
‒ 259 ‒

An Estimate of Survival Probability for Superprocesses
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Faculty of Education, Saitama University

Summary
In this paper we consider a branching particle system that is governed by diffusion. When we 

construct its rescaled branching diffusion particle system with three parameters, then the measure-
valued diffusion process or superdiffusion is obtained from the rescaled branching particle systems 
via limiting procedure. We discuss the survival probability for the limiting superprocess, and de-
rive an estimate of the survival probability for the superprocesses.

Key Words: �branching particle system, diffusion, rescaled branching particle system, limiting pro-
cedure, neasure-valued diffusion, superprocess, survival probability.

1. Introduction
In this paper we consider a branching particle system whose motion is described by a 

diffusion process. Actually, the diffusion is governed by the second order partial differential opera-
tor on the assumption that the operator is uniformly elliptic. Next we define a rescaled branching 
diffusion particle system with three parameters, and recall the well known limiting procedure. 
Then the measure-valued diffusion process or superdiffusion is obtained from the rescaled branch-
ing particle systems by virtue of the limit proposition. Lastly we discuss the survival probability 
for the limiting superprocess, and derive an estimate of the survival probability for the superpro-
cesses. Our result is a generalization of the result obtained by Sheu (1997) [15], where an estimate 
of survival probability for super-Brownian motion was derived.

2. Rescaled branching diffusion particle system
Let L be a second order partial differential operator of the form
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1. Introduction

In this paper we consider a branching particle system whose motion is described by a

diffusion process. Actually, the diffusion is governed by the second order partial differential

operator on the assumption that the operator is uniformly elliptic. Next we define a rescaled

branching diffusion particle system with three parameters, and recall the well known limiting

procedure. Then the measure-valued diffusion process or superdiffusion is obtained from the

rescaled branching particle systems by virtue of the limit proposition. Lastly we discuss

the survival probability for the limiting superprocess, and derive an estimate of the survival

probability for the superprocesses. Our result is a generalization of the result obtained by

Sheu (1997) [15], where an estimate of survival probability for super-Brownian motion was

derived.

2. Rescaled branching diffusion particle system

Let L be a second order partial differential operator of the form

L :=
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi
(1)

where aij , bi ∈ Cb(Rd) for every i, j. We suppose that L is uniformly elliptic. Then ξ = (ξt,Πx)

denotes an L-diffusion, and Z = {Zt; t ≥ 0} is a branching diffusion particle system. Namely,

Z is a probabilistic model of a system of particles living in the space Rd, dying and producing

1
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where aij , bi ∈ Cb (Rd) for every i, j. We suppose that L is uniformly elliptic. Then ξ=(ξt, Πx) de-
notes an L-diffusion, and Z ={Zt; t ≥ 0} is a branching diffusion particle system. Namely, Z is a 
probabilistic model of a system of particles living in the space Rd, dying and producing random 
number of offspring in accordance with exponentially distributed lifetime at their death time and 
death location, and moving in such a way as governed by the law of the L-diffusion. Actually, Zt  is 
a point measure on Rd and Zt (B) indicates the number of particles at time t in a set B ⊂ Rd. More-
over, the distribution of Zt is determined by the three parameters q, k and . Here, q is a random 
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measure on Rd describing the initial distribution of the particle system, k is the killing rate for each 
particle, and φ is a generating function describing the distribution of number of offspring.

Then for every β > 0, we can define a rescaled branching diffusion particle system Zβ=(Zβ
t, 

Pq (µ/β)) with parameters (q(µ/β), kβ , β ), where, when b1 ∈ R, b2 ≥ 0, m is a measure on [1, ∞)
such that

	

random number of offspring in accordance with exponentially distributed lifetime at their

death time and death location, and moving in such a way as governed by the law of the L-

diffusion. Actually, Zt is a point measure on Rd and Zt(B) indicates the number of particles at
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q, k and φ. Here, q is a random measure on Rd describing the initial distribution of the particle

system, k is the killing rate for each particle, and φ is a generating function describing the

distribution of number of offspring.

