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A Recursive Inequality of Empirical Measures Associated with EDM

DÔKU, Isamu
Faculty of Education, Saitama University

Summary
In this paper we consider a random model related to stochastic interacting systems, named an 

environment-dependent spatial model (EDM). As a matter of fact, this stochastic model is deeply 
connected with some Markov processes investigated by Liggett [18]. We shall show that rescaled 
processes of the empirical measures derived from EDMs satisfy some applicationally important 
recursive inequality.

Key Words: �environment-dependent model, random model, stochastic interacting systems, empiri-
cal measures, rescaled process, recursive inequality.

1.  Introduction
In this section we shall introduce an environment-dependent random model (EDM)[12]. Let 

Zd be a d-dimensional lattice space, and we suppose that each site on Zd is occupied by all means 
by either one of the two species. Just after a random time period, a particle dies out and is replaced 
by a new one, but the random time and the type chosen of the species are assumed to be deter-
mined by the environment conditions around the particle. The random function ξt ≡ ξt(x): Zd → 
{0, 1} denotes the state at time t, and each number of {0, 1} denotes the label of the type chosen 
of the two species. When we set y∞ := maxi yi for y = (y1, . . . , yd), then the R-neighborhood of 
x is defined by
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denotes the label of the type chosen of the two species. When we set ∥y∥∞ := maxi yi for y

= (y1, . . . , yd), then the R-neighborhood of x is defined by

Nx := x+ {y : 0 < ∥y∥∞ � R}, (1)

where R is a positive constant given. For i = 0, 1, let fi(x, ξ) be a frequency of appearance of

type i in Nx for ξ. More precisely, it can be expressed as

fi(x) ≡ fi(x, ξ) :=
#{y : ξt(y) = i ; y ∈ Nx}

#Nx
. (2)

For non-negative parameters αij ≥ 0, the dynamics of ξt is defined as follows. The state ξ

makes transition 0 → 1 at rate
λf1(f0 + α01f1)

λf1 + f0
, (3)

and it makes transition 1 → 0 at rate

f0(f1 + α10f0)

λf1 + f0
. (4)

1

� (1) 

where R is a positive constant given. For i = 0, 1, let fi (x, ξ) be a frequency of appearance of type 
i in Nx for ξ. More precisely, it can be expressed as
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For non-negative parameters αij ≥ 0, the dynamics of ξt is defined as follows. The state ξ makes 
transition 0 → 1 at rate

	

A Recursive Inequality of Empirical Measures
Associated with EDM
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and it makes transition 1 → 0 at rate

	

A Recursive Inequality of Empirical Measures
Associated with EDM
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The interpretation of the above rate is as follows. The particle of type i dies at rate fi + αij fj, and 
is replaced instantaneously by either one of the two species chosen at random, according to the 
proliferation rate of type 0 and the interaction (= the competitive result) with the particle of type 1. 
We assume that competitive two species possess the same intensity of intraspecific interaction. The 
exchange of particles after death is described in the form being proportional to the weighted densi-
ty between the two species, expressed by a parameter λ. Assume usually that λ ≥ 1. The case of λ 
= 1 means that the contribution to a local appearance rate between the two competitive species is 
equivalent.

2.  Scaling, rescaled process and empirical measure
For simplicity we shall treat a simple case λ = 1 only in what follows. For N = 1, 2, . . . , let 

MN ∈ N, and we put N := MN 
—
N, and SN := Zd/N. And also WN = (W1

N, . . . , Wd
N) ∈ (Zd/MN)\ 

{0} is defined as a random vector satisfying
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N , . . . , W d
N )

∈ (Zd/MN ) \ {0} is defined as a random vector satisfying

(i) L(WN ) = L(−WN ); (ii) E(W i
NW j

N ) → δijσ
2(≥ 0) (as N → ∞);

(iii) {|WN |2} (N ∈ N) is uniformly integrable.

Here L(Y ) indicates the law of a random variable Y . For the kernel pN (x) := P (WN/
√
N =

x), x ∈ SN and ξ ∈ {0, 1}SN , we define the scaled frequency fN
i as

fN
i (x, ξ) =

∑
y∈SN

pN (y − x)1{ξ(y)=i}, (i = 0, 1). (5)

Actually, ξNt is given by ξNt = ξNt(x
√
N). As a matter of fact, the rescaled process ξNt :

SN ∋ x �→ ξNt (x) ∈ {0, 1} is determined by the following state transition law, nemaly, it

makes transition 0 → 1 at rate NfN
1 (fN

0 + αN
0 fN

1 ), or else it makes transition 1 → 0 at rate

NfN
0 (fN

1 + αN
1 fN

0 ). We also denote the rescaled process ξNt by the symbol Res(pN , αN
i ).

