BRSO ST, 64 (2) 1 257-267 (2015)

Compactifications of Product Spaces

KIMURA, Takashi

Faculty of Education, Saitama University

Abstract
Let X be a compact metric space and let Y be a non-compact, locally compact metric space.
In this paper we give conditions on X and Y which characterize the product space X x Y having

all compact metric spaces as remainders.
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1. Introduction

Throughout this paper all spaces are assumed to be completely regular and 7 unless other-
wise stated.

A space Y'is a remainder of another space X if Y is homeomorphic to a.X—X for some com-
pactification X of X.

In the theory of compactifications one of the major problems has been that of characterizing
when all members of a certain class of spaces can serve as remainders for each member of another
class of spaces (cf. [2], [3], [6], [7], [8], [12] etc.).

Hatzenbuhler and Mattson [6] characterized spaces having all compact metric spaces as re-
mainders. In this paper we consider this problem on product spaces.

In [7] Hatzenbuhler and Mattson gave conditions (see Theore 3.1 below) on X and Y which
characterize when all compact metric spaces are continuous images of GX xY—XxY, where 5X
is the Stone-Cech compactification of X. By Magill’s theorem, their conditions are sufficient in or-
der that the product space X xY have all compact metric spaces as remainders. However, in gener-
al, BXxBY# 3(XxY), therefore their conditions need not be necessary. In [7] they asked whether
their condition are not only sufficient but also necessary.

In this paper we give necessary and sufficient conditions on a compact metric space X and a
metric space Y which characterize the product space X xY having all compact metric spaces as re-

mainders.

2. Preliminaries
Since every space having a compactification with compact remainder is locally compact, we
only consider locally compact spaces. The following theorem, which was proved by Magill [10], is

a basic result on remainders of compactifications of locally compact spaces.
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2.1. Theorem (Magill [10]). For every locally compact space X and any compact space K the fol-
lowing conditions are equivalent,
(a) K is a remainder of X,
(b) K is a continuous image of X—X,
(¢) K is a continuous image of a remainder of X.

Since every compact metric space is a continuous image of the Cantor set, we obtain the fol-
lowing corollary.

2.2. Corollary. For every locally compact space X the following conditions are equivalent;
(a) X has all compact metric spaces as remainders,
(b) X has a compactification with the Cantor set as remainder,

(¢) X has a compactification a X such that « X—X is a continuous preimage of the Cantor set.

Recall that a space X is scattered if every non-empty closed subset of X has an isolated point.
The following lemma is easily, so we omit the proof.

2.3. Lemma. Let X be a compact, non-scattered, zero-dimensional space. Then there exists a con-

tinuous mapping from X to the Cantor set.

Telgarsky ([14], p.64 Remark) proved the following lemma.

2.4. Lemma (Telgarsky [14]). Let f be a perfect mapping from a space X onto a space'Y.
(a) If X is scattered, then so is Y.
(b) If Yis scattered and if f~(y) is scattered for every y € Y, then X is scattered.

Let Y'be a subspace of another space X. Then Y is zero-dimensionally embedded in X if there
exists a collection U of open subsets of X satisfying the following conditions;

(1) {UNY:UeU}isabase for Y, and
(i) Bdy UNY =0 for every U € U.

The maximal compactification of a space X with zero-dimensionally embedded remainder is
called the Freudenthal comapctification of X and denoted by v.X. Every locally compact space X
has the Freudenthal compactification v.X. In the case when X is locally compact it is easy to see
that for every compactification a X of X, aX—X is zero-dimensionally embedded in aX if and
only if aX—X is zero-dimensional (see [1] p.273). In [8] Hatzenbuhler and Mattson pointed out
the following theorem without the proof. They stated this theorem follows their theorem [6] which
characterizes a space having all compact metric space as remainders. However, it is easy to show
that this follows Lemmas 2.3 and 2.4.
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2.5. Theorem (Hatzenbuhler and Mattson [8]). 4 locally compact space X has all compact metric
spaces as remainders if and only if the remainder vX—X of the Freudenthal compactification of
X is not scattered.
Proof. Suppose that X has all compact metric spaces as remainders. Then X has a compactifica-
tion aX with the Cantor set as remainder. Since the Cantor set is not scattered, by Lema 2.4(a), vX
— X is not scattered.

