
‒ 595 ‒
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Comprehensive Evaluation of Achievement Test: From The 

Standpoint of Principal Components Analysis
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Summary
In this article we introduce a statistical method based upon Multivariate Analysis in order to 

evaluate the achievement test in a comprehensive manner. Here the so-called principal components 
analysis does play an important role. Some examples are given as well to illustrate great usefulness 
of the method.
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1.  Introduction
In this article we shall introduce a statistical method based upon Multivariate Analysis in or-

der to evaluate the achievement test in a comprehensive manner, where the so-called principal 
components analysis does play an important role. Lastly, we will provide with some examples, 
which illustrate great usefulness of the method. Generally, data obtained from the investigation via 
questionnaire consist in plenty of variates, terms or characteristics, where lots of primary factors 
are recorded usually (Table 1). If that is the case, although it is important to analyze each primary 
factor one by one, it is much more important to search for comparatively more influential primary 
factors and their better combination, grasping mutual relations. The multivariate analysis is one of 
the strongest methods to summarize the characteristic features of the given data by taking the 
strength of correlation between several variates into consideration. It is the principal components 
analysis method that we make use of in this article.

2.  Fundamental statistics and vector representation
Better understanding of mathematical scheme in the theory of multivariate analysis would be 

achieved by considering those given observables as components of the vector. The mean (or aver-
age), variance, standard deviation, correlation coefficient, and variance of the composite of vari-
ables are fundamental concepts, which are required to analyze the object in the theory of multivar-
iate analysis. Let us now consider representing those fundamental quantities or statistics in terms 
of vectors and matrices.
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表 1  multivariate data

Objects
No. X1 · · ·

Variates
Xi · · · Xp

1
·

x11

· · · · x1i

· · · · x1p

·

· · · ·

·
j
·

·
xj1

·
· · ·

·
xji

·
· · ·

·
xjp

·

· · · ·
·
n

·
xn1

· · · ·
xni

· · · ·
xnp

mean
S.D.

x̄1

sX1

· · ·
· · ·

x̄i

sXi

· · ·
· · ·

x̄p

sXp

When x1i, . . . , xni  (i = 1, 2, . . . , p) denote p-pieces of inspected values that were obtained 
from the experiment executed to n testees, then p pieces of n-dimensional vector whose compo-
nents are given by its multiplication by 1/

√
n̄ , can be expressed as
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n, can be expressed as
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1√
n
(x1i, . . . , xni), for i = 1, 2, . . . , p. (1)

For the unit vector e in the n-dimensional space, namely, e = (1, 1, . . . , 1)/
√
n, when we make

an inner product for that with x̄i, it will be given by

⟨xi, e⟩ =
1

n

n∑
j=1

xji = x̄i, (2)

and this is nothing but the mean (or average) of the variate Xi. If we set

x̄i =
1√
n
(x̄1i, . . . , x̄ni), for i = 1, 2, . . . , p, (3)

it follows therefore that
x̄i = x̄ie = ⟨xi, e⟩e = Pxi, (4)

where P is the projection from an n-dimensional space to {Ce}. Hence, x̄i is nothing but the

orthogonal projection of xi onto e. Moreover, we put for convenience

x̃i = xi − x̄i =
1√
n
(x1i − x̄i, . . . , xni − x̄i)

= (I − P )xi. (5)

2
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Next we shall make a square of the norm for the vector x̃i, then it follows that
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Next we shall make a square of the norm for the vector x̃i, then it follows that

∥x̃i∥2 = ⟨x̃i, x̃i⟩ =
1

n

n∑
j=1

(xji − x̄i)
2 = s2Xi

. (6)

This quantity is the variance of the variate Xi. Since we have

⟨x̄i, x̃i⟩ = ⟨Pxi, (I − P )xi⟩ = 0, (7)

we can easily get
∥xi∥2 = ∥x̃i∥2 + ∥x̄i∥2 = s2Xi

+ x̄2
i . (8)

図 1 Projection figure

3. Correlation coefficient and covariance

In this section we shall introduce the concepts of covariance and correlation coefficient,

and shall define the correlation matrix by employing those notions. The correlation coefficient

r ≡ rXiXj is defined as the covariance sXiXj ≡ s(Xi, Xj) divided by a product sXisXj of

S.D.’s (i.e., standard deviations) of each variate. For convenience, it would be much better to

standardize it in advance as the quantity obtained from variates with variance 1. So that, let

us now put

zi =
xi

sXi

=
xi

∥x̃i∥
. (9)

Then we may consider the inner product for those vectors x̃i and x̃j to get

⟨x̃i, x̃j⟩ =
1

n

n∑
k=1

(xki − x̄i) · (xkj − x̄j) = sXiXj
, (10)

which is the covariance of variates Xi and Xj . Therefore, its correlation coefficient is given by

rXiXj =
sXiXj

sXisXj

=
⟨x̃i, x̃j⟩

∥x̃i∥ · ∥x̃j∥
= ⟨z̃i, z̃j⟩. (11)

