A Remark on Approximate Formula and Asymptotic Expansion for Pseudodifferential Operators of Kohn－Nirenberg Type

DÔKU，Isamu
Faculty of Education，Saitama University

Abstract

Summary In this paper we consider a class of pseudodifferential operators of Kohn－Nirenberg type，and make a remark on approximate formula for those pseudodifferential operators．Moreover，we also consider asymptotic expansion for pseudodifferential operators of the same kind．The explicit rep－ resentation of the approximate formula can be given by the pseudodifferential operators with stan－ dard symbol replaced by an approximate sequence of symbols．While，the asymptotic expansion formula provides us with a tractable method of operations of seudodifferential operators，because the infinite series in the expansion may be convergent in the appropriate topology of symbol class．

Key Words：pseudodifferential operators of Kohn－Nirenberg type，symbol class，the Schwartz class，approximate formula，asymptotic expansion．

1．Introduction

In this paper we shall consider a class of pseudodifferential operators of Kohn－Nirenberg type，make a remark on a standard variant of approximate formula for pseudodifferential operators of the above－mentioned type，and also state a remark on a mathematical statement of asymptotic expansion formulation for pseudodifferential operators of the same kind．First of all，we shall treat an approximate formula for pseudodifferential operators of Kohn－Nirenberg type，where the ex－ plicit representation of the formula can be given by the pseudodifferential operators with symbol $a(x, \xi)$ replaced by an approximate sequence of symbols $a_{\varepsilon}(x, \xi)$ ．While，the symbol $a_{\varepsilon}(x, \xi)$ con－ verges pointwise to $a(x, \xi)$ with all kinds of derivatives，and the corresponding pseudodifferential operator $a_{\varepsilon}(X, D)$ may converge to $a(X, D)$ in the sense that $a_{\varepsilon}(X, D) f(x)$ converges to $a(X, D)$ $f(x)$ in the topology of the Schwartz class \mathcal{S} ．Secondly，we shall treat an asymptotic expansion for pseudodifferential operators of Kohn－Nirenberg type．On this account，this expansion theory pro－ vides us with a tractable method of operations of seudodifferential operators of Kohn－Nirenberg type，because the infinite series may be convergent in the sense of asymptotic expansion formula given．

2．Pseudodifferential operators of Kohn－Nirenberg type

In this section we shall see how the psedodifferential operators of Kohn－Nirenberg type are defined on the Schwartz class \mathcal{S} that is the best class in functional analysis．Let $a \equiv a(x, \xi): \mathbb{R}^{2 n}=$ $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n} \rightarrow \mathbb{C}$ be a proper function．Then the pseudodifferential operator（ $\Psi \mathrm{DO}$ ）$a(X, D)$ of Kohn－

Nirenberg type is defined by

$$
\begin{equation*}
a(X, D) f(x):=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} a(x, \xi)(\mathcal{F} f)(\xi) e^{i x \cdot \xi} d \xi, \quad f \in \mathcal{S}, \tag{1}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}, x \cdot \xi=x_{1} \xi_{1}+\cdots x_{n} \xi_{n}, \mathcal{S}=\mathcal{S}\left(\mathbb{R}^{n}\right)$ is the Schwartz class, and \mathcal{F} is the Fourier transform given by

$$
\begin{equation*}
(\mathcal{F} f)(\xi):=\int_{\mathbb{R}^{n}} f(x) e^{-i x \cdot \xi} d x, \quad f \in \mathcal{S}, \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
\int_{\mathbb{R}^{n}} g(x) d x & =\iint \cdots(n) \cdots \int_{\mathbb{R}^{n}} g\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n} \tag{3}\\
& =\int_{\mathbb{R}} \cdots(n) \cdots \int_{\mathbb{R}}\left(\int_{\mathbb{R}} g\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1}\right) d x_{2} \cdots d x_{n} . \tag{4}
\end{align*}
$$

We call $a=a(x, \xi)$ a symbol. Note that we write the pseudodifferential operator by $a(X, D)$ instead of $a(x, D)$ which is used in most cases of usual textbooks. Because we would like to avoid misunderstanding the function $a(x, D) f$ as the value of function $a(x, D) f(x)$ when using the notation $a(x, D)$.