Conversely, if v.X— X is not scattered, then, by Lemma 2.3, the Cantor set is a continuous im-
age of vX—X. Hence, by Corollary 2.2, X has all compact metric spaces as remainders.

Let @ (X) be the set of all quasi-components of a space X and let p : X — Q(X) be the natu-
ral projection of X onto Q(X). We give Q(X) the topology generated by

{U:UC Q(X) and p~'(U) is open-and-closed in X}

as a base for open sets. We call the space Q(X) with this topology the quasi-component space of
X. It is easy to see that the quasi-component space Q(X) is zero-dimensional. For more detailed
information about the Freudenthal compactification and the quasi-component space, the reader is
referred to Aarts and Nishiura [1] and Dickson and McCoy [4].

3. Sufficient conditions
In [7] Hatzenbuhler and Mattson proved the following theorem

3.1. Theorem (Hatzenbuhler and Mattson [7]). A/l compact metric spaces are continuous image
of BXxBY—XXY if and only if

(1) BX or BY has all compact metric spaces as continuous images, or

(i1) one factor of XxY has a compact quasi-component and the other has all compact metric

spaces as remainders.

By Corollary 2.2, each of the above conditions (i) and (ii) is sufficient in order that the prod-
uct space X xY have all compact metric spaces as remainders.

In this section we shall give some sufficient conditions on metric spaces X and Y in order that
the product space X xY have all compact metric spaces as remainders.

Let D be a pairwise disjoint collection of closed subsets of a space X. If the collection D'=D
U{{z} : z€ X—UD} is an upper semi-continuous decomposition of X, then we denote by X/D
the quotient space X /D'

3.2. Theorem. Let X be a compact space. If a space Y has all compact metric spaces as remainders, then
so does the product space X xY.

Proof. By Corollary 2.2, Y has a compactification oY with the Cantor set as remainder. Let us set

D={Xx{y}:y€a¥Y-Y}and a(XxY)=(XxaY)/D.
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Then a(X xY) is a compactification of X xY. The remainder a/(X xY)—XxY is homeomorphic to
the Cantor set. Thus, by Corollary 2.2, the product space X xY has all compact metric spaces as re-

mainders.

3.3. Theorem. Let X be a space for which the quasi-component space Q(X) is compact and non-
scattered. Then for every non-compact, locally compact space Y the product space X xY has all
compact metric spaces as remainders.

Proof. By Lemma 2.3, there exists a continuous mapping f from Q(X) onto the Cantor set C. Let
wY=Y U {0} be the one-point compactification of Y. Then, obviously, X xwY is a compactifica-
tion of XxY. Let ¢ be the mapping from SX xwY—XxY to C defined by p(z, y)=06(f o p)(x) for
every (z, y)€XxwY—XxY, where p : X—Q(X) is the natural projection and 3(f o p) is the
Cech extension of f o p. Then ¢ is a continuous surjection. Hence, by Corollary 2.2, the product
space X xY has all compact metric spaces as remainders.

Steiner and Steiner [13] proved the following thereom.

3.4. Theorem (Steiner and Steiner [13], Corollary 3). Let X be an infinite discrete space and let
K be a compact space with a dense subset of cardinality less than or equal to that of X. Then X

has a compactification with K as remainder.

Using the same technique of the proof of Theorem 3.4, it is easy to show that the gollowing
theorem, so we omit the proof.

3.5. Theorem. Let X be a locally compact space which can be represented as an infinite topologi-
cal sum. Then X has the Cantor set as rmainder, therefore X has all compact metric spaces as re-
mainders.