Then for every β > 0, we can define a rescaled branching diffusion particle system Zβ =

(Zβ
t , Pq(µ/β)

) with parameters (q(µ/β), kβ , φβ), where, when b1 ∈ R, b2 ≥ 0, m is a measure on

[1,∞) such that ∫ ∞

1

u ·m(du) < ∞. (2)

and n is a measure on (0, 1) such that

∫ 1

0

u2 · n(du) < ∞, (3)

we put

c1 := |b1|, c2 := 2b2 +

∫ 1

0

u2 · n(du), c3 := m([1,∞)), (4)

qµ is the Poisson random measure with intensity µ ∈ MF (Rd),

kβ :=
c1 + c2

β
+ c3β (5)

and φβ := φ1(β) + β2(β) + φ3(β) + φ4(β) with

φ1(β) :=
1

kβ

{
c3β +

c1 + c2
β

z + b1(1− z)

}
, (6)

φ2(β) :=
1

kβ

(
c1 +

b2
β

)
(1− z)2, (7)

φ3(β) := β

∫ ∞

1

(e−u(1−z)/β − 1)m(du), and (8)

φ4(β) := β

∫ 1

0

{
e−u(1−z)/β − 1 +

u(1− z)

β

}
n(du). (9)

Then note that our Zβ admits the following characterization via Laplace transition functional.

That is to say, it is well known that the Laplace transition functional is given by

Pq(µ/β)
e−⟨f,Zβ

t ⟩ = e−⟨ut,µ/β⟩ (10)

for every bounded function f > 0, where u ≡ ut(x) = u(t, x) satisfies

Πx[1− e−f(ξt)]− u(t, x) (11)

= Πx

∫ t

0

k{φ(1− u(t− s, ξs))− 1 + u(t− s, ξs)}ds (12)

2
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qµ is the Poisson random measure with intensity µ ∈ MF (Rd),
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and β := 1(β) + 2(β) + 3(β) + 4(β) with
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u ·m(du) < ∞. (2)
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∫ 1

0

u2 · n(du) < ∞, (3)
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c1 := |b1|, c2 := 2b2 +

∫ 1

0

u2 · n(du), c3 := m([1,∞)), (4)

qµ is the Poisson random measure with intensity µ ∈ MF (Rd),

kβ :=
c1 + c2

β
+ c3β (5)

and φβ := φ1(β) + β2(β) + φ3(β) + φ4(β) with

φ1(β) :=
1

kβ

{
c3β +

c1 + c2
β

z + b1(1− z)

}
, (6)

φ2(β) :=
1

kβ

(
c1 +

b2
β

)
(1− z)2, (7)

φ3(β) := β

∫ ∞

1

(e−u(1−z)/β − 1)m(du), and (8)

φ4(β) := β

∫ 1

0

{
e−u(1−z)/β − 1 +

u(1− z)

β

}
n(du). (9)
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Πx[1− e−f(ξt)]− u(t, x) (11)

= Πx

∫ t

0

k{φ(1− u(t− s, ξs))− 1 + u(t− s, ξs)}ds (12)

2
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random number of offspring in accordance with exponentially distributed lifetime at their

death time and death location, and moving in such a way as governed by the law of the L-

diffusion. Actually, Zt is a point measure on Rd and Zt(B) indicates the number of particles at

time t in a set B ⊂ Rd. Moreover, the distribution of Zt is determined by the three parameters

q, k and φ. Here, q is a random measure on Rd describing the initial distribution of the particle

system, k is the killing rate for each particle, and φ is a generating function describing the

distribution of number of offspring.

Then for every β > 0, we can define a rescaled branching diffusion particle system Zβ =

(Zβ
t , Pq(µ/β)

) with parameters (q(µ/β), kβ , φβ), where, when b1 ∈ R, b2 ≥ 0, m is a measure on

[1,∞) such that ∫ ∞

1

u ·m(du) < ∞. (2)

and n is a measure on (0, 1) such that

∫ 1

0

u2 · n(du) < ∞, (3)

we put

c1 := |b1|, c2 := 2b2 +

∫ 1

0

u2 · n(du), c3 := m([1,∞)), (4)

qµ is the Poisson random measure with intensity µ ∈ MF (Rd),

kβ :=
c1 + c2

β
+ c3β (5)

and φβ := φ1(β) + β2(β) + φ3(β) + φ4(β) with

φ1(β) :=
1

kβ

{
c3β +

c1 + c2
β

z + b1(1− z)

}
, (6)

φ2(β) :=
1

kβ

(
c1 +

b2
β

)
(1− z)2, (7)

φ3(β) := β

∫ ∞

1

(e−u(1−z)/β − 1)m(du), and (8)

φ4(β) := β

∫ 1

0

{
e−u(1−z)/β − 1 +

u(1− z)

β

}
n(du). (9)

Then note that our Zβ admits the following characterization via Laplace transition functional.

