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A Remark on Approximate Formula and Asymptotic Expansion  
for Pseudodifferential Operators of Kohn-Nirenberg Type
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Faculty of Education, Saitama University

Summary
In this paper we consider a class of pseudodifferential operators of Kohn-Nirenberg type, and 

make a remark on approximate formula for those pseudodifferential operators. Moreover, we also 
consider asymptotic expansion for pseudodifferential operators of the same kind. The explicit rep-
resentation of the approximate formula can be given by the pseudodifferential operators with stan-
dard symbol replaced by an approximate sequence of symbols. While, the asymptotic expansion 
formula provides us with a tractable method of operations of seudodifferential operators, because 
the infinite series in the expansion may be convergent in the appropriate topology of symbol class.

Key Words: �pseudodifferential operators of Kohn-Nirenberg type, symbol class, the Schwartz 
class, approximate formula, asymptotic expansion.

1.  Introduction
In this paper we shall consider a class of pseudodifferential operators of Kohn-Nirenberg 

type, make a remark on a standard variant of approximate formula for pseudodifferential operators 
of the above-mentioned type, and also state a remark on a mathematical statement of asymptotic 
expansion formulation for pseudodifferential operators of the same kind. First of all, we shall treat 
an approximate formula for pseudodifferential operators of Kohn-Nirenberg type, where the ex-
plicit representation of the formula can be given by the pseudodifferential operators with symbol 
a  (x, ξ) replaced by an approximate sequence of symbols aε (x, ξ). While, the symbol aε (x, ξ) con-
verges pointwise to a  (x, ξ) with all kinds of derivatives, and the corresponding pseudodifferential 
operator aε (X, D) may converge to a (X, D) in the sense that aε (X, D) f (x) converges to a (X, D) 
f (x) in the topology of the Schwartz class S. Secondly, we shall treat an asymptotic expansion for 
pseudodifferential operators of Kohn-Nirenberg type. On this account, this expansion theory pro-
vides us with a tractable method of operations of seudodifferential operators of Kohn-Nirenberg 
type, because the infinite series may be convergent in the sense of asymptotic expansion formula 
given.

2.  Pseudodifferential operators of Kohn-Nirenberg type
In this section we shall see how the psedodifferential operators of Kohn-Nirenberg type are 

defined on the Schwartz class S that is the best class in functional analysis. Let a ≡ a (x, ξ): R2n = 
Rn

x × Rn
ξ → C be a proper function. Then the pseudodifferential operator (ΨDO) a (X, D) of Kohn-
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Nirenberg type is defined by

	

In this section we shall see how the psedodifferential operators of Kohn-Nirenberg type

are defined on the Schwartz class S that is the best class in functional analysis. Let a ≡ a(x, ξ)

: R2n = Rn
x × Rn

ξ → C be a proper function. Then the pseudodifferential operator (ΨDO)

a(X,D) of Kohn-Nirenberg type is defined by

a(X,D)f(x) :=
1

(2π)n/2

∫

Rn

a(x, ξ)(Ff)(ξ)eix·ξdξ, f ∈ S, (1)

where x = (x1, . . . , xn) ∈ Rn, ξ = (ξ1, . . . , ξn) ∈ Rn, x · ξ = x1ξ1 + · · ·xnξn, S = S(Rn) is the

Schwartz class, and F is the Fourier transform given by

(Ff)(ξ) :=

∫

Rn

f(x)e−ix·ξdx, f ∈ S, (2)

where
∫

Rn

g(x)dx =

∫∫
· · · (n) · · ·

∫

Rn

g(x1, x2, . . . , xn)dx1dx2 · · · dxn (3)

=

∫

R
· · · (n) · · ·

∫

R

(∫

R
g(x1, x2, . . . , xn)dx1

)
dx2 · · · dxn. (4)

We call a = a(x, ξ) a symbol. Note that we write the pseudodifferential operator by a(X,D)

instead of a(x,D) which is used in most cases of usual textbooks. Because we would like to

avoid misunderstanding the function a(x,D)f as the value of function a(x,D)f(x) when using

the notation a(x,D).