Next we shall define the symbol class $S_{\rho \delta}^{m}$ for $0 \leqslant \rho \leqslant 1,0 \leqslant \delta \leqslant 1$ and $m \in \mathbb{R}$. Let α, β be multi-indices, like $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n}, \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}_{+}^{n}$. For $a \in C^{\infty}\left(\mathbb{R}^{2 n}\right)=$ $C^{\infty}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}\right)$, we define the norm $\|a\|_{s_{\rho \delta}^{m}(\alpha, \beta)}$ as

$$
\begin{equation*}
\|a\|_{s_{\rho \delta}^{m}(\alpha, \beta)}:=\sup _{x, \xi \in \mathbb{R}^{n}}\langle\xi\rangle^{-(m+\delta|\beta|-\rho|\alpha|)}\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} a(x, \xi)\right| \tag{5}
\end{equation*}
$$

with $|x|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}},\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}, \partial_{x}^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}}^{\alpha_{n}}, \partial_{x_{k}}^{\alpha_{k}}=\left(\frac{\partial}{\partial x_{k}}\right)^{\alpha_{k}}$ for $k=1$, $2, \ldots, n$, and

$$
\begin{equation*}
\partial_{x}^{\alpha} f(x)=\frac{\partial^{|\alpha|} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}} . \tag{6}
\end{equation*}
$$

Then a set $S_{\rho \delta}^{m}$ of $C^{\infty}\left(\mathbb{R}^{2 n}\right)$-class functions is defined by

$$
\begin{equation*}
S_{\rho \delta}^{m}:=\bigcap_{\alpha, \beta \in \mathbb{Z}_{+}^{n}}\left\{a \in C^{\infty}\left(\mathbb{R}^{2 n}\right) ;\|a\|_{S_{\rho \delta}^{m}(\alpha, \beta)}<\infty\right\} . \tag{7}
\end{equation*}
$$

We call $S_{\rho \delta}^{m}$ a symbol class and call its element or component $a \in S_{\rho \delta}^{m}$ a symbol simply. In addition, we use the notation S^{m} for S_{10}^{m}. Notice that $a(x, \xi)=\xi_{j} \in S^{1} \equiv S_{10}^{1}$ for $j=1,2, \ldots, n$.

In what follows we shall investigate some conditions in order that the expression given in (1) makes sense.

Theorem 1. Assume that $a \in S_{p \phi}^{m}$. Then it follows that $a(X, D) f \in \mathcal{S}$ for every $f \in \mathcal{S}$. Moreover, the correspondence

$$
\begin{equation*}
\mathcal{S} \ni f \mapsto a(X, D) f \in \mathcal{S} \tag{8}
\end{equation*}
$$

is a continuous mapping.
Proof. Since f belongs to the Schwartz class \mathcal{S}, the integral in (1) is absolutely convergent. On this account, it follows immediately that $a(X, D) f \in \mathcal{S}$. For $\xi \in \mathbb{R}^{n}$, we define a differential operator L_{ξ} as

$$
\begin{equation*}
L_{\xi}:=\langle x\rangle^{-2}\left(I-\Delta_{\xi}\right)=\frac{I-\Delta_{\xi}}{\langle x\rangle^{2}} \tag{9}
\end{equation*}
$$

with an identity I. This is nothing but a pseudodifferential operator generated by the symbol

$$
\begin{equation*}
a(x, \xi):=\frac{1+|\xi|^{2}}{1+|x|^{2}} . \tag{10}
\end{equation*}
$$

That is to say, it proves to be that

$$
\begin{equation*}
\frac{I-\Delta_{\xi}}{\langle x\rangle^{2}} f(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \frac{1+|\xi|^{2}}{1+|x|^{2}}(\mathcal{F} f)(\xi) e^{i x \cdot \xi} d \xi . \tag{11}
\end{equation*}
$$

Then, an easy calculation yields to a useful equation $L_{\xi}\left[e^{i x \cdot \xi}\right]=e^{i x \cdot \xi}$. When we denote by $\left(L_{\xi}\right)^{N}$ an n-times composite operation, we shall make an estimate of the term $\partial^{\alpha} a(X, D) f(x)$ below by employing the integration by parts. The following computation is essentially due to a typical elaborate technique in the theory of pseudodifferential operators. An application of the integration by parts formula leads to

$$
\begin{align*}
a(X, D) f(x) & =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} a(x, \xi)(\mathcal{F} f)(\xi) e^{i x \cdot \xi} d \xi \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} a(x, \xi)(\mathcal{F} f)(\xi)\left(L_{\xi}\right)^{N} e^{i x \cdot \xi} d \xi \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} L_{\xi}(a(x, \xi)(\mathcal{F} f)(\xi)) \cdot\left(L_{\xi}\right)^{N-1} e^{i x \cdot \xi} d \xi \\
& =\cdots \cdots(\text { by mathematical induction }) \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}\left(L_{\xi}\right)^{k}(a(x, \xi)(\mathcal{F} f)(\xi)) \cdot\left(L_{\xi}\right)^{N-k} e^{i x \cdot \xi} d \xi \tag{12}\\
& =\cdots \cdots(k=0,1,2, \ldots, N) \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}\left(L_{\xi}\right)^{N-1}(a(x, \xi)(\mathcal{F} f)(\xi)) \cdot L_{\xi} e^{i x \cdot \xi} d \xi \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}\left(L_{\xi}\right)^{N}(a(x, \xi)(\mathcal{F} f)(\xi)) e^{i x \cdot \xi} d \xi .
\end{align*}
$$