It is well-known that every locally compact, non-separable metric space can be represented as

an infinite disjoint topological sum. Thus we obtain the following proposition.

3.6. Proposition. Let X and Y be locally compact metric spaces. If X or Y is not separable, then

the product space X xY has all compact metric spaces as remainders.

Because the purpose of this paper is to give conditions on metric spaces X and Y which char-
acterize the product space X xY having all compact metric spaces as remainders, we only consider
locally compact metric spaces X and Y.

3.7. Lemma. Let X be a locally compact separable metric space. If the quasi-component space
Q(X) is not compact, then X can be represented as an infinite disjoint topological sum.

Proof. Since X is locally compact and second-countable, X is o-compact, therefore so is Q(X).
Let Q(X)=U{Y; : i < w}, where Y; is compact. Since Q(X) is zero-dimensional and Lindelof,
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Q(X) is strongly zero-dimensional (see [5], Theorem 1.6.5). Thus there exists a zero-dimensional
compactification Y of Q(X). Take a point y € Y—Q(X). For every i < w we take an open-and-
closed subset U; of Ysuch that y € U;, U; N'Y; = 0, and U; C U;_;, where U_; =Y. Let us set Z; =
Ui, — U, for every i < w. Since Z; # ( for infinitely meny i < w, we can assume that Z; # ) for
every i < w. Thus we have Q(X) = ®{Z; : i < w}, where Z;# 0. Let us set X; = p!(Z;) for every
i < w, where p : X — Q(X) is the natural projection. Then, obviously, we have X = &{X; :i <
w}, where X; # 0. This completes the proof of Lemma 3.7.

3.8. Theorem. Let X be a locally compact separable metric space for which the quasi-component
space Q(X) is not compact. Then for every locally compact space Y the product space X x Y has

all compact metric spaces as remainders.

Proof. By Lemma 3.7, X can be represented as an infinite disjoint topological sum, therefore so
can XxY . Hense, by Theorem 3.5, the product space X xY has all compact metric spaces as re-

mainders.

4. A characterization of the Freudenthal compactification

In this section we shall give a necessary and sufficient condition in order that a compactifi-
cation of a locally compact space with scattered remainder be equivalent to the Freudenthal
compactification.

Let a1 X and ap X be compactifications of a space X. We say that o X is equivalent to ap X if
there exists a homeomorphism f : oy X — apX such that f (z) = z for every z € X, and write
a1 X = ap X. If there exists a continuous mapping f : a1 X — «, X such that f (z) = z for every x
€ X, then we write a X > ap X. We write a1 X > an X if an X = ap X and oy X # ap X.

A compactification aX of a space X is called an n-point compactification if o X — X consists
of n points. Following Magill [9] we say that a pairwise disjoint collection {G1, Go, - * -, Gn} of
open subsets of a space X is an n-star of X provided;

(HWK=X—-(GiUGU" - -UG,)is compact and
(2) K U G; is not compact foreveryi = 1,2, - - -, n.

Magill [9] characterized a locally compact space having an n-point compactification as fol-

loes.

4.1 Theorem (Magill [9]). 4 locally compact space X has an n-point compactification if and only

if X has an n-star.

For every closed subset F of a space X we denote by F? the set of all accumulation points of

F. For a space X, inductively, we can define the closed subset X(® for every ordinal o as follows;

X0 = X,
X = (X()% and
XM =n{X® : a < A} for a limit ordinal \.
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A space X is scattered if and only if X(®) = @ for some ordinal a.. For every point z of a scat-
tered space X the rank of z in X, denoted by rank (z; X), is the maxmail ordinal o with 2z € X(®).
It is easy to see that for every point x of a scattered space X there exists a neighborhood U of z in
X such that rank (y; X) < rank (z; X) for every y € U with y # x.