Next we shall define the symbol class Sm
ρδ for 0 � ρ � 1, 0 � δ � 1 and m ∈ R. Let α, β

be multi-indices, like α = (α1, . . . , αn) ∈ Zn
+, β = (β1, . . . , βn) ∈ Zn

+. For a ∈ C∞(R2n) =

C∞(Rn
x × Rn

ξ ), we define the norm ∥a∥smρδ(α,β) as

∥a∥smρδ(α,β) := sup
x,ξ∈Rn

⟨ξ⟩−(m+δ|β|−ρ|α|)|∂β
x∂

α
ξ a(x, ξ)| (5)

with |x| =
√
x2
1 + · · ·+ x2

n, ⟨x⟩ = (1 + |x|2)1/2, ∂α
x = ∂α1

x1
· · · ∂αn

xn
, ∂αk

xk
=

(
∂

∂xk

)αk

for k =

1, 2, . . . , n, and

∂α
x f(x) =

∂|α|f(x1, . . . , xn)

∂xα1
1 · · · ∂xαn

n
. (6)

Then a set Sm
ρδ of C∞(R2n)-class functions is defined by

Sm
ρδ :=

∩
α,β∈Zn

+

{
a ∈ C∞(R2n); ∥a∥Sm

ρδ(α,β)
< ∞

}
. (7)

We call Sm
ρδ a symbol class and call its element or component a ∈ Sm

ρδ a symbol simply. In

addition, we use the notation Sm for Sm
10. Notice that a(x, ξ) = ξj ∈ S1 ≡ S1

10 for j =

1, 2, . . . , n.

2

� (1)

where 
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We call S  mρδ a symbol class and call its element or component a ∈ S  mρδ a symbol simply. In addition, 
we use the notation S  m for S  m10

 . Notice that a  (x, ξ) = ξj ∈ S1 ≡ S1
10 for j = 1, 2, . . . , n.

In what follows we shall investigate some conditions in order that the expression given in (1) 
makes sense.

Theorem 1. Assume that a ∈ S  mρδ . Then it follows that a  (X, D) f ∈ S for every f ∈ S. More-
over, the correspondence
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Notice that

|∂α
xL

N
ξ (a(x, ξ)(Ff)(ξ))| � CM,N,α⟨ξ⟩−M (13)

holds by virtue of the Leibniz formula. Consequently, it follows that

sup
x∈Rn

|xαDβa(X,D)f(x)| < ∞, (14)

where Dβ = Dβ1
x1

· · ·DβN
xN

and Dxk
= −i ∂

∂xk
. In other words, this implies that a(X,D)f ∈ S.

The aforementioned computation yields lucidly to the continuity of the mapping a(X,D)(·).
This finishes the proof. �

Theorem 2. Let 0 � ρ � 1, 0 � δ � 1 and m ∈ R. We assume that a sequence

{aε}ε∈[0,1] ⊂ Sm
ρδ satisfies the inequality

(i) |∂β
x∂

α
ξ aε(x, ξ)| � Cα,β⟨ξ⟩m+δ|β|−ρ|α|, (15)

and also that

(ii) lim
ε↓0

∂β
x∂

α
ξ aε(x, ξ) = ∂β

x∂
α
ξ a(x, ξ), (pointwiae convergence) ∀x, ξ ∈ Rn. (16)

Then, it follows that the equality

lim
ε↓0

aε(X,D)f = a(X,D)f (17)

holds in the topology of the Schwartz class S.

Proof. It goes almost similarly as in the proof of the previous theorem. As a matter of

fact, if we resort to the same technique in the above computation in (12), and if we apply the

Lebesgue convergence theorem, then the conclusion yields from the standard argument. �

3. Approximate formula for pseudodifferential operators

In this section we shall introduce the first main result, namely, the approximate formula for

pseudodifferential operators of Kohn-Nirenberg type. Before stating the principal statement,

we will provide with a concrete useful example of the symbol aε(x, ξ), which has been discussed

in Theorem 2.

Example 3. Let ρ, δ and m be the same as in the previous discussion. Assume that a ∈
Sm
ρ,δ. We may choose a smooth function γ ∈ C∞ ≡ C∞(Rn) satisfying the condition: 1Q(1) �

γ � 1Q(2). When we put

aε(x, ξ) := a(x, ξ)γ(εx)γ(εξ), ∀ε : 0 � ε � 1, (18)

then this sequence {aε}, ε ∈ [0, 1], satisfies the conditions (i) and (ii) in Theorem 2 uniformly

with respect to the parameter ε > 0.
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then this sequence {aε}, ε ∈ [0, 1], satisfies the conditions (i) and (ii) in Theorem 2 uniformly with 
respect to the parameter ε > 0.