Notice that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} L_{\xi}^{N}(a(x, \xi)(\mathcal{F} f)(\xi))\right| \leqslant C_{M, N, \alpha}\langle\xi\rangle^{-M} \tag{13}
\end{equation*}
$$

holds by virtue of the Leibniz formula. Consequently, it follows that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} D^{\beta} a(X, D) f(x)\right|<\infty, \tag{14}
\end{equation*}
$$

where $D^{\beta}=D_{x_{1}}^{\beta_{1}} \cdots D_{x_{N}}^{\beta_{N}}$ and $D_{x_{k}}=-i \frac{\partial}{\partial x_{k}}$. In other words, this implies that $a(X, D) f \in \mathcal{S}$. The aforementioned computation yields lucidly to the continuity of the mapping $a(X, D)(\cdot)$. This finishes the proof.

Theorem 2. Let $0 \leqslant \rho \leqslant 1,0 \leqslant \delta \leqslant 1$ and $m \in \mathbb{R}$. We assume that a sequence $\left\{a_{\varepsilon}\right\}_{\varepsilon \in[0,1]}$ $\subset S_{\rho \delta}^{m}$ satisfies the inequality

$$
\begin{equation*}
\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} a_{\varepsilon}(x, \xi)\right| \leqslant C_{\alpha, \beta}\langle\xi\rangle^{m+\delta|\beta|-\rho|\alpha|} \tag{i}
\end{equation*}
$$

and also that
(ii) $\quad \lim _{\varepsilon \downarrow 0} \partial_{x}^{\beta} \partial_{\xi}^{\alpha} a_{\varepsilon}(x, \xi)=\partial_{x}^{\beta} \partial_{\xi}^{\alpha} a(x, \xi), \quad$ (pointwiae convergence) $\quad \forall x, \xi \in \mathbb{R}^{n}$.

Then, it follows that the equality

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} a_{\varepsilon}(X, D) f=a(X, D) f \tag{17}
\end{equation*}
$$

holds in the topology of the Schwartz class \mathcal{S}.
Proof. It goes almost similarly as in the proof of the previous theorem. As a matter of fact, if we resort to the same technique in the above computation in (12), and if we apply the Lebesgue convergence theorem, then the conclusion yields from the standard argument.

3. Approximate formula for pseudodifferential operators

In this section we shall introduce the first main result, namely, the approximate formula for pseudodifferential operators of Kohn-Nirenberg type. Before stating the principal statement, we will provide with a concrete useful example of the symbol $a_{\varepsilon}(x, \xi)$, which has been discussed in Theorem 2.

Example 3. Let ρ, δ and m be the same as in the previous discussion. Assume that $a \in S_{\rho, \delta,}^{m}$. We may choose a smooth function $\gamma \in C^{\infty} \equiv C^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying the condition: $1_{Q(1)} \leqslant \gamma \leqslant 1_{Q(2)}$. When we put

$$
\begin{equation*}
a_{\varepsilon}(x, \xi):=a(x, \xi) \gamma(\varepsilon x) \gamma(\varepsilon \xi), \quad \forall \varepsilon: 0 \leqslant \varepsilon \leqslant 1 \tag{18}
\end{equation*}
$$

then this sequence $\left\{a_{\varepsilon}\right\}, \varepsilon \in[0,1]$, satisfies the conditions (i) and (ii) in Theorem 2 uniformly with respect to the parameter $\varepsilon>0$.

Theorem 4. (Approximate Formula for Ψ DOs) Assume that $a \in S_{\rho, \delta}^{m}$. For such a symbol $a=$ $a(x, \xi)$, we are supposed to take a sequence $a_{\varepsilon}(x, \xi)$ as in the above example with $0 \leqslant \varepsilon \leqslant 1$. Then for $f \in \mathcal{S}$, the approximate formula a (X, D) for Ψ DO

$$
\begin{equation*}
a(X, D) f(x)=\frac{1}{(2 \pi)^{n}} \lim _{\varepsilon \downarrow 0} \iint_{\mathbb{R}^{2 n}} a_{\varepsilon}(x, \xi) f(y) e^{i(x-y)} d \xi d y \tag{19}
\end{equation*}
$$

holds in the topology of the Schwartz class \mathcal{S}.

