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An Example for Convergence of Environment-Dependent  
Spatial Models

DÔKU, Isamu
Faculty of Education, Saitama University

Summary
In this paper we consider an environment-dependent spatial model. Actually, this random 

model is closely related to some of the stochastic interacting system in Liggett [23] (1999). We 
shall show that rescaled processes of the models converge to a Dawson-Watanabe superprocess 
with suitable parameters. Our formulation of measure-valued branching Markov processes [17] is 
greatly due to a martingale problem formalism. The first step toward a transformation of spatial 
model into a superprocess is based upon construction of related empirical measures.

Key Words:   environment-dependent spatial model, convergence, superprocess, interaction, mar-
tingale problem, measure-valued process.

1.  Introduction
In this section we shall introduce an environment-dependent random model [25]. Let Zd be a 

d-dimensional integer lattice, and we suppose that each site on Zd is occupied by all means by ei-
ther one of the two species. At each random time passed, a particle dies and is replaced by a new 
one, but the random time and the type chosen of the species are assumed to be determined by the 
environment conditions around the particle. The random function ξt ≡ ξt (x) : Zd → {0, 1} denotes 
the state at time t, and each number of {0, 1} denotes the label of the type chosen of the two spe-
cies. When we set ∥y∥∞ := maxi yi for y = (y1, . . . , yd), then we define

 (1)

where R is a positive constant. For i = 0, 1, let fi (x, ξ) be a frequency of appearance of type i in 
the neighborhood Nx of x for ξ. In other words,

 (2)

For non-negative parameters αij ≥ 0, the dynamics of ξt is defined as follows. The state ξ makes tran-
sition 0 → 1 at rate

 (3)

and it makes transition 1 → 0 at rate
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of the type chosen of the two species. When we set ∥y∥∞ := maxi yi for y = (y1, . . . , yd), then

we define
Nx := x+ {y : 0 < ∥y∥∞ � R}, (1)

where R is a positive constant. For i = 0, 1, let fi(x, ξ) be a frequency of appearance of type

i in the neighborhood Nx of x for ξ. In other words,

fi(x) ≡ fi(x, ξ) :=
#{y : ξt(y) = i ; y ∈ Nx}

#Nx
. (2)

For non-negative parameters αij ≥ 0, the dynamics of ξt is defined as follows. The state ξ

makes transition 0 → 1 at rate
λf1(f0 + α01f1)

λf1 + f0
, (3)
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 (4)

The above-mentioned rate can be interpreted as follows. The particle of type i dies at rate fi + 
αijfj, and is replaced instantaneously by either one of the two species chosen at random, according 
to the proliferation rate of type 0 and the interaction (= the competitive result) with the particle of 
type 1. The density-dependent death rate fi + αijfj consists of the intraspecific and interspecific 
competitive effects. We assume that competitive two species possess the same intensity of 
intraspecific interaction. The exchange of particles after death is described in the form being pro-
portional to the weighted density between the two species, expressed by a parameter λ. Assume 
that λ ≥ 1. The case of λ = 1 means that the contribution to a local appearance rate between the 
two competitive species is equivalent. When λ ≥ 1, then it means that the type 1 has a higher pro-
liferation rate than the type 0. In this article we shall discuss some convergence result of the envi-
ronment-dependent spatial models.

2.  Scaling rule and the associated measure-valued process
For brevity’s sake we shall treat a simple case λ = 1 only in what follows. For N = 1, 2, . . 

. , let MN ∈ N, and we put N := MN 

and it makes transition 1 → 0 at rate

f0(f1 + α10f0)

λf1 + f0
. (4)
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means that the type 1 has a higher proliferation rate than the type 0. In this article we shall

discuss some convergence result of the environment-dependent spatial models.

2. Scaling rule and the associated measure-valued process

For brevity’s sake we shall treat a simple case λ = 1 only in what follows. ForN = 1, 2, . . . ,

let MN ∈ N, and we put ℓN := MN

√
N , and SN := Zd/ℓN . And also WN = (W 1

N , . . . ,

W d
N ) ∈ (Zd/MN ) \ {0} is defined as a random vector satisfying (i) L(WN ) = L(−WN ); (ii)

E(W i
NW j

N ) → δijσ
2(≥ 0) (as N → ∞); (iii) {|WN |2} (N ∈ N) is uniformly integrable. Here

L(Y ) indicates the law of a random variable Y . For the kernel pN (x) := P (WN/
√
N = x),

x ∈ SN and ξ ∈ {0, 1}SN , we define the scaled frequency fN
i as

fN
i (x, ξ) =

∑
y∈SN

pN (y − x)1{ξ(y)=i}, (i = 0, 1). (5)

We denote by ξNt the state determined by the scaled frequency depending on αN
i and pN . As

a matter of fact, the rescaled process ξNt : SN ∋ x �→ ξNt (x) ∈ {0, 1} is determined by the

following state transition law, nemaly, it makes transition 0 → 1 at rate NfN
1 (fN

0 +αN
0 fN

1 ), or

else it makes transition 1 → 0 at rate NfN
0 (fN

1 + αN
1 fN

0 ). We denote the rescaled process ξNt

by the symbol Res(pN , αN
i ). On this account, we may define the associated measure-valued

process (or its corresponding empirical measure) as

XN
t :=

1

N

∑
x∈SN

ξNt (x)δx. (6)

For the initial value XN
0 , we assume that

sup
N

⟨XN
0 , 1⟩ < ∞, XN

0 → X0 in MF (Rd) (N → ∞), (7)
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3.  Martingale problem
Let ΩD := D([0, ∞), MF (Rd)) be the Skorokhod space [19] of all the MF (Rd)-valued cadlag 

paths, and ΩC := C([0, ∞), MF (Rd)) be the space of all the MF (Rd)-valued continuous paths, 
equipped with uniform convergence topology on compacts. C∞

b (Rd) consists of the infinitely dif-
ferentiable functions on Rd whose derivatives of any order k are bounded and continuous. On the 
other hand, the first order variational derivative of a function F on MF (E) relative to µ ∈ MF (E) 
is defined as

 (8)

if the limit in the right-hand side of (8) exists. In addition, the second order variational derivative 
δ2F (µ)/δµ(x)2 is defined as the first order variational derivative of G(µ) = δF (µ)/δµ(x) if its 
limit exists. We define the generator L0 as
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weak convergence. For a finite measure µ ∈ MF (E) with a topological space E, we use the

notation ⟨µ, φ⟩ =
∫
E
φ(x)µ(dx) for integral of a measurable function φ over E with respect to

a measure µ on E. Note that the convergence in (7) is that in the sense of weak convergence

for measures [20].
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a branching rate, θ ∈ R is a drift term and σ2 > 0 is a diffusion coefficient. More precisely,
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Take a sequence {εN} of positive numbers such that εN → 0 and NεN → ∞ as N → ∞.