Theorem 4. (Approximate Formula for ΨDOs) Assume that a ∈ S  m, . For such a symbol a = 
a(x, ξ), we are supposed to take a sequence aε(x, ξ) as in the above example with 0  ε  1. Then 
for f ∈ S, the approximate formula a  (X, D) for ΨDO
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butions. In order to define a(X,D)f for f ∈ S ′, we need to consider the adjoint a(X,D)∗
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Indeed, it is interesting to note that almost the same properties as to the operator a(X,D) are

valid even for a(X,D)∗. The following result indicated that the adjoint a(X,D)∗ is equivalent

to the transposed linear trnasformation a(X,D), that is,

Theorem 5. (Duality Formula) For every f, g ∈ S, we admit the following dual relation

⟨a(X,D)f, g⟩ = ⟨f, a(X,D)∗g⟩. (23)

Proof. We may rewrite the term ⟨a(X,D)f, g⟩ into another form by making use of the
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transposed linear trnasformation a  (X, D), that is,

Theorem 5. (Duality Formula) For every f, g ∈ S, we admit the following dual relation
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Proof. We may rewrite the term a  (X, D) f, g into another form by making use of the limit 
procedure, that is to say,

	

limit procedure, that is to say,
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=
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∫
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1
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∫
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=

∫

Rn

f(x) · a(X,D)∗g(x)dx = ⟨f, a(X,D)∗g⟩, (24)

where we have used the Fubini theorem in the third equality because the integral has been

truncated by the approximation. �

Definition 6. (a(X,D)f for f ∈ S ′) Let 0 � ρ � 1, 0 � δ � 1 and m ∈ R. Suppose that

a ∈ Sm
ρδ. We define a(X,D)f ∈ S ′ (for all f ∈ S ′) as

⟨a(X,D)f, g⟩ = ⟨f, a(X,D)∗g⟩, ∀g ∈ S (25)

by making use of a(X,D)∗. Then the mapping a(X,D) : S ′ → S ′ proves to be continuous by

virtue of the duality property. �

5. Asymptotic expansion for pseudodifferential operators

This section treats the second principal result, Theorem 7, which is about the asymptotic

expansion for pseudodifferential operators of Kohn-Nirenberg type.

Theorem 7. (Asymptotic Expansion for ΨDO) Let 0 � ρ � 1 and 0 � δ � 1. Suppose

that the sequence of numbers {mj}∞j=0 satisfies the condition

sup
j∈N0

(mj+1 −mj) < 0. (26)

If the symbols aj ∈ S
mj

ρδ for each j = 0, 1, 2, . . . are given, then there exists a certain proper

symbol ∃ a ∈ Sm0

ρδ such that

a(x, ξ)−
j−1∑
k=0

ak(x, ξ) ∈ S
mj

ρδ (27)

holds for every natural number j.

Proof. Take a proper smooth function φ ∈ C∞ = C∞(Rn) satisfying 1B(1) � φ � 1B(2).

Then, define the symbol a = a(x, ξ) as

a(x, ξ) :=
∞∑
k=0

(
1− φ

(
ξ

2k

))
ak(x, ξ) (28)
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where we have used the Fubini theorem in the third equality because the integral has been truncat-
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holds for every natural number j.
Proof. Take a proper smooth function  ∈ C ∞ = C ∞ (Rn) satisfying 1B(1)    1B(2). Then, 
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mj
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ρδ such that

a(x, ξ)−
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mj
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holds for every natural number j.

Proof. Take a proper smooth function φ ∈ C∞ = C∞(Rn) satisfying 1B(1) � φ � 1B(2).
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by employing the sequence of symbols {ak
 } given. Notice that the above-defined symbol a  (x, ξ) is 

freely termwise differentiable, since the infinite sum in a  (x, ξ) turns out to be a finite sum on an 
arbitrary compact set in R2n. We have only to show that

	

by employing the sequence of symbols {ak} given. Notice that the above-defined symbol

a(x, ξ) is freely termwise differentiable, since the infinite sum in a(x, ξ) turns out to be a finite

sum on an arbitrary compact set in R2n. We have only to show that

a(x, ξ)−
j−1∑
k=0

ak(x, ξ) ∈ S
mj

ρδ (29)

for each j = 0, 1, 2, . . . for this newly defined symbol a(x, ξ). By the definition of symbol class,

it suffices to show the following lemma in order to verify (29).