That is to say, it is well known that the Laplace transition functional is given by

Pq(µ/β)
e−⟨f,Zβ

t ⟩ = e−⟨ut,µ/β⟩ (10)

for every bounded function f > 0, where u ≡ ut(x) = u(t, x) satisfies

Πx[1− e−f(ξt)]− u(t, x) (11)

= Πx

∫ t

0

k{φ(1− u(t− s, ξs))− 1 + u(t− s, ξs)}ds (12)

2

� (7)
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diffusion. Actually, Zt is a point measure on Rd and Zt(B) indicates the number of particles at
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∫ ∞
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∫ 1

0
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2
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Then note that our Zβ admits the following characterization via Laplace transition functional. That 
is to say, it is well known that the Laplace transition functional is given by
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β
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φ3(β) := β
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(e−u(1−z)/β − 1)m(du), and (8)

φ4(β) := β

∫ 1

0

{
e−u(1−z)/β − 1 +

u(1− z)

β

}
n(du). (9)

Then note that our Zβ admits the following characterization via Laplace transition functional.

That is to say, it is well known that the Laplace transition functional is given by

Pq(µ/β)
e−⟨f,Zβ

t ⟩ = e−⟨ut,µ/β⟩ (10)

for every bounded function f > 0, where u ≡ ut(x) = u(t, x) satisfies

Πx[1− e−f(ξt)]− u(t, x) (11)

= Πx

∫ t

0

k{φ(1− u(t− s, ξs))− 1 + u(t− s, ξs)}ds (12)
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3.  Superprocess and survival probability
As β goes to zero, then our rescaled process Zβ

t converges to ameasure-valued diffusion or 
superdiffusion X=(Xt), t ≥ 0. Henceforth we shall call it a superprocess X. Moreover, for every 
bounded function f > 0 on Rd, the function
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3. Superprocess and survival probability

As β goes to zero, then our rescaled process Zβ
t converges to a measure-valued diffusion

or superdiffusion X = (Xt), t ≥ 0. Henceforth we shall call it a superprocess X. Moreover,

for every bounded function f > 0 on Rd, the function

v(t, x) ≡ v[f ](t, x) ≡ v(t, x; f) := − logPxe
−⟨f,Xt⟩ (13)

satisfies the integral equation (i.e. the log-Laplace type equation in Dynkin sense)

v(t, x) + Πx

∫ t

0

ψ(v(t− s, ξs))ds = Πxf(ξt), (14)

where Px denotes the law Pδx of the superprocessX with the initial measure δx, and δx denotes

the Dirac delta function at the position x. In addition, we have put

ψ(z) :=

{
b1 −

∫ ∞

1

u ·m(du)

}
z + ϕ(z) (15)

ϕ(z) := b2z
2 +

∫ ∞

0

(e−uz − 1 + uz)(m(du) + n(du)). (16)

Let X be the superprocess obtained in the above argument. The quantity

⟨1, Xt⟩ =
∫

Rd

1Xt(dx) (17)

is called the total mass process. For every positive constant c > 0, the function

vc(t) := − logPxe
−⟨c,Xt⟩ (18)

satisfies the ordinary differential equation

d

dt
vc(t) + ψ(vc(t)) = 0, ∀t > 0, (19)

with the initial value vc(0) = c. Under these circumstances, we put

z0 := max{z > 0;ψ(z) = 0}. (20)

Furthermore, if {z > 0;ψ(z) > 0} = ∅, then it follows that z0 = ∞. It is obvious that the

function vc(t) is increasing in c, and there exists the limit

∃ v∞(t) := lim
c→∞

vc(t). (21)

Now we are in a position to define the lifetime ℓ of the superprocess X = (Xt, Pµ) as

ℓ := sup{t ≥ 0;Xt ̸= 0}. (22)

3
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Now we are in a position to define the lifetime ℓ of the superprocess X = (Xt, Pµ) as

ℓ := sup{t ≥ 0;Xt ̸= 0}. (22)
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Now we are in a position to define the lifetime  of the superprocess X = (Xt, Pµ) as

	