Proof. We are going to approximate the pseudodifferential operator $a(X, D)$ by making use of Theorem 2. In fact, by virtue of Theorem 2, it follows immediately that

$$
\begin{equation*}
a(X, D) f(x)=\lim _{\varepsilon \downarrow 0} a_{\varepsilon}(X, D) f(x), \quad \forall f \in \mathcal{S} \tag{20}
\end{equation*}
$$

Since the symbol $a_{\varepsilon} \equiv a_{\varepsilon}(x, \xi)$ has a compact support, a simple computation with Fubini theorem reads

$$
\begin{align*}
a(X, D) f(x) & =\frac{1}{(2 \pi)^{n / 2}} \lim _{\varepsilon \downarrow 0} \int_{\mathbb{R}^{n}} a_{\varepsilon}(x, \xi)(\mathcal{F} f)(\xi) e^{i x \cdot \xi} d \xi \\
& =\frac{1}{(2 \pi)^{n}} \lim _{\varepsilon \downarrow 0} \iint_{\mathbb{R}^{2 n}} a_{\varepsilon}(x, \xi) f(y) e^{i(x-y) \cdot \xi} d \xi d y . \tag{21}
\end{align*}
$$

This implies the conclusion (19).

4. Pseudodifferential operators on the tempered distributions

In this section we shall extend the definition of the pseudodifferential operators of Kohn-Nirenberg type, and would like to define them on the space $\mathcal{S}^{\prime}=\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ of tempered distributions. In order to define $a(X, D) f$ for $f \in \mathcal{S}^{\prime}$, we need to consider the adjoint $a(X, D)^{*}$ of $a(X, D)$. By employing the same approximate symbol $a_{\varepsilon} \equiv a_{\varepsilon}(x, \xi)$, the adjoint operator $a(X, D)^{*}$ can be defined by

$$
\begin{equation*}
a(X, D)^{*} g(y):=\lim _{\varepsilon \downarrow 0} \frac{1}{(2 \pi)^{n}} \iint_{\mathbb{R}^{2 n}} a_{\varepsilon}(x, \xi) e^{i \xi \cdot(y-x)} g(y) d x d \xi, \quad \forall g \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{22}
\end{equation*}
$$

Indeed, it is interesting to note that almost the same properties as to the operator $a(X, D)$ are valid even for $a(X, D)^{*}$. The following result indicated that the adjoint $a(X, D)^{*}$ is equivalent to the transposed linear trnasformation $a(X, D)$, that is,

Theorem 5. (Duality Formula) For every $f, g \in \mathcal{S}$, we admit the following dual relation

$$
\begin{equation*}
\langle a(X, D) f, g\rangle=\left\langle f, a(X, D)^{*} g\right\rangle . \tag{23}
\end{equation*}
$$

Proof. We may rewrite the term $\langle a(X, D) f, g\rangle$ into another form by making use of the limit procedure, that is to say,

$$
\begin{align*}
& \langle a(X, D) f, g\rangle=\int_{\mathbb{R}^{n}} a(X, D) f(x) \cdot g(x) d x \\
& =\frac{1}{(2 \pi)^{n}} \lim _{\varepsilon \downarrow 0} \int_{\mathbb{R}^{n}}\left(\iint_{\mathbb{R}^{2 n}} a_{\varepsilon}(x, \xi) g(x) f(y) e^{i(x-y) \cdot \xi} d \xi d y\right) d x \\
& =\frac{1}{(2 \pi)^{n}} \lim _{\varepsilon \downarrow 0} \int_{\mathbb{R}^{n}}\left(\iint_{\mathbb{R}^{2 n}} a_{\varepsilon}(y, \xi) g(y) f(x) e^{i(y-x) \cdot \xi} d \xi d x\right) d y \tag{24}\\
& =\int_{\mathbb{R}^{n}} f(x) \cdot a(X, D)^{*} g(x) d x=\left\langle f, a(X, D)^{*} g\right\rangle,
\end{align*}
$$

where we have used the Fubini theorem in the third equality because the integral has been truncated by the approximation.

Defintition 6. $\left(a(X, D) f\right.$ for $\left.f \in \mathcal{S}^{\prime}\right)$ Let $0 \leqslant \rho \leqslant 1,0 \leqslant \delta \leqslant 1$ and $m \in \mathbb{R}$. Suppose that $a \in$
$S_{\rho \delta \text {. }}^{m}$. We define $a(X, D) f \in \mathcal{S}^{\prime}\left(\right.$ for all $\left.f \in \mathcal{S}^{\prime}\right)$ as

$$
\begin{equation*}
\langle a(X, D) f, g\rangle=\left\langle f, a(X, D)^{*} g\right\rangle, \quad \forall g \in \mathcal{S} \tag{25}
\end{equation*}
$$

by making use of $a(X, D)^{*}$. Then the mapping $a(X, D): \mathcal{S}^{\prime} \rightarrow \mathcal{S}^{\prime}$ proves to be continuous by virtue of the duality property.

5. Asymptotic expansion for pseudodifferential operators

This section treats the second principal result, Theorem 7, which is about the asymptotic expansion for pseudodifferential operators of Kohn-Nirenberg type.