Lemma 8. (Reduction) For any multi-indices α, β ∈ Zn
+, the following estimate

sup
x,ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

�����∂
β
x∂

α
ξ

(
a−

j−1∑
k=1

ak

)
(x, ξ)

����� < ∞ (30)

holds.

Proof. The assertion of Lemma 8 can be verified naturally by showing the suceeding series

of technical lemmas. First of all, recall that the sequence of numbers {mk}∞k=0 is monotone

decreasing and it goes to minus infinity, namely, mk > mk+1 > · · · ↘ −∞, by definition.

Taking this fact into account, we put

K(j;α) := min{k ∈ N0 : mk −mj + ρ|α| < 0 } ≥ j. (31)

An easy calculation leads to

a(x, ξ)−
j−1∑
k=0

ak(x, ξ) =
∞∑
k=j

(
1− φ

(
ξ

2k

))
ak(x, ξ)−

j−1∑
k=0

φ

(
ξ

2k

)
ak(x, ξ). (32)

Hence it is easy to see that for any α, β ∈ Zn
+,

∂β
x∂

α
ξ

(
a(x, ξ)−

j−1∑
k=0

ak(x, ξ)

)
=

∞∑
k=j

∂β
x∂

α
ξ

{
(1− φ

(
ξ

2k

)
)ak(x, ξ)

}

−
j−1∑
k=0

φ

(
ξ

2k

)
∂β
x∂

α
ξ ak(x, ξ)

−
∞∑
k=0

∑
γ∈Zn

+

α≥γ ̸=0

(
α
γ

)
∂γ
ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

=: J1 − J2 − J3. (33)

The following lemmas just correspond to each term Jk (k = 1, 2, 3) respectively.
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holds.
Proof. The assertion of Lemma 8 can be verified naturally by showing the suceeding series of 

technical lemmas. Firs to fall, recall that the sequence of numbers {mk}∞  is monotone decreasing 
and it goes to minus infinity, namely, mk > mk+1 > · · ·  −∞, by definition. Taking this fact into 

ρδ

ρδ

k=0
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account, we put
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)
∂β
x∂

α
ξ ak(x, ξ)

−
∞∑
k=0

∑
γ∈Zn

+

α≥γ ̸=0

(
α
γ

)
∂γ
ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

=: J1 − J2 − J3. (33)

The following lemmas just correspond to each term Jk (k = 1, 2, 3) respectively.
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An easy calculation leads to

	

by employing the sequence of symbols {ak} given. Notice that the above-defined symbol

a(x, ξ) is freely termwise differentiable, since the infinite sum in a(x, ξ) turns out to be a finite

sum on an arbitrary compact set in R2n. We have only to show that

a(x, ξ)−
j−1∑
k=0

ak(x, ξ) ∈ S
mj

ρδ (29)

for each j = 0, 1, 2, . . . for this newly defined symbol a(x, ξ). By the definition of symbol class,

it suffices to show the following lemma in order to verify (29).

Lemma 8. (Reduction) For any multi-indices α, β ∈ Zn
+, the following estimate

sup
x,ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

�����∂
β
x∂

α
ξ

(
a−

j−1∑
k=1

ak

)
(x, ξ)

����� < ∞ (30)

holds.

Proof. The assertion of Lemma 8 can be verified naturally by showing the suceeding series

of technical lemmas. First of all, recall that the sequence of numbers {mk}∞k=0 is monotone

decreasing and it goes to minus infinity, namely, mk > mk+1 > · · · ↘ −∞, by definition.

Taking this fact into account, we put

K(j;α) := min{k ∈ N0 : mk −mj + ρ|α| < 0 } ≥ j. (31)

An easy calculation leads to

a(x, ξ)−
j−1∑
k=0

ak(x, ξ) =
∞∑
k=j

(
1− φ

(
ξ

2k

))
ak(x, ξ)−

j−1∑
k=0

φ

(
ξ

2k

)
ak(x, ξ). (32)

Hence it is easy to see that for any α, β ∈ Zn
+,

∂β
x∂

α
ξ

(
a(x, ξ)−

j−1∑
k=0

ak(x, ξ)

)
=

∞∑
k=j

∂β
x∂

α
ξ

{
(1− φ

(
ξ

2k

)
)ak(x, ξ)

}

−
j−1∑
k=0

φ

(
ξ

2k

)
∂β
x∂

α
ξ ak(x, ξ)

−
∞∑
k=0

∑
γ∈Zn

+

α≥γ ̸=0

(
α
γ

)
∂γ
ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

=: J1 − J2 − J3. (33)