4.2. Theorem. Let aX be a compactification of a locally compact space X such that aX—X is
scattered. Then aX is equivalent to the Freudenthal compactification vX if and only if aX — {x}
has no 2-point compactification for every x € aX — X.

Proof. Necessity. We shall prove that vX — {z} has no 2-point compactification for every z € vX
— X. Assume that vX — {z} has a 2-point compactification Y = (y.X — {z}) U {a, b} for some =
€ vX — X. Then Y'is a compactification of X. It is easy to see that v.X < Yand Y — X is zero-di-
mensional. This contradicts the maximality of the Freudenthal compactificatiom. Hence v X — {z}
has no 2-point compactification for every =z € v.X — X.

Sufficiency. Since X is locally compact, a. X—X is compact. Thus a X—X is zero-dimension-
al, because o X—X is scattered. Hence we have vX > aX ; let f : vX—aX be the continuous
mapping such that f (x) = x for every z € X. Assume that vX > «X. Then there exists a point
€ aX—X such that |f~!(x)| > 2. Let us set

A = min{rank (z; aX—X) : z € aX—X and | f~!(z)| > 2}.

Take a point z € aX—X such that A= rank (z; aX—X). We shall prove that « X—{z} has a
2-point compactification. Since f~!(z) is zero-dimensional and |f ~!(x)| > 2, there exists open-
and-closed subsets A and B in f!(z) such that f (z) = AUB, AN B=0, A+ (and B # (.
Let us set

D={fy):y€aXwithy+#az}U{A, B}.

Then we shall prove that D is an upper semi-continuous decomposition of v.X. To this end, it suf-
fices to show that for every open subset O in vX with A C O there exists an open subset W in y.X
such that A C W C O and D C W for every D € D with D N W = (. Take an open neighborhood
U of x in X such that rank (y; aX—X) < A for every y € U N (aX—X) with y # x. Let us set W
= fY(U) N O N (aX—B). Then, obviously, we have A C W C O. Let D € D with DN W # 0
and D # A. Then we have D N f~1(U) # 0. Therefore f(D) N U # (. Take a pointy € f (D) N U.
Since y € U, we have rank (y; «X—X) < \. This implies that f!(y) is a singleton. Thus we have
D = f!(y) = {y} € W. Hence D is an upper semi-continuous decomposition of vX. Let Y be the
quotient space v.X/D. Then Y is a 2-point compactification of «X—{x}. This is a contradiction.
Hence a X is equivalent to the Freudenthal compactification.

We should point out that the assumption that a X— X is scattered can not be replaced by the
assumption that . X— X is zero-dimensional.
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4.3. Example. There exists a compactification a X of a locally comapct, separable metric space
X satisfying the following conditions;

(1) aX—X is zero-dimensional,

(2) aX#~X, and

(3) aX—{x} has no 2-point compactification for every x € aX—X.

Let S! be the circle. Fix a point a € S'. Let us set X = (S'—{a})xC, where C is the Cantor
set. Then the space aX=S"x(C is a compactification of X. Obviously, «.X—X={a}x(C is zero- di-
mensional. Since S'—{a} ~ (-1, 1), we have X=(5'—{a})xC ~(—1, 1)xC. Thus the space o’ X
=[—1, 1]xC is a comapctification of X. Obviously, o' X—X={—1, 1} xC is zero-dimensional and
aX<a'X. Hense we have aX #+ vX.