Moreover, we suppose that when N → ∞,

N · P (B0
εN = 0) → 0 and

∑
e∈SN

pN (e) · P (τ({0, e}) ∈ (εN , t]) → 0 (∀t > 0). (12)

We also assume now that the following limits exist :

lim
N→∞

∑
e∈SN

pN (e) · P (τ({0, e}) > εN ) = ∃γ(> 0) (13)

and lim
N→∞

P (τ(A/ℓN ) � εN ) = ∃σ(A) (14)

holds for any finite subset A ⊂ Zd. And also we denote by SF the totality of all the finite

subsets in Zd.

According to [21], we consider decomposing proper components of our model Res(pN , αN
i )

into two parts; a part of the principal interacting particle system and the other part. Based

upon the notation in [23], we consider decomposing the rate function cN (x, ξ). In fact, we shall

rewrite first a rate NfN
i (fN

j +αN
j fN

i ) into a new rate NfN
i + θNj (fN

i )2 by using a relation θNi

= N(αN
i − 1), and next decompose the rate function cN (x, ξ) (which changes the coordinate

ξ(x) into 1− ξ(x)) as
cN (x, ξ) = N · c0(x, ξ) + cp(x, ξ) ≥ 0, (15)

where

c0(x, ξ) :=
∑
e∈SN

pN (e)1{ξ(x+e)̸=ξ(x)}, and (16)

cp(x, ξ) := θN0 (fN
1 (x, ξ))21{ξ(x)=0} + θN1 (fN

0 (x, ξ))21{ξ(x)=1} (17)

=
∑

A∈SF


 ∏

e∈A/ℓN

ξ(x+ e)


 (βN (A)1{ξ(x)=0} + δN (A)1{ξ(x)=1}).

On the assumption that for real-valued functions βN and δN defined on SF , there exist proper

real-valued functions β and δ defined on SF such that βN → β and δN → δ are valid for each

point of SF as N → ∞, we consider the convergence of the law of the empirical measure XN
· .

For simplicity, when we set

F1(SF ) := {f : SF → R; ∥f∥1 :=
∑

A∈SF

|f(A)| < ∞}, (18)

then it follows that βN (·)σN (·) → β(·)σ(·) in F1(SF ) as N → ∞. Under these circumstances,

we have
sup
N

∑
A∈SF

max(#{A}, 1)(|βN (A)|+ |δN (A)|) < ∞ (19)

and the following estimate holds: i.e., for a certain positive constant C(δ) > 0,

∑
y∈Zd

pN (y/ℓN )(ξ(y)− 1) � C(δ)
∑

A∈SF

δN (A)
∏
a∈A

ξ(a) (20)



‒ 182 ‒

 (13)

 (14)

holds for any finite subset A ⊂ Zd. And also we denote by SF the totality of all the finite subsets in 
Zd.

According to [21], we consider decomposing proper components of our model Res(pN, αN
i ) 

into two parts; a part of the principal interacting particle system and the other part. Based upon the 
notation in [23], we consider decomposing the rate function cN (x, ξ). In fact, we shall rewrite first 
a rate Nf Ni (f Nj + αN

j f 
N
i ) into a new rate Nf Ni + θNj (f Ni )2 by using a relation θN

i = N (αN
i − 1), and 

next decompose the rate function cN (x, ξ) (which changes the coordinate ξ(x) into 1 − ξ(x)) as

 (15)

where

 (16)

 (17)

On the assumption that for real-valued functions βN and δN defined on SF, there exist proper real-
valued functions β and δ defined on SF such that βN → β and δN → δ are valid for each point of SF 
as N → ∞, we consider the convergence of the law of the empirical measure X·

N. For simplicity, 
when we set

 (18)

then it follows that βN (·)σN (·) → β (·)σ(·) in F1(SF) as N → ∞. Under these circumstances, we 
have

 (19)

and the following estimate holds: i.e., for a certain positive constant C(δ) > 0,

 (20)

holds. While, when we define

 (21)

 (22)

Take a sequence {εN} of positive numbers such that εN → 0 and NεN → ∞ as N → ∞.

Moreover, we suppose that when N → ∞,

N · P (B0
εN = 0) → 0 and

∑
e∈SN

pN (e) · P (τ({0, e}) ∈ (εN , t]) → 0 (∀t > 0). (12)

We also assume now that the following limits exist :

lim
N→∞

∑
e∈SN

pN (e) · P (τ({0, e}) > εN ) = ∃γ(> 0) (13)

and lim
N→∞

P (τ(A/ℓN ) � εN ) = ∃σ(A) (14)

holds for any finite subset A ⊂ Zd. And also we denote by SF the totality of all the finite

subsets in Zd.

According to [21], we consider decomposing proper components of our model Res(pN , αN
i )

into two parts; a part of the principal interacting particle system and the other part. Based

upon the notation in [23], we consider decomposing the rate function cN (x, ξ). In fact, we shall

rewrite first a rate NfN
i (fN

j +αN
j fN

i ) into a new rate NfN
i + θNj (fN

i )2 by using a relation θNi

= N(αN
i − 1), and next decompose the rate function cN (x, ξ) (which changes the coordinate

ξ(x) into 1− ξ(x)) as
cN (x, ξ) = N · c0(x, ξ) + cp(x, ξ) ≥ 0, (15)

where

c0(x, ξ) :=
∑
e∈SN

pN (e)1{ξ(x+e)̸=ξ(x)}, and (16)

cp(x, ξ) := θN0 (fN
1 (x, ξ))21{ξ(x)=0} + θN1 (fN

0 (x, ξ))21{ξ(x)=1} (17)

=
∑

A∈SF


 ∏

e∈A/ℓN

ξ(x+ e)


 (βN (A)1{ξ(x)=0} + δN (A)1{ξ(x)=1}).