The following lemmas just correspond to each term Jk (k = 1, 2, 3) respectively.
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Hence it is easy to see that for any α, β ∈ Zn
+,

	

by employing the sequence of symbols {ak} given. Notice that the above-defined symbol

a(x, ξ) is freely termwise differentiable, since the infinite sum in a(x, ξ) turns out to be a finite

sum on an arbitrary compact set in R2n. We have only to show that

a(x, ξ)−
j−1∑
k=0

ak(x, ξ) ∈ S
mj

ρδ (29)

for each j = 0, 1, 2, . . . for this newly defined symbol a(x, ξ). By the definition of symbol class,

it suffices to show the following lemma in order to verify (29).

Lemma 8. (Reduction) For any multi-indices α, β ∈ Zn
+, the following estimate

sup
x,ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

�����∂
β
x∂

α
ξ

(
a−

j−1∑
k=1

ak

)
(x, ξ)

����� < ∞ (30)

holds.

Proof. The assertion of Lemma 8 can be verified naturally by showing the suceeding series

of technical lemmas. First of all, recall that the sequence of numbers {mk}∞k=0 is monotone

decreasing and it goes to minus infinity, namely, mk > mk+1 > · · · ↘ −∞, by definition.

Taking this fact into account, we put

K(j;α) := min{k ∈ N0 : mk −mj + ρ|α| < 0 } ≥ j. (31)

An easy calculation leads to

a(x, ξ)−
j−1∑
k=0

ak(x, ξ) =
∞∑
k=j

(
1− φ

(
ξ

2k

))
ak(x, ξ)−

j−1∑
k=0

φ

(
ξ

2k

)
ak(x, ξ). (32)

Hence it is easy to see that for any α, β ∈ Zn
+,

∂β
x∂

α
ξ

(
a(x, ξ)−

j−1∑
k=0

ak(x, ξ)

)
=

∞∑
k=j

∂β
x∂

α
ξ

{
(1− φ

(
ξ

2k

)
)ak(x, ξ)

}

−
j−1∑
k=0

φ

(
ξ

2k

)
∂β
x∂

α
ξ ak(x, ξ)

−
∞∑
k=0

∑
γ∈Zn

+

α≥γ ̸=0

(
α
γ

)
∂γ
ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

=: J1 − J2 − J3. (33)

The following lemmas just correspond to each term Jk (k = 1, 2, 3) respectively.
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The following lemmas just correspond to each term Jk (k = 1, 2, 3) respectively.
Lemms 9. (As for the term J1) We have the following estimate

	

Lemms 9. (As for the term J1) We have the following estimate

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

������
∞∑
k=j

∂α
x ∂

α
ξ (1− φ

(
ξ

2k

)
)ak(x, ξ)

������

� sup
ξ∈Rn

∞∑
k=j

2−mk+mj < ∞. (34)

Lemma 10. (As for the term J2) For any α, β ∈ Zn
+,

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

�����
j−1∑
k=0

φ

(
ξ

2k

)
∂α
x ∂

α
ξ ak(x, ξ)

����� < ∞ (35)

holds.

Lemma 11. (As for the term J3) For any α, β ∈ Zn
+, we have

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

��������

∞∑
k=0

∑
γ∈Zn

+

α≥γ ̸=0

(
α
γ

)
∂γ
ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

��������
< ∞. (36)

Thus, summing up the above three lemmas, we conclude the statement of Lemma 8. This

finishes the proof of Theorem 7. �

6. Proofs of key lemmas

Note that the quantity K(j;α) is directly related to a verification of Lemma 11 only.

Recall here that α � β means αj � βj for any j = 1, 2, . . . , n, and by definition we have

(
α
β

)
:=

n∏
j=1

αj
Cβj

=
n∏

j=1

αj !

βj !(αj − βj)!
. (37)

Proof of Lemma 9. A direct computation with estimation order in the symbol class enables

us to make an estimate of the J1-term, and the following inequalities are derived with ease:

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

������
∞∑
k=j

∂β
x∂

α
ξ {(1− φ

(
ξ

2k

)
)ak(x, ξ)}

������

� sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)
∞∑
k=j

����1B(2k)c(ξ)∂
α
x ∂

α
ξ {(1− φ

(
ξ

2k

)
)ak(x, ξ)}

���� (38)

8
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Lemma 10. (As for the term J2) For any α, β ∈ Zn
+,

	

Lemms 9. (As for the term J1) We have the following estimate

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

������
∞∑
k=j

∂α
x ∂

α
ξ (1− φ

(
ξ

2k

)
)ak(x, ξ)

������

� sup
ξ∈Rn

∞∑
k=j

2−mk+mj < ∞. (34)

Lemma 10. (As for the term J2) For any α, β ∈ Zn
+,

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

�����
j−1∑
k=0

φ

(
ξ

2k

)
∂α
x ∂

α
ξ ak(x, ξ)

����� < ∞ (35)

holds.