We shall prove that « X—{x} has no 2-point compactification for every x € aX—X. Assume
that o X—{x} has a 2-point compactification for some z=(a, c)€{a}xC=aX—X. Then, by Theo-
rem 4.1, there exists a 2-star {G,, G,} of aX—{z}. Since K=(a«X—{a})—G,UG, is compact, we
can take an open subset U in S! and an open subset V'in C such that z=(a, c¢) € UXV C aX—K=
G,UG,U{z}. We may assume that x=(a, ¢)=(0, ¢) € (—1, 1)xC~UxV. Then we have (—1,
1)xC—{(0, ¢)} C G,UG,. Since G, and G, are disjoint open subsets of aX—{z}, we have (—1,
)x{t}CG, or (—1,1)x{t} C G, for every t € C—{c}. Thus it is easy to see that

(=1, 1)xU(c; €)—{(0,¢)} € G, or (—1, 1)xU(c; €)—{(0, ¢)} C G,

for some £ > 0, where U (c; ¢) is the e-neighborhood of ¢ in C. Suppose that (—1, 1)xU(c; €)—
{(0, ¢)} C G,. Then we have KU G, C aX—V for some open neighborhood V of z in aX. Thus K
U G, is compact. This is a contradiction. Hence aX—{x} has no 2-point compactification for ev-
ery x € aX—X.

5. The Freudenthal compactification of X x Y

Let X be a compact metric space and let Y be a non-compact, locally compact metric space.
In section 3 we proved that the following condition is sufficient in order that the product space X
x Y have all compact metric spaces as remainders;
(1) the quasi-component space Q(X) is not scattered, or
(2) the space Y has all compact metric spaces as remainders.

In this section we shall prove that the above condition is not only sufficient but also neces-
sary.

We begin with the following thereom.

5.1. Theorem. Let X be a compact connected space and let Y be a locally compact space which
does not have all compact metric spaces as remainders. Then the equlity

7 (XXY)=(Xx7Y)/D

holds, where D={ Xx{y} :y € 7Y-Y}.

-263-



Proof. Let a( XxY )=(Xx~Y)/D and let 7 : Xx7Y — a(XxY") be the projection. Since (X%
Y )—XxYa~Y-Y, by Theorem 2.5, a( X xY )— X xY'is scattered. Thus, by Theorem 4.2, it suffic-
es to prove that a(XxY )—{y*} has no 2-point compactification for every y*c a(XxY )—XxY.
Here we set {y*}=n(Xx{y}) for every y € 7Y—Y. Assume that there exists a point y, € /Y=Y
such that the space Z=a(XxY )—{y§} has a 2-point compactification. By Theorem 4.1, we can
take a 2-star {U, V'} of Z, Then the set U U VU {y§}=a(XxY)—(Z—U U V) is open in a( X xY),
because Z—U U V is compact. Since X is compact and since Xx{yo}=n"(y$)C 7 (U U VU
{y&}), we can take an open subset W in Y such that Xx{y,}C XxWcr (U U VU {y§}). For
every y € W—{y,} we have Xx{y}CXx(W—{y,})Cr {(UU V)=r}(U) U (V). On the other
hand, Xx{y} is connected and n }(U) N 7 !(V)=0. This implies that Xx{y}C7 '(U) or Xx{y}
C (V) for every y € W—{y,}. Let us set U'={yc 7Y—{y,} : Xx{y}Cn ' (U)} and V'={ye 1Y
—{yo} : Xx{y}cn{(V)}. Then we have W—{y,} CU'UV". We shall prove that {U, V} is a 2-star
of vY—{y,}. Obviously, U’ and V' are disjoint open subsets in vY—{y,}. Since (vY—{y,})—U"' U
V' C (vY—{yo}) —(W—{y,})=~rY—W, the space K=(vY—{y,})—U'U V" is compact. Next we shall
show that K U U’ is not compact. Let ¢ : a(XXxY") — 7Y be the natural mapping defined by ¢(z)=
y, where z = y* € a(XxY)—XxYor z =(z, y)€ XxY. Since ¢(Z—V)C (7Y—{y,})—V", we have

(Z-UuV)uU=Z-V

C U (Y —{e})~V")

= (Y~ {yo})-U U V) UT)

=q¢(KuUl).
On the other hand, {U, V'} is a 2-star of Z. Thus (Z—U U V) U U is not compact. This implies that
K U U is not compact. Similarly, X' U V" is not compact. Thus {U", V'} is a 2-star of 7Y— {y,}.
Hence, by Theorem 4.1, vY—{y,} has a 2-point compactification. However, by Theorem 4.2, this
is a contradiction. This completes the proof of Theorem 5.1.