On the assumption that for real-valued functions βN and δN defined on SF , there exist proper

real-valued functions β and δ defined on SF such that βN → β and δN → δ are valid for each

point of SF as N → ∞, we consider the convergence of the law of the empirical measure XN
· .

For simplicity, when we set

F1(SF ) := {f : SF → R; ∥f∥1 :=
∑

A∈SF

|f(A)| < ∞}, (18)

then it follows that βN (·)σN (·) → β(·)σ(·) in F1(SF ) as N → ∞. Under these circumstances,

we have
sup
N

∑
A∈SF

max(#{A}, 1)(|βN (A)|+ |δN (A)|) < ∞ (19)

and the following estimate holds: i.e., for a certain positive constant C(δ) > 0,

∑
y∈Zd

pN (y/ℓN )(ξ(y)− 1) � C(δ)
∑

A∈SF

δN (A)
∏
a∈A

ξ(a) (20)

Take a sequence {εN} of positive numbers such that εN → 0 and NεN → ∞ as N → ∞.

Moreover, we suppose that when N → ∞,

N · P (B0
εN = 0) → 0 and

∑
e∈SN

pN (e) · P (τ({0, e}) ∈ (εN , t]) → 0 (∀t > 0). (12)

We also assume now that the following limits exist :

lim
N→∞

∑
e∈SN

pN (e) · P (τ({0, e}) > εN ) = ∃γ(> 0) (13)

and lim
N→∞

P (τ(A/ℓN ) � εN ) = ∃σ(A) (14)

holds for any finite subset A ⊂ Zd. And also we denote by SF the totality of all the finite

subsets in Zd.

According to [21], we consider decomposing proper components of our model Res(pN , αN
i )

into two parts; a part of the principal interacting particle system and the other part. Based

upon the notation in [23], we consider decomposing the rate function cN (x, ξ). In fact, we shall

rewrite first a rate NfN
i (fN

j +αN
j fN

i ) into a new rate NfN
i + θNj (fN

i )2 by using a relation θNi

= N(αN
i − 1), and next decompose the rate function cN (x, ξ) (which changes the coordinate

ξ(x) into 1− ξ(x)) as
cN (x, ξ) = N · c0(x, ξ) + cp(x, ξ) ≥ 0, (15)

where

c0(x, ξ) :=
∑
e∈SN

pN (e)1{ξ(x+e)̸=ξ(x)}, and (16)

cp(x, ξ) := θN0 (fN
1 (x, ξ))21{ξ(x)=0} + θN1 (fN

0 (x, ξ))21{ξ(x)=1} (17)

=
∑

A∈SF


 ∏

e∈A/ℓN

ξ(x+ e)


 (βN (A)1{ξ(x)=0} + δN (A)1{ξ(x)=1}).

On the assumption that for real-valued functions βN and δN defined on SF , there exist proper

real-valued functions β and δ defined on SF such that βN → β and δN → δ are valid for each

point of SF as N → ∞, we consider the convergence of the law of the empirical measure XN
· .

For simplicity, when we set

F1(SF ) := {f : SF → R; ∥f∥1 :=
∑

A∈SF

|f(A)| < ∞}, (18)

then it follows that βN (·)σN (·) → β(·)σ(·) in F1(SF ) as N → ∞. Under these circumstances,

we have
sup
N

∑
A∈SF

max(#{A}, 1)(|βN (A)|+ |δN (A)|) < ∞ (19)

and the following estimate holds: i.e., for a certain positive constant C(δ) > 0,

∑
y∈Zd

pN (y/ℓN )(ξ(y)− 1) � C(δ)
∑

A∈SF

δN (A)
∏
a∈A

ξ(a) (20)

Take a sequence {εN} of positive numbers such that εN → 0 and NεN → ∞ as N → ∞.

Moreover, we suppose that when N → ∞,

N · P (B0
εN = 0) → 0 and

∑
e∈SN

pN (e) · P (τ({0, e}) ∈ (εN , t]) → 0 (∀t > 0). (12)

We also assume now that the following limits exist :

lim
N→∞

∑
e∈SN

pN (e) · P (τ({0, e}) > εN ) = ∃γ(> 0) (13)

and lim
N→∞

P (τ(A/ℓN ) � εN ) = ∃σ(A) (14)

holds for any finite subset A ⊂ Zd. And also we denote by SF the totality of all the finite

subsets in Zd.

According to [21], we consider decomposing proper components of our model Res(pN , αN
i )

into two parts; a part of the principal interacting particle system and the other part. Based

upon the notation in [23], we consider decomposing the rate function cN (x, ξ). In fact, we shall

rewrite first a rate NfN
i (fN

j +αN
j fN

i ) into a new rate NfN
i + θNj (fN

i )2 by using a relation θNi

= N(αN
i − 1), and next decompose the rate function cN (x, ξ) (which changes the coordinate

ξ(x) into 1− ξ(x)) as
cN (x, ξ) = N · c0(x, ξ) + cp(x, ξ) ≥ 0, (15)

where

c0(x, ξ) :=
∑
e∈SN

pN (e)1{ξ(x+e)̸=ξ(x)}, and (16)

cp(x, ξ) := θN0 (fN
1 (x, ξ))21{ξ(x)=0} + θN1 (fN

0 (x, ξ))21{ξ(x)=1} (17)

=
∑

A∈SF


 ∏

e∈A/ℓN

ξ(x+ e)


 (βN (A)1{ξ(x)=0} + δN (A)1{ξ(x)=1}).

On the assumption that for real-valued functions βN and δN defined on SF , there exist proper

real-valued functions β and δ defined on SF such that βN → β and δN → δ are valid for each

point of SF as N → ∞, we consider the convergence of the law of the empirical measure XN
· .