Lemma 11. (As for the term J3) For any α, β ∈ Zn
+, we have

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

��������

∞∑
k=0

∑
γ∈Zn

+

α≥γ ̸=0

(
α
γ

)
∂γ
ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

��������
< ∞. (36)

Thus, summing up the above three lemmas, we conclude the statement of Lemma 8. This

finishes the proof of Theorem 7. �

6. Proofs of key lemmas

Note that the quantity K(j;α) is directly related to a verification of Lemma 11 only.

Recall here that α � β means αj � βj for any j = 1, 2, . . . , n, and by definition we have

(
α
β

)
:=

n∏
j=1

αj
Cβj

=
n∏

j=1

αj !

βj !(αj − βj)!
. (37)

Proof of Lemma 9. A direct computation with estimation order in the symbol class enables

us to make an estimate of the J1-term, and the following inequalities are derived with ease:

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

������
∞∑
k=j

∂β
x∂

α
ξ {(1− φ

(
ξ

2k

)
)ak(x, ξ)}

������

� sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)
∞∑
k=j

����1B(2k)c(ξ)∂
α
x ∂

α
ξ {(1− φ

(
ξ

2k

)
)ak(x, ξ)}

���� (38)
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holds.
Lemma 11. (As for the term J3) For any α, β ∈ Zn

+, we have

	

Lemms 9. (As for the term J1) We have the following estimate

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

������
∞∑
k=j

∂α
x ∂

α
ξ (1− φ

(
ξ

2k

)
)ak(x, ξ)

������

� sup
ξ∈Rn

∞∑
k=j

2−mk+mj < ∞. (34)

Lemma 10. (As for the term J2) For any α, β ∈ Zn
+,

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

�����
j−1∑
k=0

φ

(
ξ

2k

)
∂α
x ∂

α
ξ ak(x, ξ)

����� < ∞ (35)

holds.

Lemma 11. (As for the term J3) For any α, β ∈ Zn
+, we have

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

��������

∞∑
k=0

∑
γ∈Zn

+

α≥γ ̸=0

(
α
γ

)
∂γ
ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

��������
< ∞. (36)

Thus, summing up the above three lemmas, we conclude the statement of Lemma 8. This

finishes the proof of Theorem 7. �

6. Proofs of key lemmas

Note that the quantity K(j;α) is directly related to a verification of Lemma 11 only.

Recall here that α � β means αj � βj for any j = 1, 2, . . . , n, and by definition we have

(
α
β

)
:=

n∏
j=1

αj
Cβj

=
n∏

j=1

αj !

βj !(αj − βj)!
. (37)

Proof of Lemma 9. A direct computation with estimation order in the symbol class enables

us to make an estimate of the J1-term, and the following inequalities are derived with ease:

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

������
∞∑
k=j

∂β
x∂

α
ξ {(1− φ

(
ξ

2k

)
)ak(x, ξ)}

������

� sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)
∞∑
k=j

����1B(2k)c(ξ)∂
α
x ∂

α
ξ {(1− φ

(
ξ

2k

)
)ak(x, ξ)}

���� (38)

8

� (36)

Thus, summing up the above three lemmas, we conclude the statement of Lemma 8. This 
finishes the proof of Theorem 7.� □

6.  Proofs of key lemmas
Note that the quantity K (j; α) is directly related to a verification of Lemma 11 only. Recall 
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here that α  β means αj
   βj  for any j = 1, 2, . . . , n, and by definition we have

	

Lemms 9. (As for the term J1) We have the following estimate

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

������
∞∑
k=j

∂α
x ∂

α
ξ (1− φ

(
ξ

2k

)
)ak(x, ξ)

������

� sup
ξ∈Rn

∞∑
k=j

2−mk+mj < ∞. (34)

Lemma 10. (As for the term J2) For any α, β ∈ Zn
+,

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

�����
j−1∑
k=0

φ

(
ξ

2k

)
∂α
x ∂

α
ξ ak(x, ξ)

����� < ∞ (35)

holds.