Nowinski [11] proved that v(XxY)=(Xx~Y)/D, where D={Xx{y} : y € yY=Y7}, in the
case when X is a compact conected space and Y is a locally compact weakly paracompact space.
Hence in Theorem 5.1, the assumption that Y does not have all compact metric spces as remainders

can be replaced by the assumption that Y'is weakly paracompact.

5.2. Question. Let X be a compact connected space and let Y be a locally compact space. Let D
={Xx{y} : y € vY=Y}. Does the equality v(XxY)=(Xx~Y)/D hold?

5.3. Theorem. Let X be a compact metric space for which the quasi-component space Q(X) is
scattered and let Y be a locally compact space which does not have all compact metric spaces as

remainders. Then the equality
(X XY)=(Xx7Y)/D

holds, where D={Fx{y} : F€ Q(X) and y € 7Y-Y7}.
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Therefore, the product space X XY does not have all compact metric spaces as remainders.

Proof. Let (X XY )=(Xx~Y)/D and 7 : Xx~vY — (X xY") be the projection. Since a(X XY )—
XxY = Q(X)x(yY=Y), by Theorem 2.5, a(XxY )—XxY is scattered. Thus, by Theorem 4.2, it
suffices to prove that a(XxY )—{(F, y)*} has no 2-point compactification for every point (F, y)*
of a(XxY )—XxY. Here we set {(F, y)*}}=n(Fx{y}) for every F € Q(X) and for any y € yY—
Y. Assume that there exists a point (F, y)* € a(XxY )—XxY such that the space Z=a(XxY )—
{(F, y)*} has a 2-point compactification aZ=7 U {a, b}. Let us set F=m(Fx~Y ). Since F is
compact and connected, by Theorem 5.1, we have £'=~(XxY ). By Theorem 4.2, F' —{(F, y)*}
has no 2-point compactification. Thus we may assume that Cl,z(F' —{(F, y)*})=(F —{(F, y)*})
U {a}, because F'—{(F, y)*} is a non-compact closed subset of Z. We distinguish two cases.

Case 1. F'is open in X.

In this case Z—F'is compact. Thus we have

aZ=Cl,zZ
= Cloy (Z—F) U Cloay (F—{(F, y)*})
= (Z—F)U(F—{(F,y)*}) U{a}
=ZU{a}
= aZ—{b}.

This is a contradiction.

Case 2. F is not open in X.

In this case F'is not an isolated point of Q(X). Since Q(X) is scattered, the set of all isolated
points of Q(X) is dense in Q(X). Since X is a compact metric space, so is Q(X). Thus we can
take a sequence {£; : i <w} of isolated points of )(X) which converges to F. Let us set £;=m(E;
x~Y") for every i < w. Since b ¢ Cl , (F —{(F, y)*}), we take an open subset U in a7 such that b
€ U C ClyzU C aZ—Clyz (F—{(F, y)*}). Then we have a, b ¢ Bd, U, therefore we have Bd, ;U
C Z. Letus set U=U N Z. Since BdzU' C Bd,zU, BdzU" is compact. On the other hand, since b €
U, we have b € Cl,zU'. This implies that Cl;U" is not compact. Since ClzU" C Cl,zU C aZ — Cl,z
(F —{(F, y)*}), we have ClzU" N (F'—{(F, y)*})= 0. This imples that
(*) Clox,)U' N F={(F, y)*}.

Forevery i <wletussetU; = U N E;.

Claim. {Bdg,U; : i < w} is discrete in Z.

Take a point z € Z. Suppose that z € F. Then the set W=2Z—Cl,U" is an open neighborhood
of zin Z such that W N Bdg, U;= 0 for every i < w.