For simplicity, when we set

F1(SF ) := {f : SF → R; ∥f∥1 :=
∑

A∈SF

|f(A)| < ∞}, (18)

then it follows that βN (·)σN (·) → β(·)σ(·) in F1(SF ) as N → ∞. Under these circumstances,

we have
sup
N

∑
A∈SF

max(#{A}, 1)(|βN (A)|+ |δN (A)|) < ∞ (19)

and the following estimate holds: i.e., for a certain positive constant C(δ) > 0,

∑
y∈Zd

pN (y/ℓN )(ξ(y)− 1) � C(δ)
∑

A∈SF

δN (A)
∏
a∈A

ξ(a) (20)

Take a sequence {εN} of positive numbers such that εN → 0 and NεN → ∞ as N → ∞.

Moreover, we suppose that when N → ∞,

N · P (B0
εN = 0) → 0 and

∑
e∈SN

pN (e) · P (τ({0, e}) ∈ (εN , t]) → 0 (∀t > 0). (12)

We also assume now that the following limits exist :

lim
N→∞

∑
e∈SN

pN (e) · P (τ({0, e}) > εN ) = ∃γ(> 0) (13)

and lim
N→∞

P (τ(A/ℓN ) � εN ) = ∃σ(A) (14)

holds for any finite subset A ⊂ Zd. And also we denote by SF the totality of all the finite

subsets in Zd.

According to [21], we consider decomposing proper components of our model Res(pN , αN
i )

into two parts; a part of the principal interacting particle system and the other part. Based

upon the notation in [23], we consider decomposing the rate function cN (x, ξ). In fact, we shall

rewrite first a rate NfN
i (fN

j +αN
j fN

i ) into a new rate NfN
i + θNj (fN

i )2 by using a relation θNi

= N(αN
i − 1), and next decompose the rate function cN (x, ξ) (which changes the coordinate

ξ(x) into 1− ξ(x)) as
cN (x, ξ) = N · c0(x, ξ) + cp(x, ξ) ≥ 0, (15)

where

c0(x, ξ) :=
∑
e∈SN

pN (e)1{ξ(x+e)̸=ξ(x)}, and (16)

cp(x, ξ) := θN0 (fN
1 (x, ξ))21{ξ(x)=0} + θN1 (fN

0 (x, ξ))21{ξ(x)=1} (17)

=
∑

A∈SF


 ∏

e∈A/ℓN

ξ(x+ e)


 (βN (A)1{ξ(x)=0} + δN (A)1{ξ(x)=1}).

On the assumption that for real-valued functions βN and δN defined on SF , there exist proper

real-valued functions β and δ defined on SF such that βN → β and δN → δ are valid for each

point of SF as N → ∞, we consider the convergence of the law of the empirical measure XN
· .

For simplicity, when we set

F1(SF ) := {f : SF → R; ∥f∥1 :=
∑

A∈SF

|f(A)| < ∞}, (18)

then it follows that βN (·)σN (·) → β(·)σ(·) in F1(SF ) as N → ∞. Under these circumstances,

we have
sup
N

∑
A∈SF

max(#{A}, 1)(|βN (A)|+ |δN (A)|) < ∞ (19)

and the following estimate holds: i.e., for a certain positive constant C(δ) > 0,

∑
y∈Zd

pN (y/ℓN )(ξ(y)− 1) � C(δ)
∑

A∈SF

δN (A)
∏
a∈A

ξ(a) (20)

Take a sequence {εN} of positive numbers such that εN → 0 and NεN → ∞ as N → ∞.

Moreover, we suppose that when N → ∞,

N · P (B0
εN = 0) → 0 and

∑
e∈SN

pN (e) · P (τ({0, e}) ∈ (εN , t]) → 0 (∀t > 0). (12)

We also assume now that the following limits exist :

lim
N→∞

∑
e∈SN

pN (e) · P (τ({0, e}) > εN ) = ∃γ(> 0) (13)

and lim
N→∞

P (τ(A/ℓN ) � εN ) = ∃σ(A) (14)

holds for any finite subset A ⊂ Zd. And also we denote by SF the totality of all the finite

subsets in Zd.

According to [21], we consider decomposing proper components of our model Res(pN , αN
i )

into two parts; a part of the principal interacting particle system and the other part. Based

upon the notation in [23], we consider decomposing the rate function cN (x, ξ). In fact, we shall

rewrite first a rate NfN
i (fN

j +αN
j fN

i ) into a new rate NfN
i + θNj (fN

i )2 by using a relation θNi

= N(αN
i − 1), and next decompose the rate function cN (x, ξ) (which changes the coordinate

ξ(x) into 1− ξ(x)) as
cN (x, ξ) = N · c0(x, ξ) + cp(x, ξ) ≥ 0, (15)

where

c0(x, ξ) :=
∑
e∈SN

pN (e)1{ξ(x+e)̸=ξ(x)}, and (16)

cp(x, ξ) := θN0 (fN
1 (x, ξ))21{ξ(x)=0} + θN1 (fN

0 (x, ξ))21{ξ(x)=1} (17)

=
∑

A∈SF


 ∏

e∈A/ℓN

ξ(x+ e)


 (βN (A)1{ξ(x)=0} + δN (A)1{ξ(x)=1}).

On the assumption that for real-valued functions βN and δN defined on SF , there exist proper

real-valued functions β and δ defined on SF such that βN → β and δN → δ are valid for each

point of SF as N → ∞, we consider the convergence of the law of the empirical measure XN
· .

For simplicity, when we set

F1(SF ) := {f : SF → R; ∥f∥1 :=
∑

A∈SF

|f(A)| < ∞}, (18)

then it follows that βN (·)σN (·) → β(·)σ(·) in F1(SF ) as N → ∞. Under these circumstances,

we have
sup
N

∑
A∈SF

max(#{A}, 1)(|βN (A)|+ |δN (A)|) < ∞ (19)

and the following estimate holds: i.e., for a certain positive constant C(δ) > 0,

∑
y∈Zd

pN (y/ℓN )(ξ(y)− 1) � C(δ)
∑

A∈SF

δN (A)
∏
a∈A

ξ(a) (20)

Take a sequence {εN} of positive numbers such that εN → 0 and NεN → ∞ as N → ∞.

Moreover, we suppose that when N → ∞,

N · P (B0
εN = 0) → 0 and

∑
e∈SN

pN (e) · P (τ({0, e}) ∈ (εN , t]) → 0 (∀t > 0). (12)

We also assume now that the following limits exist :

lim
N→∞

∑
e∈SN

pN (e) · P (τ({0, e}) > εN ) = ∃γ(> 0) (13)

and lim
N→∞

P (τ(A/ℓN ) � εN ) = ∃σ(A) (14)

holds for any finite subset A ⊂ Zd. And also we denote by SF the totality of all the finite

subsets in Zd.