3. Superprocess and survival probability

As β goes to zero, then our rescaled process Zβ
t converges to a measure-valued diffusion

or superdiffusion X = (Xt), t ≥ 0. Henceforth we shall call it a superprocess X. Moreover,

for every bounded function f > 0 on Rd, the function

v(t, x) ≡ v[f ](t, x) ≡ v(t, x; f) := − logPxe
−⟨f,Xt⟩ (13)

satisfies the integral equation (i.e. the log-Laplace type equation in Dynkin sense)

v(t, x) + Πx

∫ t

0

ψ(v(t− s, ξs))ds = Πxf(ξt), (14)

where Px denotes the law Pδx of the superprocessX with the initial measure δx, and δx denotes

the Dirac delta function at the position x. In addition, we have put

ψ(z) :=

{
b1 −

∫ ∞

1

u ·m(du)

}
z + ϕ(z) (15)

ϕ(z) := b2z
2 +

∫ ∞

0

(e−uz − 1 + uz)(m(du) + n(du)). (16)

Let X be the superprocess obtained in the above argument. The quantity

⟨1, Xt⟩ =
∫

Rd

1Xt(dx) (17)

is called the total mass process. For every positive constant c > 0, the function

vc(t) := − logPxe
−⟨c,Xt⟩ (18)

satisfies the ordinary differential equation

d

dt
vc(t) + ψ(vc(t)) = 0, ∀t > 0, (19)

with the initial value vc(0) = c. Under these circumstances, we put

z0 := max{z > 0;ψ(z) = 0}. (20)

Furthermore, if {z > 0;ψ(z) > 0} = ∅, then it follows that z0 = ∞. It is obvious that the
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vc(t). (21)

Now we are in a position to define the lifetime ℓ of the superprocess X = (Xt, Pµ) as
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Then we say that X survives if  = ∞.
Theorem 1. (Survival condition) Let µ ∈ MF (Rd). Assume that z0 ∈ [0, ∞). If the function 

(z) satisfies the condition

	

Then we say that X survives if ℓ = ∞.

Teorem 1. (Survival condition) Let µ ∈ MF (Rd). Assume that z0 ∈ [0,∞). If the

function ϕ(z) satisfies the condition

∫ ∞

z

1

ϕ(z)
dz = ∞ for ∀z > 0, (23)

then the superprocess X survives, Pµ-a.s.

Teorem 2. (Estimate of survival probability) If the condition in Theorem 1 is not neces-

sarily satisfied, then we have the following estimate of the survival probability for superprocess

X = (Xt, Pµ) :

Pµ(X survives) = 1− ez0⟨1,µ⟩, (24)

where µ ∈ MF (Rd) and z ∈ [0,∞).

4. Sketch of proof of main results

First of all we get

Pµ(Xt ̸= 0) = 1− Pµ(Xt = 0) (25)

= 1− e−v∞(t)⟨1,µ⟩, (26)

and we can also obtain the expression

Pµ(X survives) = lim
t→∞

Pµ(Xt ̸= 0). (27)

We need the following lemmas.

Lemma 3. (cf. Sheu [15], Proposition 2.1) If z0 ∈ [0,∞), then v∞(t) = ∞ for every t > 0

if and only if the function ψ satisfies

∫ ∞

z

1

ψ(u)
du = ∞, ∀z > z0. (28)

Lemma 4. (cf. Sheu [15], Proposition 2.2) If ψ does not satisfy the condition stated in

the above lemma 3, then v∞(t) converges to z0 as t → ∞.

Lemma 5. (cf Sheu [15], Proposition 2.4) Assume that z0 ∈ [0,∞). The function ϕ

satisfies the condition (23) stated in Theorem 1 if and only if the function ψ satisfies the

condition (28).

The assertions yields immediately from the above lemmas 3, 4 and 5. �

4
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then the superprocess X survives, Pµ-a.s.
Theorem 2. (Estimate of survival probability) If the condition in Theorem 1 is not necessarily 

satisfied, then we have the following estimate of the survival probability for superprocess X = 
(Xt, Pµ):
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Lemma 4. (cf. Sheu [15], Proposition 2.2) If ψ does not satisfy the condition stated in the 
above lemma 3, then v∞(t) converges to z0 as t → ∞.

Lemma 5. (cf Sheu [15], Proposition 2.4) Assume that z0 ∈ [0, ∞). The function  satisfies 
the condition (23) stated in Theorem 1 if and only if the function  satisfies the condition (28).
The assertions yields immediately from the above lemmas 3, 4 and 5.� □
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