Theorem 7. (Asymptotic Expansion for $\Psi D O)$ Let $0 \leqslant \rho \leqslant 1$ and $0 \leqslant \delta \leqslant 1$. Suppose that the sequence of numbers $\left\{m_{j}\right\}_{j=0}^{\infty}$ satisfies the condition

$$
\begin{equation*}
\sup _{j \in \mathbb{N}_{0}}\left(m_{j+1}-m_{j}\right)<0 . \tag{26}
\end{equation*}
$$

If the symbols $a_{j} \in S_{\rho \delta}^{m j}$ for each $j=0,1,2, \ldots$ are given, then there exists a certain proper symbol $\exists a \in S_{\rho \delta}^{m 0}$ such that

$$
\begin{equation*}
a(x, \xi)-\sum_{k=0}^{j-1} a_{k}(x, \xi) \in S_{\rho \delta}^{m_{j}} \tag{27}
\end{equation*}
$$

holds for every natural number j.
Proof. Take a proper smooth function $\varphi \in C^{\infty}=C^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying $1_{B(1)} \leqslant \varphi \leqslant 1_{B(2)}$. Then, define the symbol $a=a(x, \xi)$ as

$$
\begin{equation*}
a(x, \xi):=\sum_{k=0}^{\infty}\left(1-\varphi\left(\frac{\xi}{2^{k}}\right)\right) a_{k}(x, \xi) \tag{28}
\end{equation*}
$$

by employing the sequence of symbols $\left\{a_{k}\right\}$ given. Notice that the above-defined symbol $a(x, \xi)$ is freely termwise differentiable, since the infinite sum in $a(x, \xi)$ turns out to be a finite sum on an arbitrary compact set in $\mathbb{R}^{2 n}$. We have only to show that

$$
\begin{equation*}
a(x, \xi)-\sum_{k=0}^{j-1} a_{k}(x, \xi) \in S_{\rho \delta}^{m_{j}} \tag{29}
\end{equation*}
$$

for each $j=0,1,2, \ldots$ for this newly defined symbol $a(x, \xi)$. By the definition of symbol class, it suffices to show the following lemma in order to verify (29).

Lemma 8. (Reduction) For any multi-indices $\alpha, \beta \in \mathbb{Z}_{+}^{n}$, the following estimate

$$
\begin{equation*}
\sup _{x, \xi \in \mathbb{R}^{n}}\langle\xi\rangle^{-\left(m_{j}+\delta|\beta|-\rho|\alpha|\right)}\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha}\left(a-\sum_{k=1}^{j-1} a_{k}\right)(x, \xi)\right|<\infty \tag{30}
\end{equation*}
$$

holds.
Proof. The assertion of Lemma 8 can be verified naturally by showing the suceeding series of technical lemmas. Firs to fall, recall that the sequence of numbers $\left\{m_{k}\right\}_{k=0}^{\infty}$ is monotone decreasing and it goes to minus infinity, namely, $m_{k}>m_{k+1}>\cdots \searrow-\infty$, by definition. Taking this fact into
account, we put

$$
\begin{equation*}
K(j ; \alpha):=\min \left\{k \in \mathbb{N}_{0}: m_{k}-m_{j}+\rho|\alpha|<0\right\} \geq j . \tag{31}
\end{equation*}
$$

An easy calculation leads to

$$
\begin{equation*}
a(x, \xi)-\sum_{k=0}^{j-1} a_{k}(x, \xi)=\sum_{k=j}^{\infty}\left(1-\varphi\left(\frac{\xi}{2^{k}}\right)\right) a_{k}(x, \xi)-\sum_{k=0}^{j-1} \varphi\left(\frac{\xi}{2^{k}}\right) a_{k}(x, \xi) . \tag{32}
\end{equation*}
$$

Hence it is easy to see that for any $\alpha, \beta \in \mathbb{Z}_{+}^{n}$,

$$
\begin{align*}
\partial_{x}^{\beta} \partial_{\xi}^{\alpha}\left(a(x, \xi)-\sum_{k=0}^{j-1} a_{k}(x, \xi)\right)= & \sum_{k=j}^{\infty} \partial_{x}^{\beta} \partial_{\xi}^{\alpha}\left\{\left(1-\varphi\left(\frac{\xi}{2^{k}}\right)\right) a_{k}(x, \xi)\right\} \\
& -\sum_{k=0}^{j-1} \varphi\left(\frac{\xi}{2^{k}}\right) \partial_{x}^{\beta} \partial_{\xi}^{\alpha} a_{k}(x, \xi) \tag{3}\\
& -\sum_{k=0}^{\infty} \sum_{\substack{\gamma \in \mathbb{Z}_{\neq}^{n} \\
\alpha \geq \gamma \neq 0}}\binom{\alpha}{\gamma} \partial_{\xi}^{\gamma} \varphi\left(\frac{\xi}{2^{k}}\right) \cdot \partial_{x}^{\beta} \partial_{\xi}^{\alpha-\gamma} a_{k}(x, \xi) \\
= & J_{1}-J_{2}-J_{3} .
\end{align*}
$$