On this account, we may define the associated measure-valued process (or its corresponding

empirical measure) as

XN
t :=

1

N

∑
x∈SN

ξNt (x)δx. (6)

For the initial value XN
0 , we assume that

sup
N

⟨XN
0 , 1⟩ < ∞, XN

0 → X0 in MF (Rd) (N → ∞), (7)

where MF (Rd) is the totality of all the finite measures on Rd, equipped with the topology of

weak convergence. For a finite measure µ ∈ MF (E) with a topological space E, we use the

notation ⟨µ, φ⟩ =
∫
E
φ(x)µ(dx) for integral of a measurable function φ over E with respect to

a measure µ on E. Note that the convergence in (7) is that in the sense of weak convergence

for measures [17].

2
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—
N=x), x ∈ 
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For the initial value XN

0 , we assume that
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where MF (Rd) is the totality of all the finite measures on Rd, equipped with the topology of weak 
convergence. For a finite measure µ ∈ MF (E) with a topological space E, we use the notation µ, 
 = Eφ(x)µ(dx) for integral of a measurable function  over E with respect to a measure µ on 
E. Note that the convergence in (7) is that in the sense of weak convergence for measures [17].

3.  Main theorem : recursive inequality
In this section we shall introduce the principal result on an estimate of the maximum of the 

moment of total mass process for the empirical measure. To prove it we need some precise esti-
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mate of the quantity in question, and in fact, that can be realized by a certain recursive type in-
equality for the empirical measures.

Theorem 1. (Main Result) Let F (N) be a function of N that satisfies 1  F (N)  N and 
limN→∞ F (N)/N=0. If the condition N5/7/F (N) → 0 holds as N → ∞, then for any p > 1 and T 
> 0, there exists a finite constant c (p, T) > 0 such that
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4. Sketch of proof of main result

Step 1. In this section we shall introduce a sketch of proof of our main result Theorem

1. First of all, we begin with showing a useful equality.

Lemma 2. The following equality holds for every t > 0:

E[⟨XN
t , 1⟩] = ⟨XN

0 , 1⟩. (9)

Proof. First we consider a bounded function ψ : SN → R. For a continuous time random

walk Bx,N
t with rate N and step distribution pN starting at x,

ϕs(x) ≡ ϕ(s, x) = PN
t−sψ(x) := E[ψ(Bx,N

t−s )] (10)

defines a semigroup. Indeed, this newly defined function ϕ satisfies a differential equation

∂sϕ(s) + ANϕ(s) = 0 by virtue of the backward equation argument for continuous time

Markov chains. Recall that AN is its generator, and is given by

ANϕ(x) := N
∑
y

pN (y − x)(ϕ(y)− ϕ(x)). (11)

According to the theory of semimartingales [21], we may apply Itô’s formula in stochastic

calculus [14] to a relationship of rescaled EDMs to obtain

⟨XN
t , ϕt⟩ = ⟨XN

0 , ϕ0⟩+
∫ t

0

XN
s (∂sϕ(s) +ANϕ(s))ds+MN

t (ϕ), (12)

for 0 � t � T , where MN
t (ϕ) is a martingale term and Xt(ϕ) denotes an integral of the test

function ϕ relative to the measure-valued process dXt. Taking the expectation operation E[·]
at the both sides of (12), we can get the equality E[XN

t (ϕt)] = E[XN
0 (ϕ0)] = E[XN

0 (PN
t ψ)],

3

� (8)
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3. Main theorem : recursive inequality

In this section we shall introduce the principal result on an estimate of the maximum of

the moment of total mass process for the empirical measure. To prove it we need some precise

estimate the quantity in question, and in fact, that can be realized by a certain recursive type
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function ϕ relative to the measure-valued process dXt. Taking the expectation operation E[·]
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for 0  t  T, where MN
t () is a martingale term and Xt() denotes an integral of the test func-

tion  relative to the measure-valued process dXt. Taking the expectation operation E[·] at the both 
sides of (12), we can get the equality E[XN

t (t)] = E[XN

0 (0)] = E[XN

0 (P  Nt ψ)], and besides we 
readily obtain the desired expression (9) with E[XN

t (ψ)] = E[XN

0 (P
N
t ψ)] by changing the function 

(t) to a general one ψ, where we have substituted ·(x) ≡ 1 instead of ψ and we also have made 
use of