According to [21], we consider decomposing proper components of our model Res(pN , αN
i )

into two parts; a part of the principal interacting particle system and the other part. Based

upon the notation in [23], we consider decomposing the rate function cN (x, ξ). In fact, we shall

rewrite first a rate NfN
i (fN

j +αN
j fN

i ) into a new rate NfN
i + θNj (fN

i )2 by using a relation θNi

= N(αN
i − 1), and next decompose the rate function cN (x, ξ) (which changes the coordinate

ξ(x) into 1− ξ(x)) as
cN (x, ξ) = N · c0(x, ξ) + cp(x, ξ) ≥ 0, (15)

where

c0(x, ξ) :=
∑
e∈SN

pN (e)1{ξ(x+e)̸=ξ(x)}, and (16)

cp(x, ξ) := θN0 (fN
1 (x, ξ))21{ξ(x)=0} + θN1 (fN

0 (x, ξ))21{ξ(x)=1} (17)

=
∑

A∈SF


 ∏

e∈A/ℓN

ξ(x+ e)


 (βN (A)1{ξ(x)=0} + δN (A)1{ξ(x)=1}).

On the assumption that for real-valued functions βN and δN defined on SF , there exist proper

real-valued functions β and δ defined on SF such that βN → β and δN → δ are valid for each

point of SF as N → ∞, we consider the convergence of the law of the empirical measure XN
· .

For simplicity, when we set

F1(SF ) := {f : SF → R; ∥f∥1 :=
∑

A∈SF

|f(A)| < ∞}, (18)

then it follows that βN (·)σN (·) → β(·)σ(·) in F1(SF ) as N → ∞. Under these circumstances,

we have
sup
N

∑
A∈SF

max(#{A}, 1)(|βN (A)|+ |δN (A)|) < ∞ (19)

and the following estimate holds: i.e., for a certain positive constant C(δ) > 0,

∑
y∈Zd

pN (y/ℓN )(ξ(y)− 1) � C(δ)
∑

A∈SF

δN (A)
∏
a∈A

ξ(a) (20)

Take a sequence {εN} of positive numbers such that εN → 0 and NεN → ∞ as N → ∞.

Moreover, we suppose that when N → ∞,

N · P (B0
εN = 0) → 0 and

∑
e∈SN

pN (e) · P (τ({0, e}) ∈ (εN , t]) → 0 (∀t > 0). (12)

We also assume now that the following limits exist :

lim
N→∞

∑
e∈SN

pN (e) · P (τ({0, e}) > εN ) = ∃γ(> 0) (13)

and lim
N→∞

P (τ(A/ℓN ) � εN ) = ∃σ(A) (14)

holds for any finite subset A ⊂ Zd. And also we denote by SF the totality of all the finite

subsets in Zd.

According to [21], we consider decomposing proper components of our model Res(pN , αN
i )

into two parts; a part of the principal interacting particle system and the other part. Based

upon the notation in [23], we consider decomposing the rate function cN (x, ξ). In fact, we shall

rewrite first a rate NfN
i (fN

j +αN
j fN

i ) into a new rate NfN
i + θNj (fN

i )2 by using a relation θNi

= N(αN
i − 1), and next decompose the rate function cN (x, ξ) (which changes the coordinate

ξ(x) into 1− ξ(x)) as
cN (x, ξ) = N · c0(x, ξ) + cp(x, ξ) ≥ 0, (15)

where

c0(x, ξ) :=
∑
e∈SN

pN (e)1{ξ(x+e)̸=ξ(x)}, and (16)

cp(x, ξ) := θN0 (fN
1 (x, ξ))21{ξ(x)=0} + θN1 (fN

0 (x, ξ))21{ξ(x)=1} (17)

=
∑

A∈SF


 ∏

e∈A/ℓN

ξ(x+ e)


 (βN (A)1{ξ(x)=0} + δN (A)1{ξ(x)=1}).

On the assumption that for real-valued functions βN and δN defined on SF , there exist proper

real-valued functions β and δ defined on SF such that βN → β and δN → δ are valid for each

point of SF as N → ∞, we consider the convergence of the law of the empirical measure XN
· .

For simplicity, when we set

F1(SF ) := {f : SF → R; ∥f∥1 :=
∑

A∈SF

|f(A)| < ∞}, (18)

then it follows that βN (·)σN (·) → β(·)σ(·) in F1(SF ) as N → ∞. Under these circumstances,

we have
sup
N

∑
A∈SF

max(#{A}, 1)(|βN (A)|+ |δN (A)|) < ∞ (19)

and the following estimate holds: i.e., for a certain positive constant C(δ) > 0,

∑
y∈Zd

pN (y/ℓN )(ξ(y)− 1) � C(δ)
∑

A∈SF

δN (A)
∏
a∈A

ξ(a) (20)

Take a sequence {εN} of positive numbers such that εN → 0 and NεN → ∞ as N → ∞.

Moreover, we suppose that when N → ∞,

N · P (B0
εN = 0) → 0 and

∑
e∈SN

pN (e) · P (τ({0, e}) ∈ (εN , t]) → 0 (∀t > 0). (12)

We also assume now that the following limits exist :

lim
N→∞

∑
e∈SN

pN (e) · P (τ({0, e}) > εN ) = ∃γ(> 0) (13)

and lim
N→∞

P (τ(A/ℓN ) � εN ) = ∃σ(A) (14)

holds for any finite subset A ⊂ Zd. And also we denote by SF the totality of all the finite

subsets in Zd.