The following lemmas just correspond to each term $J_{k}(k=1,2,3)$ respectively.
Lemms 9. (As for the term J_{1}) We have the following estimate

$$
\begin{align*}
& \sup _{\substack{x \in \mathbb{R}^{n} \\
\xi \in \mathbb{R}^{n}}}\langle\xi\rangle^{-\left(m_{j}+\delta|\beta|-\rho|\alpha|\right)}\left|\sum_{k=j}^{\infty} \partial_{x}^{\alpha} \partial_{\xi}^{\alpha}\left(1-\varphi\left(\frac{\xi}{2^{k}}\right)\right) a_{k}(x, \xi)\right| \tag{34}\\
& \leqslant \sup _{\xi \in \mathbb{R}^{n}} \sum_{k=j}^{\infty} 2^{-m_{k}+m_{j}}<\infty .
\end{align*}
$$

Lemma 10. (As for the term J_{2}) For any $\alpha, \beta \in \mathbb{Z}_{+}^{n}$,

$$
\begin{equation*}
\sup _{\substack{x \in \mathbb{R}^{n} \\ \xi \in \mathbb{R}^{n}}}\langle\xi\rangle^{-\left(m_{j}+\delta|\beta|-\rho|\alpha|\right)}\left|\sum_{k=0}^{j-1} \varphi\left(\frac{\xi}{2^{k}}\right) \partial_{x}^{\alpha} \partial_{\xi}^{\alpha} a_{k}(x, \xi)\right|<\infty \tag{35}
\end{equation*}
$$

holds.
Lemma 11. (As for the term J_{3}) For any $\alpha, \beta \in \mathrm{Z}^{n}$, we have

$$
\begin{equation*}
\sup _{\substack{x \in \mathbb{N}^{n} \\ \xi \in \mathbb{R}^{n}}}\langle\xi\rangle^{-\left(m_{j}+\delta|\beta|-\rho|\alpha|\right)}\left|\sum_{k=0}^{\infty} \sum_{\substack{\gamma \in \mathbb{Z}_{ \pm}^{n} \\ \alpha \geq \gamma \neq 0}}\binom{\alpha}{\gamma} \partial_{\xi}^{\gamma} \varphi\left(\frac{\xi}{2^{k}}\right) \cdot \partial_{x}^{\beta} \partial_{\xi}^{\alpha-\gamma} a_{k}(x, \xi)\right|<\infty . \tag{36}
\end{equation*}
$$

Thus, summing up the above three lemmas, we conclude the statement of Lemma 8. This finishes the proof of Theorem 7.

6. Proofs of key lemmas

Note that the quantity $K(j ; \alpha)$ is directly related to a verification of Lemma 11 only. Recall
here that $\alpha \leqslant \beta$ means $\alpha_{j} \leqslant \beta_{j}$ for any $j=1,2, \ldots, n$, and by definition we have

$$
\begin{equation*}
\binom{\alpha}{\beta}:=\prod_{j=1}^{n} \alpha_{j} C_{\beta_{j}}=\prod_{j=1}^{n} \frac{\alpha_{j}!}{\beta_{j}!\left(\alpha_{j}-\beta_{j}\right)!} . \tag{37}
\end{equation*}
$$

Proof of Lemma 9. A direct computation with estimation order in the symbol class enables us to make an estimate of the J_{1}-term, and the following inequalities are derived with ease:

$$
\begin{align*}
& \sup _{\substack{x \in \mathbb{R}^{n} \\
\xi \in \mathbb{R}^{n}}}\langle\xi\rangle^{-\left(m_{j}+\delta|\beta|-\rho|\alpha|\right)}\left|\sum_{k=j}^{\infty} \partial_{x}^{\beta} \partial_{\xi}^{\alpha}\left\{\left(1-\varphi\left(\frac{\xi}{2^{k}}\right)\right) a_{k}(x, \xi)\right\}\right| \\
& \leqslant \sup _{\substack{x \in \mathbb{R}^{n} \\
\xi \in \mathbb{R}^{n}}}\langle\xi\rangle^{-\left(m_{j}+\delta|\beta|-\rho|\alpha|\right)} \sum_{k=j}^{\infty}\left|1_{B\left(2^{k}\right)^{c}}(\xi) \partial_{x}^{\alpha} \partial_{\xi}^{\alpha}\left\{\left(1-\varphi\left(\frac{\xi}{2^{k}}\right)\right) a_{k}(x, \xi)\right\}\right| \tag{38}\\
& \quad \leqslant \sup _{\xi \in \mathbb{R}^{n}} \sum_{k=j}^{\infty}\langle\xi\rangle^{m_{k}-m_{j}} 1_{B\left(2^{k}\right)^{c}}(\xi) \leqslant \sup _{\xi \in \mathbb{R}^{n}} \sum_{k=j}^{\infty} 2^{-m_{k}+m_{j}}<\infty \tag{39}
\end{align*}
$$

holds, where we made use of the assumption $\sup _{j \in \mathbb{N} 0}\left(m_{j+1}-m_{j}\right)<0$ in derivation of the last inequality. This finishes the proof.