Suppose that z ¢ £. Then we have

z=(z,y) € XxYwithz ¢ F,or

2= (G, y)* € a(XXY)—XxY = Q(X)Xx(yY=Y) with F+ G.
Since {E; : i < w} converges to F, in any case there exists an open subset V of X such that x € V
(resp. GCV), VN F= ( and VN E; = ( for all but finitely many i < w. Since {£; : i < w} is pair-
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wise disjoint, we can take an open neighborhood W of z in Z such that W N Bdz, Ui = 0 for all but
at most one ¢ < w. Hence {Bdg, Ui : i < w} is discrete in Z.

On the other hand, since Bdz; Ui C BdzU' and Bd U’ is compact, Bdg, Ui= 0 for all but fi-
nitely many 7 < w. Thus we can assume that Bd;,U: = 0 for all ¢ < w. Thus Uj is open-and-closed

in £ for every i < w. Let ¢ : a(XxY) — 7Y be the mapping defined by

q(z) = y, where 7 (2) = {(, y)} or F' x{y},

for every z € a(XxY'). Let us set V; = ¢(Ui) for every i < w. Then it is easy to see that V; is open-
and-closed in ~Y. By (¥),
(**) for every neighborhood O of y in Y there exists n < w such that V; C O for every ¢ with n <
i. Let i; = 0. Take a point z; € V;, with x| # y and a neighborhood O, of y in vY with z; ¢ O,. By
(**), for every n with 0 < n < w, inductively, we can take a point z; € vY—{y}, a neighborhood
O, of y in yY and 4, < w such that i, < i,,, z, € V; , © ¢ Op, Opyy C Oy and V;  C O,,. Let us
set D, =(V;, —U{Vi, : n < m})—{y}, for every n < w, where V; = 7Y . Then we have z, € D,
for every n with 0 < n < w, therefore D,, # 0. Since V; is open-and-closed in 7Y, D,, is closed in
7Y—{y}. We shall show that D, is open in vY—{y}. To this end it suffices to show that U{V; :n
< m}—{y} is closed in vY—{y}. For a point z € Cl,y (U{V;,, : n < m})—{y} we take a neighbor-
hood O of z in vY with y ¢ Cl,y O. Then, by (**), there exists k& < w such that V; C vY—Cl,y O for
every 7 > k. This implies that z € Cl,y V;, for some ¢ with n < ¢ and ¢, < k. Thus D,, is open-and-
closed in 7Y—{y}. Hence we have vY—{y}= &{D,, : n < w}. By Theorem 3.5, vY—{y} has a
2-point compactification. However, by Theorem 4.2, this is a contradiction. Hence the equality
Y XXY)=(Xx~Y")/D holds.

Since Y(X XY )—XxY =~ Q(X)x(yY=Y), the remainder of the Freudenthal compactification
is scattered. Hence by Theorem 2.5, the product space X xY does not have all compact metric

spaces as remainders.

We now come to the main result in this paper.

5.4. Corollary. Let X be a compact metric space and let Y be a non-compact, locally compact
space. Then the product space X XY has all compact metric spaces as remainders if and only if
one of the following conditions is satisfied;

(1) the quasi-component space Q(X) is not scattered,

(2) the space Y has all compact metric spaces as remainders.

5.5. Remark. A compact metric space X is not scattered if and only if X has cardinality 2°. If X
is a compact metric space, then so is the quasi-component space (Q(X). Hence the condition (1) in
Corollary 5.4 is equivalent to the following condition (1°);
(1) the quasi-component space Q(X) has cardinality 2°.

For the sake of this paper we need not weaken the assumption in Theorem 5.3. However, it is

natural to ask the following question.
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5.6. Question. Let X be a compact space and let Y be a non-compact, locally compact space. Is

the Freudenthal compactification of the product space X XY equivalent to (Xx~Y )/D, where D
={Fx{y}: Fe Q(X)andy € 7Y-Y})?
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