According to [21], we consider decomposing proper components of our model Res(pN , αN
i )

into two parts; a part of the principal interacting particle system and the other part. Based

upon the notation in [23], we consider decomposing the rate function cN (x, ξ). In fact, we shall

rewrite first a rate NfN
i (fN

j +αN
j fN

i ) into a new rate NfN
i + θNj (fN

i )2 by using a relation θNi

= N(αN
i − 1), and next decompose the rate function cN (x, ξ) (which changes the coordinate

ξ(x) into 1− ξ(x)) as
cN (x, ξ) = N · c0(x, ξ) + cp(x, ξ) ≥ 0, (15)

where

c0(x, ξ) :=
∑
e∈SN

pN (e)1{ξ(x+e)̸=ξ(x)}, and (16)

cp(x, ξ) := θN0 (fN
1 (x, ξ))21{ξ(x)=0} + θN1 (fN

0 (x, ξ))21{ξ(x)=1} (17)

=
∑

A∈SF


 ∏

e∈A/ℓN

ξ(x+ e)


 (βN (A)1{ξ(x)=0} + δN (A)1{ξ(x)=1}).

On the assumption that for real-valued functions βN and δN defined on SF , there exist proper

real-valued functions β and δ defined on SF such that βN → β and δN → δ are valid for each

point of SF as N → ∞, we consider the convergence of the law of the empirical measure XN
· .

For simplicity, when we set

F1(SF ) := {f : SF → R; ∥f∥1 :=
∑

A∈SF

|f(A)| < ∞}, (18)

then it follows that βN (·)σN (·) → β(·)σ(·) in F1(SF ) as N → ∞. Under these circumstances,

we have
sup
N

∑
A∈SF

max(#{A}, 1)(|βN (A)|+ |δN (A)|) < ∞ (19)

and the following estimate holds: i.e., for a certain positive constant C(δ) > 0,

∑
y∈Zd

pN (y/ℓN )(ξ(y)− 1) � C(δ)
∑

A∈SF

δN (A)
∏
a∈A

ξ(a) (20)

holds. While, when we define

θ1(β, σ(·)) :=
∑

A∈SF

β(A)σ(A) and (21)

θ2(β, δ, σ(·)) :=
∑

A∈SF

(β(A) + δ(A))σ(A ∪ {0}), (22)

then we put θ = θ1(β, σ(·))− θ2(β, δ, σ(·)).

Theorem 1. (Main Result) When we denote the law of a measure-valued stochastic

process XN
· on the path space ΩD by PN , then there exists a probability measure P ∗ ∈ P(ΩC)

such that
PN =⇒ P ∗

X0
(as N → ∞). (23)

Then there exists a MF (Rd)-valued stochastic process Xt = X 2γ,θ,σ2

t named a DW superpro-

cess with parameters 2γ > 0, θ ∈ R and σ2 > 0, satisfying that XN
t converges to X 2γ,θ,σ2

t as

N → ∞ in the sense of weak convergence for measures, and P ∗
X0

is the law of X 2γ,θ,σ2

t .

It is interesting to note that the DW superprocess (Xt, P
∗
X0

) that appears in the limit gives

a solution to the following martingale problem [6]. Namely, Xt|t=0 = X0 holds P ∗
X0

-a.s., and

Mt(φ) := ⟨Xt, φ⟩ − ⟨X0, φ⟩ −
∫ t

0

⟨Xs,
σ2

2
∆φ⟩ds−

∫ t

0

⟨Xs, (θ
1 − θ2)φ⟩ds (24)

is a P ∗
X0

-martingale with respect to the filtration {Ft}t≥0 and its quadratic variation process

[18] is given by

⟨M(φ)⟩t =
∫ t

0

⟨Xs, 2γφ
2⟩ds. (25)

Remark 2. For other related works, see e.g. [1–5].

5. Sketch of proof of main result

Step 1. In this section we shall introduce a sketch of proof of our main result Theorem 1,

which asserts that rescaled empirical measures related to our environment-dependent spatial

models converge to a Dawson-Watanabe superprocess in the sense of weak topology under

suitable conditions. First of all, note that our basic setup yields to the finiteness of

E[ sup
0�t�T

|ξNt |2 ] < ∞, ∀T > 0. (26)

Based upon the above-mentioned estimation, combining the discussion on death and birth pro-

cesses [24] to a series of results for voter models [22] together, the following first decomposition

for rescaled process models Res(pN , αN
i ) :

ξNt (x) = ξN0 (x) +MN,x
t +DN,x

t , ∀x ∈ SN , t ≥ 0. (27)
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then we put θ = θ1(β, σ(·)) − θ2(β, δ, σ(·)).
Theorem 1. (Main Result)    When we denote the law of a measure-valued stochastic process 

X·
N on the path space ΩD by PN, then there exists a probability measure P ∗ ∈ P(ΩC) such that

 (23)

Then there exists a MF (Rd)-valued stochastic process Xt = X2
t
γ,θ,σ

2
 named a DW superprocess with 

parameters 2γ > 0, θ ∈ R and σ2 > 0, satisfying that XN
t converges to X2

t
γ,θ,σ

2
 as N → ∞ in the 

sense of weak convergence for measures, and P ∗
X0is the law of X2

t
γ,θ,σ

2
.

It is interesting to note that the DW superprocess (Xt, P ∗
X0) that appears in the limit gives a 

solution to the following martingale problem [6]. Namely, Xt|t=0 = X0 holds P ∗
X 0 -a.s., and

 (24)

is a P ∗
X0 -martingale with respect to the filtration {Ft}t≥0 and its quadratic variation process [18] is 

given by

 (25)

Remark 2. For other related works, see e.g. [1–5]. The proof is new.

5.  Sketch of proof of main result
Step 1. In this section we shall introduce a sketch of proof of our main result Theorem 1, 

which asserts that rescaled empirical measures related to our environment-dependent spatial mod-
els converge to a Dawson-Watanabe superprocess in the sense of weak topology under suitable 
conditions. First of all, note that our basic setup yields to the finiteness of
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Based upon the above-mentioned estimation, combining the discussion on death and birth process-
es [24] to a series of results for voter models [22] together, the following first decomposition for 
rescaled process models Res(pN , αN

i ) :

 (27)

Next, by employing Itô’s formula [16] to f (ξ; x, y) := ξ(x) ξ(y), we may apply the decomposition 
theorem for semimartingales [26] to ξN

t to obtain

 (28)

where [MN,x]t is the quadratic variation function for martingale MN

1
,x, and the term [MN,x]t − MN,xt 

becomes a martingale. And also the integral term 

Next, by employing Itô’s formula [16] to f(ξ;x, y) := ξ(x)ξ(y), we may apply the decomposi-

tion theorem for semimartingales [26] to ξNt to obtain

ξNt (x) = ξN0 (x) + 2

∫ t

0

ξNs−(x)dD
N,x
s + 2

∫ x

0

ξNs−(x)dM
N,x
s + [MN,x]t, (28)

where [MN,x]t is the quadratic variation function for martingaleMN,x
t , and the term [MN,x]t−