Lemma 11. (As for the term J3) For any α, β ∈ Zn
+, we have

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

��������

∞∑
k=0

∑
γ∈Zn

+

α≥γ ̸=0

(
α
γ

)
∂γ
ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

��������
< ∞. (36)

Thus, summing up the above three lemmas, we conclude the statement of Lemma 8. This

finishes the proof of Theorem 7. �

6. Proofs of key lemmas

Note that the quantity K(j;α) is directly related to a verification of Lemma 11 only.

Recall here that α � β means αj � βj for any j = 1, 2, . . . , n, and by definition we have

(
α
β

)
:=

n∏
j=1

αj
Cβj

=
n∏

j=1

αj !

βj !(αj − βj)!
. (37)

Proof of Lemma 9. A direct computation with estimation order in the symbol class enables

us to make an estimate of the J1-term, and the following inequalities are derived with ease:

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

������
∞∑
k=j

∂β
x∂

α
ξ {(1− φ

(
ξ

2k

)
)ak(x, ξ)}

������

� sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)
∞∑
k=j

����1B(2k)c(ξ)∂
α
x ∂

α
ξ {(1− φ

(
ξ

2k

)
)ak(x, ξ)}

���� (38)

8
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Proof of Lemma 9. A direct computation with estimation order in the symbol class enables us 
to make an estimate of the J1-term, and the following inequalities are derived with ease:

	

Lemms 9. (As for the term J1) We have the following estimate

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

������
∞∑
k=j

∂α
x ∂

α
ξ (1− φ

(
ξ

2k

)
)ak(x, ξ)

������

� sup
ξ∈Rn

∞∑
k=j

2−mk+mj < ∞. (34)

Lemma 10. (As for the term J2) For any α, β ∈ Zn
+,

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

�����
j−1∑
k=0

φ

(
ξ

2k

)
∂α
x ∂

α
ξ ak(x, ξ)

����� < ∞ (35)

holds.

Lemma 11. (As for the term J3) For any α, β ∈ Zn
+, we have

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

��������

∞∑
k=0

∑
γ∈Zn

+

α≥γ ̸=0

(
α
γ

)
∂γ
ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

��������
< ∞. (36)

Thus, summing up the above three lemmas, we conclude the statement of Lemma 8. This

finishes the proof of Theorem 7. �

6. Proofs of key lemmas

Note that the quantity K(j;α) is directly related to a verification of Lemma 11 only.

Recall here that α � β means αj � βj for any j = 1, 2, . . . , n, and by definition we have

(
α
β

)
:=

n∏
j=1

αj
Cβj

=
n∏

j=1

αj !

βj !(αj − βj)!
. (37)

Proof of Lemma 9. A direct computation with estimation order in the symbol class enables

us to make an estimate of the J1-term, and the following inequalities are derived with ease:

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

������
∞∑
k=j

∂β
x∂

α
ξ {(1− φ

(
ξ

2k

)
)ak(x, ξ)}

������

� sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)
∞∑
k=j

����1B(2k)c(ξ)∂
α
x ∂

α
ξ {(1− φ

(
ξ

2k

)
)ak(x, ξ)}

���� (38)

8

� (38)

	 � sup
ξ∈Rn

∞∑
k=j

⟨ξ⟩mk−mj1B(2k)c(ξ) � sup
ξ∈Rn

∞∑
k=j

2−mk+mj < ∞ (39)

holds, where we made use of the assumption supj∈N0
(mj+1−mj) < 0 in derivation of the last

inequality. This finishes the proof. �

Proof of Lemma 10. If we take the fact φ ∈ C∞
c into consideration, then it is obvious to

see the establishment of the following estimate, namely,

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

�����
j−1∑
k=0

φ

(
ξ

2k

)
∂β
x∂

α
ξ ak(x, ξ)

����� < ∞. (40)

This concludes the assertion of Lemma 10. �

Proof of Lemma 11. Finally we consider the third term J3. When we set α ≥ γ ̸= 0, then

we readily obtain

⟨ξ⟩−(mj+δ|β|−ρ|α|)
����∂γ

ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

����

� 2−|γ|⟨ξ⟩−(mj+δ|β|−ρ|α|) · ⟨ξ⟩mk+δ|β|−ρ|α−γ| · 1B(2)\B(1)

