{y} has a 
2-point compactification. However, by Theorem 4.2, this is a contradiction. Hence the equality 
(X×Y )=(X×Y )/D holds.

Since (X×Y )−X×Y ≈ Q(X)×(Y−Y ), the remainder of the Freudenthal compactification 
is scattered. Hence by Theorem 2.5, the product space X×Y does not have all compact metric 
spaces as remainders.

We now come to the main result in this paper.

5.4. Corollary. Let X be a compact metric space and let Y be a non-compact, locally compact 
space. Then the product space X × Y has all compact metric spaces as remainders if and only if 
one of the following conditions is satisfied;
(1) the quasi-component space Q(X) is not scattered,
(2) the space Y has all compact metric spaces as remainders.

5.5. Remark. A compact metric space X is not scattered if and only if X has cardinality 2ω. If X 
is a compact metric space, then so is the quasi-component space Q(X). Hence the condition (1) in 
Corollary 5.4 is equivalent to the following condition (1’);
(1’) the quasi-component space Q(X) has cardinality 2ω.

For the sake of this paper we need not weaken the assumption in Theorem 5.3. However, it is 
natural to ask the following question.
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5.6. Question. Let X be a compact space and let Y be a non-compact, locally compact space. Is 
the Freudenthal compactification of the product space X  × Y equivalent to (X  × Y )/D, where D 
={F×{y} : F   Q(X) and y  Y−Y})?
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