⟨MN,x⟩t becomes a martingale. And also the integral term
∫ t

0
ξNs−(x)dM

N,x
s is a stochastic

integral of Itô type with respect to a square integrable martingale, which itself turns out to be

a martingale again. Once this form (28) can be derived, stochastic analysis is easily applicable

to the object, with the result that we can derive with ease the decomposition of measure-

valued process XN
t which just corresponds to our original spatial model Res(pN , αN

i ). As a

matter of fact, for any φ ∈ Cb([0, T ] × SN ) and 0 � t � T , XN
t permits the following second

decomposition
⟨XN

t , φt⟩ = ⟨XN
0 , φ0⟩+DN

t (φ) +MN
t (φ), (29)

whereMN
t (φ) is a square integrable martingale, and its predictable quadratic variation process

⟨MN (φ)⟩t is also concretely expressed by the principal components of the model Res(pN , αN
i ),

and moreover, it is uniquely determined as well.

Step 2. Since we are going to discuss the convergence problem (cf. [9–12],[14]) for the rescaled

process constructed in the previous step, when we denote the law of measure-valued process

XN
· on the path space ΩD by the symbol PN ∈ P(ΩD), then we consider next the tightness

of a family of probability measures {PN ; N ≥ 1} on the path space ΩC . Recall that when E

is a Polish space, the necessary and sufficient condition for a sequence of probability measures

{Pn} on the Skorokhod space D([0,∞), E) to be C-tight is that {Pn} is itself tight, and also

that the measure support of all the limit points (= the limit probability measures) lies on the

space of continuous paths C([0,∞), E). On the other hand, thanks to the Prokhorov theorem

[20], we know that a sequence of laws on the path space {Pn} (Pn ∈ P(ΩD)) is tight if and only

if {Pn} is relatively compact. Therefore, by resorting to the Jakubowski theorem [8] for weak

convergence in ΩD, we can easily derive the C-tightness of the family {PN , N ∈ N}. Hence,

we finally prove that there exists a proper subsequence {PN(k)} such that PN(k) converges

weakly to a probability measure P0 ∈ P(ΩC).

Step 3. Furthermore, the second decomposition (29) can be rewritten into

⟨XN
t , φt⟩ = ⟨XN

0 , φ0⟩+MN
t (φ) +

∫ t

0

XN
s (F1(φs) + φ̇s)ds (30)

+

∫ t

0

Φ(βN , σN )⟨XN
s , φs⟩ds+

∫ t

0

ΨN (s, φ)ds.
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holds. While, when we define
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θ2(β, δ, σ(·)) :=
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(β(A) + δ(A))σ(A ∪ {0}), (22)

then we put θ = θ1(β, σ(·))− θ2(β, δ, σ(·)).
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-martingale with respect to the filtration {Ft}t≥0 and its quadratic variation process

[18] is given by
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∫ t

0

⟨Xs, 2γφ
2⟩ds. (25)

Remark 2. For other related works, see e.g. [1–5].
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t named a DW superpro-

cess with parameters 2γ > 0, θ ∈ R and σ2 > 0, satisfying that XN
t converges to X 2γ,θ,σ2

t as

N → ∞ in the sense of weak convergence for measures, and P ∗
X0

is the law of X 2γ,θ,σ2

t .

It is interesting to note that the DW superprocess (Xt, P
∗
X0

) that appears in the limit gives

a solution to the following martingale problem [6]. Namely, Xt|t=0 = X0 holds P ∗
X0

-a.s., and

Mt(φ) := ⟨Xt, φ⟩ − ⟨X0, φ⟩ −
∫ t

0

⟨Xs,
σ2

2
∆φ⟩ds−

∫ t

0

⟨Xs, (θ
1 − θ2)φ⟩ds (24)

is a P ∗
X0

-martingale with respect to the filtration {Ft}t≥0 and its quadratic variation process

[18] is given by
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Remark 2. For other related works, see e.g. [1–5].
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cesses [24] to a series of results for voter models [22] together, the following first decomposition

for rescaled process models Res(pN , αN
i ) :

ξNt (x) = ξN0 (x) +MN,x
t +DN,x

t , ∀x ∈ SN , t ≥ 0. (27)

Next, by employing Itô’s formula [16] to f(ξ;x, y) := ξ(x)ξ(y), we may apply the decomposi-

tion theorem for semimartingales [26] to ξNt to obtain

ξNt (x) = ξN0 (x) + 2

∫ t

0

ξNs−(x)dD
N,x
s + 2

∫ x

0

ξNs−(x)dM
N,x
s + [MN,x]t, (28)

where [MN,x]t is the quadratic variation function for martingaleMN,x
t , and the term [MN,x]t−

⟨MN,x⟩t becomes a martingale. And also the integral term
∫ t

0
ξNs−(x)dM

N,x
s is a stochastic

integral of Itô type with respect to a square integrable martingale, which itself turns out to be

a martingale again. Once this form (28) can be derived, stochastic analysis is easily applicable

to the object, with the result that we can derive with ease the decomposition of measure-

valued process XN
t which just corresponds to our original spatial model Res(pN , αN

i ). As a

matter of fact, for any φ ∈ Cb([0, T ] × SN ) and 0 � t � T , XN
t permits the following second

decomposition
⟨XN

t , φt⟩ = ⟨XN
0 , φ0⟩+DN

t (φ) +MN
t (φ), (29)

whereMN
t (φ) is a square integrable martingale, and its predictable quadratic variation process

⟨MN (φ)⟩t is also concretely expressed by the principal components of the model Res(pN , αN
i ),

and moreover, it is uniquely determined as well.