Proof of Lemma10. If we take the fact $\varphi \in C_{c}^{\infty}$ into consideration, then it is obvious to see the establishment of the following estimate, namely,

$$
\begin{equation*}
\sup _{\substack{x \in \mathbb{R}^{n} \\ \xi \in \mathbb{R}^{n}}}\langle\xi\rangle^{-\left(m_{j}+\delta|\beta|-\rho|\alpha|\right)}\left|\sum_{k=0}^{j-1} \varphi\left(\frac{\xi}{2^{k}}\right) \partial_{x}^{\beta} \partial_{\xi}^{\alpha} a_{k}(x, \xi)\right|<\infty \tag{40}
\end{equation*}
$$

This concludes the assertion of Lemma 10.
Proof of Lemma 11. Finally we consider the third term J_{3}. When we set $\alpha \geq \gamma \neq 0$, then we readily obtain

$$
\begin{align*}
& \langle\xi\rangle^{-\left(m_{j}+\delta|\beta|-\rho|\alpha|\right)}\left|\partial_{\xi}^{\gamma} \varphi\left(\frac{\xi}{2^{k}}\right) \cdot \partial_{x}^{\beta} \partial_{\xi}^{\alpha-\gamma} a_{k}(x, \xi)\right| \\
& \leqslant 2^{-|\gamma|}\langle\xi\rangle^{-\left(m_{j}+\delta|\beta|-\rho|\alpha|\right)} \cdot\langle\xi\rangle^{m_{k}+\delta|\beta|-\rho|\alpha-\gamma|} \cdot 1_{B(2) \backslash B(1)}\left(\frac{\xi}{2^{k}}\right) \tag{41}\\
& \leqslant 2^{-|\gamma|}\langle\xi\rangle^{m_{k}-m_{j}+\rho|\gamma|} \cdot 1_{B(2) \backslash B(1)}\left(\frac{\xi}{2^{k}}\right),
\end{align*}
$$

where we have used the fact $a_{k}(x, \xi) \in S_{\rho \delta}^{m k}$ for $k=0,1,2, \ldots$ On the other hand, when $k>$ $K(j ; \alpha)$, then noting that a simple inequality

$$
\begin{equation*}
\langle\xi\rangle^{m_{k}-m_{j}+\rho|\gamma|} \leqslant|\xi|^{m_{k}-m_{j}+\rho|\gamma|} \tag{42}
\end{equation*}
$$

is valid, we can derive the following inequalities in a similar manner as above. Indeed, we can get

$$
\begin{align*}
& \left|\partial_{\xi}^{\gamma} \varphi\left(\frac{\xi}{2^{k}}\right) \cdot \partial_{x}^{\beta} \partial_{\xi}^{\alpha-\gamma} a_{k}(x, \xi)\right| \\
& \leqslant\langle\xi\rangle^{m_{j}+\delta|\beta|-\rho|\alpha|} 2^{-|\gamma|}\langle\xi\rangle^{m_{k}-m_{j}+\rho|\gamma|} 1_{B(2) \backslash B(1)}\left(\frac{\xi}{2^{k}}\right) \\
& \leqslant\langle\xi\rangle^{m_{j}+\delta|\beta|-\rho|\alpha|} 2^{-|\gamma|+m_{k}-m_{j}+\rho|\gamma|} \cdot 1_{B(2) \backslash B(1)}\left(\frac{\xi}{2^{k}}\right) \tag{43}\\
& \leqslant 2^{m_{k}-m_{j}}\langle\xi\rangle^{m_{j}+\delta|\beta|-\rho|\alpha|} 1_{B(2) \backslash B(1)}\left(\frac{\xi}{2^{k}}\right) .
\end{align*}
$$

Therefore, we deduce that

$$
\begin{align*}
& \sup _{\substack{x \in \mathbb{R}^{n} \\
\xi \in \mathbb{R}^{n}}}\langle\xi\rangle^{-\left(m_{j}+\delta|\beta|-\rho|\alpha|\right)}\left|\sum_{k=0}^{\infty} \sum_{\substack{\gamma \in \mathbb{Z}_{+}^{n} \\
\alpha \geq \gamma \neq 0}}\binom{\alpha}{\gamma} \partial_{\xi}^{\gamma} \varphi\left(\frac{\xi}{2^{k}}\right) \cdot \partial_{x}^{\beta} \partial_{\xi}^{\alpha-\gamma} a_{k}(x, \xi)\right| \tag{44}\\
& \leqslant \sum_{k=1}^{K(j ; \alpha)} \sup _{\xi \in \mathbb{R}^{n}}\left|2^{-|\gamma|}\langle\xi\rangle^{m_{k}-m_{j}+\rho|\gamma|} 1_{B(2) \backslash B(1)}\left(\frac{\xi}{2^{k}}\right)\right|+\sum_{k=1}^{\infty} 2^{m_{k}-m_{j}}<\infty .
\end{align*}
$$

This finishes the proof of Lemma 11.