(
ξ

2k

)

� 2−|γ|⟨ξ⟩mk−mj+ρ|γ| · 1B(2)\B(1)

(
ξ

2k

)
, (41)

where we have used the fact ak(x, ξ) ∈ Smk

ρδ for k = 0, 1, 2, . . . . On the other hand, when

k > K(j;α), then noting that a simple inequality

⟨ξ⟩mk−mj+ρ|γ| � |ξ|mk−mj+ρ|γ| (42)

is valid, we can derive the following inequalities in a similar manner as above. Indeed, we can

get

����∂γ
ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

����

� ⟨ξ⟩mj+δ|β|−ρ|α|2−|γ|⟨ξ⟩mk−mj+ρ|γ|1B(2)\B(1)

(
ξ

2k

)

� ⟨ξ⟩mj+δ|β|−ρ|α|2−|γ|+mk−mj+ρ|γ| · 1B(2)\B(1)

(
ξ

2k

)

� 2mk−mj ⟨ξ⟩mj+δ|β|−ρ|α|1B(2)\B(1)

(
ξ

2k

)
. (43)
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holds, where we made use of the assumption supj∈N0 (mj+1 − mj ) < 0 in derivation of the last in-
equality. This finishes the proof.� □

Proof of Lemma10. If we take the fact  ∈ Cc
∞ into consideration, then it is obvious to see the 

establishment of the following estimate, namely,

	

� sup
ξ∈Rn

∞∑
k=j

⟨ξ⟩mk−mj1B(2k)c(ξ) � sup
ξ∈Rn

∞∑
k=j

2−mk+mj < ∞ (39)

holds, where we made use of the assumption supj∈N0
(mj+1−mj) < 0 in derivation of the last

inequality. This finishes the proof. �

Proof of Lemma 10. If we take the fact φ ∈ C∞
c into consideration, then it is obvious to

see the establishment of the following estimate, namely,

sup
x∈Rn

ξ∈Rn

⟨ξ⟩−(mj+δ|β|−ρ|α|)

�����
j−1∑
k=0

φ

(
ξ

2k

)
∂β
x∂

α
ξ ak(x, ξ)

����� < ∞. (40)

This concludes the assertion of Lemma 10. �

Proof of Lemma 11. Finally we consider the third term J3. When we set α ≥ γ ̸= 0, then

we readily obtain

⟨ξ⟩−(mj+δ|β|−ρ|α|)
����∂γ

ξ φ

(
ξ

2k

)
· ∂β

x∂
α−γ
ξ ak(x, ξ)

����

� 2−|γ|⟨ξ⟩−(mj+δ|β|−ρ|α|) · ⟨ξ⟩mk+δ|β|−ρ|α−γ| · 1B(2)\B(1)

(
ξ

2k

)

� 2−|γ|⟨ξ⟩mk−mj+ρ|γ| · 1B(2)\B(1)

(
ξ

2k

)
, (41)

where we have used the fact ak(x, ξ) ∈ Smk

ρδ for k = 0, 1, 2, . . . . On the other hand, when

k > K(j;α), then noting that a simple inequality

⟨ξ⟩mk−mj+ρ|γ| � |ξ|mk−mj+ρ|γ| (42)
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This finishes the proof of Lemma 11. �

7. Concluding remarks

When we think of extending those results obtained in this article, first of all we can list the

extension or generalization of the definition of pseudodifferential operators of Kohn-Nirenberg

type itself. In connection with this, we can list the generalization of the symbol class (5) or

(7) itself. Next we may consider the extension of the approximation results, say, Theorem 2

or Theorem 4. In addition to that, we can list a generalization of the convergence topology

in Theorem 2 or in Theorem 4. Moreover, related to the above-mentioned extension, the

generalization of not only adjoint operator but also asymptotic expansion formula is considered

and should be tried at a higher level. On the other hand, changing the basic distribution

space S ′ into another space F ′, it is stimulating and exciting to extend the pseudodifferential

operators on F ′, too.
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1. Dôku, I. : Exponential moments of solutions for nonlinear equations with catalytic noise

and large deviation. Acta Appl. Math. 63 (2000), 101–117.
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4. Dôku, I. : A limit theorem of superprocesses with non-vanishing deterministic immi-

gration. Sci. Math. Japn. 64 (2006), 563–579.

5. Dôku, I. : Limit theorems for rescaled immigration superprocesses. RIMS Kôkyûroku
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