Step 2. Since we are going to discuss the convergence problem (cf. [9–12],[14]) for the rescaled

process constructed in the previous step, when we denote the law of measure-valued process

XN
· on the path space ΩD by the symbol PN ∈ P(ΩD), then we consider next the tightness

of a family of probability measures {PN ; N ≥ 1} on the path space ΩC . Recall that when E

is a Polish space, the necessary and sufficient condition for a sequence of probability measures

{Pn} on the Skorokhod space D([0,∞), E) to be C-tight is that {Pn} is itself tight, and also

that the measure support of all the limit points (= the limit probability measures) lies on the

space of continuous paths C([0,∞), E). On the other hand, thanks to the Prokhorov theorem

[20], we know that a sequence of laws on the path space {Pn} (Pn ∈ P(ΩD)) is tight if and only

if {Pn} is relatively compact. Therefore, by resorting to the Jakubowski theorem [8] for weak

convergence in ΩD, we can easily derive the C-tightness of the family {PN , N ∈ N}. Hence,

we finally prove that there exists a proper subsequence {PN(k)} such that PN(k) converges

weakly to a probability measure P0 ∈ P(ΩC).

Step 3. Furthermore, the second decomposition (29) can be rewritten into

⟨XN
t , φt⟩ = ⟨XN

0 , φ0⟩+MN
t (φ) +

∫ t

0

XN
s (F1(φs) + φ̇s)ds (30)

+

∫ t

0

Φ(βN , σN )⟨XN
s , φs⟩ds+

∫ t

0

ΨN (s, φ)ds.
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integral of Itô type with respect to a square integrable martingale, which itself turns out to be

a martingale again. Once this form (28) can be derived, stochastic analysis is easily applicable

to the object, with the result that we can derive with ease the decomposition of measure-

valued process XN
t which just corresponds to our original spatial model Res(pN , αN

i ). As a

matter of fact, for any φ ∈ Cb([0, T ] × SN ) and 0 � t � T , XN
t permits the following second

decomposition
⟨XN

t , φt⟩ = ⟨XN
0 , φ0⟩+DN

t (φ) +MN
t (φ), (29)

whereMN
t (φ) is a square integrable martingale, and its predictable quadratic variation process

⟨MN (φ)⟩t is also concretely expressed by the principal components of the model Res(pN , αN
i ),

and moreover, it is uniquely determined as well.

Step 2. Since we are going to discuss the convergence problem (cf. [9–12],[14]) for the rescaled

process constructed in the previous step, when we denote the law of measure-valued process

XN
· on the path space ΩD by the symbol PN ∈ P(ΩD), then we consider next the tightness

of a family of probability measures {PN ; N ≥ 1} on the path space ΩC . Recall that when E

is a Polish space, the necessary and sufficient condition for a sequence of probability measures

{Pn} on the Skorokhod space D([0,∞), E) to be C-tight is that {Pn} is itself tight, and also

that the measure support of all the limit points (= the limit probability measures) lies on the

space of continuous paths C([0,∞), E). On the other hand, thanks to the Prokhorov theorem

[20], we know that a sequence of laws on the path space {Pn} (Pn ∈ P(ΩD)) is tight if and only

if {Pn} is relatively compact. Therefore, by resorting to the Jakubowski theorem [8] for weak

convergence in ΩD, we can easily derive the C-tightness of the family {PN , N ∈ N}. Hence,

we finally prove that there exists a proper subsequence {PN(k)} such that PN(k) converges

weakly to a probability measure P0 ∈ P(ΩC).

Step 3. Furthermore, the second decomposition (29) can be rewritten into

⟨XN
t , φt⟩ = ⟨XN

0 , φ0⟩+MN
t (φ) +

∫ t

0

XN
s (F1(φs) + φ̇s)ds (30)

+

∫ t

0

Φ(βN , σN )⟨XN
s , φs⟩ds+

∫ t

0

ΨN (s, φ)ds.
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Here the term ΨN (s, φ) := ΨN
1 (s, φ)−ΨN

2 (s, φ) is given concretely by

ΨN
1 (s, φ) :=

∑
A∈SF

βN (A){ 1

N

∑
x∈SN

φs(x)F2(ξ
N
s , A)− σN (A)⟨XN

s , φs⟩}, (31)

ΨN
2 (s, φ) :=

∑
A∈SF

(βN (A) + δN (A)){ 1

N

∑
x∈SN

φs(x)F2(ξ
N
s , A ∪ {0})− σN (A ∪ {0})⟨XN

s , φs⟩}

(32)

respectively. When we take a precise look at the function Φ(βN , σN ) within the fourth integral

at the right-hand side of (30), then it follows that

Φ(βN , σN ) :=
∑

A∈SF

βN (A)σN (A)−
∑

A∈SF

(βN (A) + δN (A))σN (A ∪ {0}). (33)

Here, notice that the term Φ in (33) is, by the passage to the limit N → ∞, equivalent to the

parameter θ = θ1−θ2 which appears in the conclusion expression in Theorem 1, when we take

convergence conditions on βN and δN (stated in the previous section) into consideration. The

expression (30) is not only tractable in later estimation, but also provides a form of expression

nice enough to predict or guess what form should arrear for the parameters that characterize

the limit process after taking the limit procedure. Then, based upon the relative compactness

for {PN} which was obtained in the discussion of compactness, we take the limit procedure.

It suffices to check whether all the weakly convergent limit points X· of subsequence X
N(k)
·

satisfy the martingale problem that characterizes the superprocess with designated parameters

(2γ, θ, σ2). In order to do so, we have only to make the best use of the formalism (24) and

(25) in the previous section. Thus we attain that the convergence result

XN
· −→ X· in MF (Rd) (as N → ∞). (34)

Moreover, it is proven that the weak limit point P ∗ of a sequence of probability distributions

{PN} turns out to be that P ∗ = P 2γ,θ,σ2

. This completes the proof of Theorem 1.
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for {PN} which was obtained in the discussion of compactness, we take the limit procedure.

It suffices to check whether all the weakly convergent limit points X· of subsequence X
N(k)
·

satisfy the martingale problem that characterizes the superprocess with designated parameters

(2γ, θ, σ2). In order to do so, we have only to make the best use of the formalism (24) and

(25) in the previous section. Thus we attain that the convergence result

XN
· −→ X· in MF (Rd) (as N → ∞). (34)

Moreover, it is proven that the weak limit point P ∗ of a sequence of probability distributions

{PN} turns out to be that P ∗ = P 2γ,θ,σ2

. This completes the proof of Theorem 1.
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