7. Concludingremarks

When we think of extending those results obtained in this article, first of all we can list the extension or generalization of the definition of pseudodifferential operators of Kohn-Nirenberg type itself. In connection with this, we can list the generalization of the symbol class (5) or (7) itself. Next we may consider the extension of the approximation results, say, Theorem 2 or Theorem 4. In addition to that, we can list a generalization of the convergence topology in Theorem 2 or in Theorem 4. Moreover, related to the above-mentioned extension, the generalization of not only adjoint operator but also asymptotic expansion formula is considered and should be tried at a higher level. On the other hand, changing the basic distribution space \mathcal{S}^{\prime} into another space \mathcal{F}^{\prime}, it is stimulating and exciting to extend the pseudodifferential operators on \mathcal{F}^{\prime}, too.

Acknowledgements

This work is supported in part by Japan MEXT Grant-in-Aids SR (C) 24540114 and also by ISM Coop. Res. Program: 2016-ISM-CRP-5011.

References

1. Dôku, I. : Exponential moments of solutions for nonlinear equations with catalytic noise and large deviation. Acta Appl. Math. 63 (2000), 101-117.
2. Dôku, I. : Weighted additive functionals and a class of measure-valued Markov processes with singular branching rate. Far East J. Theo. Stat. 9 (2003), 1-80.
3. Dôku, I. : A certain class of immigration superprocesses and its limit the orem. Adv. Appl. Stat. 6 (2006), 145-205.
4. Dôku, I. : A limit theorem of superprocesses with non-vanishing deterministici mmigration. Sci. Math. Japn. 64 (2006), 563-579.
5. Dôku, I. : Limit theorems for rescaled immigration superprocesses. RIMS Kôkyûroku Bessatsu, B6 (2008), 56-69.
6. Dôku, I. : A limit theorem of homogeneous superprocesses with spatially dependent parameters. Far East J. Math. Sci. 38 (2010), 1-38.
7. Dôku, I. : Limit Theorems for Superprocesses: Rescaled Processes, Immigration Superprocesses and Homogeneous Superprocesses. Lap Schalt. Lange, Berlin, 2014.
8. Dôku, I. : Star-product functional and unbiased estimator of solutions to nonlinear integral equations. Far EastJ. Math. Sci. 89 (2014), 69-128.
9. Dôku, I. : An example for convergence of environment-dependent spatial models. J. Saitama Univ. Fac. Educ. (Math. Nat. Sci.) 65 (2016), no.1, 179-186.
10. Dôku, I. : On a limit theorem for environment-dependent models. ISM Res. Rept. 352 (2016), 103111.
11. Dôku, I. : Applications of environment-dependent models to tumor immunity. RIMS KôKyûroku (Kyoto Univ.), 1994 (2016), 68-74.
12. Dôku, I. : Tumour immunoreaction and environment-dependent models. Trans. Japn. Soc. Indu. Appl. Math. 26 (2016), no.2, 213-252.
13. Dôku, I. : A recursive inequality of empirical measures associated with EDM. J. Saitama Univ. Fac. Educ. (Math. Nat. Sci.) 65 (2016), no.2, 253-259.
14. Dôku, I. : An estimate of survival probability for superprocesses. J. Saitama Univ. Fac. Educ. (Math. Nat. Sci.) 66 (2017), no.1, 259-263.
15. Dôku, I. : On compactness for superprocesses. To appear in ISM Res. Rept. (2017), 8p.
16. Dôku, I. : A support problem for superprocesses in terms of random measure. To appear in RIMS Kôkyûroku (Kyoto Univ.) (2017), 8p.
17. Dôku, I. : Existence of a class of superprocesses by locally finite random measure and pseudodifferential operator. Preprint
18. Dôku, I. : A compact support of superprocesses in terms of locally finite random measure. Preprint
19. Hörmander, L. : The Analysis of Linear Partial Differential Operators III. Pseudodifferential Operators. Reprint Edition, Springer-Verlag, Berlin, 1994.
20. Shubin, M.A. : Pseudodifferential Operators andSpectralTheory. Springer-Verlag, Berlin, 1987.
21. Taylor, M.E. : Pseudodifferential Operators. Princeton Univ. Press, Princeton, N.J., 1981.
22. Trèves, F. : Introduction to Pseudodifferential and Fourier Integral Operators. Volume 1: Pseudodifferential Operators. Plenum Press, New York, 1980.

IsamuDôku
Department of Mathematics
Faculty of Education, Saitama University Saitama, 338-8570 Japan
e-mail : idoku@mail.saitama-u.ac.jp