	

and besides we readily obtain the desired expression (9) with E[XN
t (ψ)] = E[XN

0 (PN
t ψ)] by

changing the function ϕ(t) to a general one ψ, where we have substituted ϕ·(x) ≡ 1 instead

of ψ and we also have made use of

ϕ(s, x) = ϕs(x) = PN
t−s1(x) = E[1(Bx,N

t−s )] = E[1(x)] = 1. (13)

This finishes the proof of lemma. �

Step 2. Recall standard results for stochastic integrals with respect to Poisson processes Ns

with the intensity E[Ns] = λs. Since N̂s = Ns − λs is a martingale, the stochastic integral

Ms =
∫ t

0
Ψ(s, ω)dN̂s becomes a martingale. Furthermore, it follows that

E|Mt|2 = E

����
∫ t

0

Ψ(s, ω)dN̂s

����
2

= E

∫ t

0

Ψ2(s, ω)dλs. (14)

Let {ΛN
t (x, y) : x, y ∈ SN} be a family of independent Poisson processes with rate N ·pN (y−x)

defined on a complete probability space. Note that its compensated process

Λ̂N
t (x, y) = ΛN

t (x, y)−N · pN (y − x)t (15)

are (Ft)-martingale. On this account, for every test function ψ ≡ ψ(s, x) ∈ Mb([0, T ] × SN )

with T < ∞,

MN
t (ψ) :=

1

F (N)

∑
s

∑
y

∫ t

0

ψs(x)(ξs−(y)− ξs−(x))dΛ̂s(x, y) (16)

is a cadlag L2 (Ft)-martingale, and its predictable square function is given by

⟨MN (ψ)⟩t =
N

F (N)2

∫ t

0

∑
x

∑
y

ψs(x)
2(ξs(y)− ξs(x))

2pN (y − x)ds, t ∈ [0, T ] (17)

where Mb(D) is the totality of all bounded measurable functions defined on a proper space

D, and the summation
∑

x is taken over the whole space SN . In particular, the equality

⟨MN (1)⟩t = 2

∫ t

0

⟨XN
s ,

N

F (N)
VN (s, x)⟩ds (18)

holds, where VN (t, x) =
∑

y pN (y − x)1{ξt(y) = 0}. An application of the results (16), (17)

and (18) with the expression (12) leads to XN
t (1) = XN

0 (1) + MN
t (1).

Lemma 3. The random quantity ⟨XN
t , 1⟩ is an L2-martingale such that

⟨XN (1)⟩t =
2N

F (N)

∫ t

0

1

F (N)

∑
x

ξs(x)VN (s, x)ds � 2N

F (N)

∫ t

0

⟨XN
s , 1⟩ds (19)

holds.

4

� (13)

This finishes the proof of lemma.� □

Step 2. Recall standard results for stochastic integrals with respect to Poisson processes Ns with the 
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Proof. The expression (16) implies that MN
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0 , 1=const., it is easy to see that for 0 <s < t
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Moreover, we can deduce that ⟨XN
t , 1⟩ is an L2 martingale becauseMN

t (ψ) is an L2 martingale.

For a proper sequence of stopping times (Tn), the quadratic variation satisfies

V ar(⟨XN
0 , 1⟩) :=

∑
k

��⟨XN (0 ∧ Tk+1), 1⟩ − ⟨XN (0 ∧ Tk), 1⟩
��2 = 0, (21)

hence it follows immediately that ⟨XN (1)⟩t = ⟨MN (1)⟩t holds for every t > 0. Elementary

results for Poisson process and stochastic integral with respect to Poisson process reads
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where we made use of a simple inequality VN (s, x) � 1. �

Step 3. To complete the proof of Theorem 1, we need the following lemmas.

Lemma 4. There exists a positive constant K(p) > 0 depending on ∀p > 1 such that

E[sup
t�T

⟨XN
t , 1⟩p] � K(p)

{
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}
(24)

holds.
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