3

� (6)

This quantity is the variance of the variate Xi. Since we have

	

Next we shall make a square of the norm for the vector x̃i, then it follows that

∥x̃i∥2 = ⟨x̃i, x̃i⟩ =
1

n

n∑
j=1

(xji − x̄i)
2 = s2Xi

. (6)

This quantity is the variance of the variate Xi. Since we have

⟨x̄i, x̃i⟩ = ⟨Pxi, (I − P )xi⟩ = 0, (7)

we can easily get
∥xi∥2 = ∥x̃i∥2 + ∥x̄i∥2 = s2Xi

+ x̄2
i . (8)

図 1 Projection figure

3. Correlation coefficient and covariance

In this section we shall introduce the concepts of covariance and correlation coefficient,

and shall define the correlation matrix by employing those notions. The correlation coefficient

r ≡ rXiXj is defined as the covariance sXiXj ≡ s(Xi, Xj) divided by a product sXisXj of

S.D.’s (i.e., standard deviations) of each variate. For convenience, it would be much better to

standardize it in advance as the quantity obtained from variates with variance 1. So that, let

us now put

zi =
xi

sXi

=
xi

∥x̃i∥
. (9)

Then we may consider the inner product for those vectors x̃i and x̃j to get

⟨x̃i, x̃j⟩ =
1

n

n∑
k=1

(xki − x̄i) · (xkj − x̄j) = sXiXj
, (10)

which is the covariance of variates Xi and Xj . Therefore, its correlation coefficient is given by

rXiXj =
sXiXj

sXisXj

=
⟨x̃i, x̃j⟩

∥x̃i∥ · ∥x̃j∥
= ⟨z̃i, z̃j⟩. (11)

3

� (7)

we can easily get

	

Next we shall make a square of the norm for the vector x̃i, then it follows that

∥x̃i∥2 = ⟨x̃i, x̃i⟩ =
1

n

n∑
j=1

(xji − x̄i)
2 = s2Xi

. (6)

This quantity is the variance of the variate Xi. Since we have

⟨x̄i, x̃i⟩ = ⟨Pxi, (I − P )xi⟩ = 0, (7)

we can easily get
∥xi∥2 = ∥x̃i∥2 + ∥x̄i∥2 = s2Xi

+ x̄2
i . (8)

図 1 Projection figure

3. Correlation coefficient and covariance

In this section we shall introduce the concepts of covariance and correlation coefficient,

and shall define the correlation matrix by employing those notions. The correlation coefficient

r ≡ rXiXj is defined as the covariance sXiXj ≡ s(Xi, Xj) divided by a product sXisXj of

S.D.’s (i.e., standard deviations) of each variate. For convenience, it would be much better to

standardize it in advance as the quantity obtained from variates with variance 1. So that, let

us now put

zi =
xi

sXi

=
xi

∥x̃i∥
. (9)

Then we may consider the inner product for those vectors x̃i and x̃j to get

⟨x̃i, x̃j⟩ =
1

n

n∑
k=1

(xki − x̄i) · (xkj − x̄j) = sXiXj
, (10)

which is the covariance of variates Xi and Xj . Therefore, its correlation coefficient is given by

rXiXj =
sXiXj

sXisXj

=
⟨x̃i, x̃j⟩

∥x̃i∥ · ∥x̃j∥
= ⟨z̃i, z̃j⟩. (11)

3

� (8)

	

図 1  Projection figure

3.  Correlation coefficient and covariance
In this section we shall introduce the concepts of covariance and correlation coefficient, and 

shall define the correlation matrix by employing those notions. The correlation coefficient r ≡ rXiXj 
is defined as the covariance sXiXj ≡ s (Xi, Xj) divided by aproduct sXisXj of S.D.’s (i.e., standard 
deviations) of each variate. For convenience, it would be much better to standardize it in advance 
as the quantity obtained from variates with variance 1. So that, let us now put

	

Next we shall make a square of the norm for the vector x̃i, then it follows that

∥x̃i∥2 = ⟨x̃i, x̃i⟩ =
1

n

n∑
j=1

(xji − x̄i)
2 = s2Xi

. (6)

This quantity is the variance of the variate Xi. Since we have

⟨x̄i, x̃i⟩ = ⟨Pxi, (I − P )xi⟩ = 0, (7)

we can easily get
∥xi∥2 = ∥x̃i∥2 + ∥x̄i∥2 = s2Xi

+ x̄2
i . (8)

図 1 Projection figure

3. Correlation coefficient and covariance

In this section we shall introduce the concepts of covariance and correlation coefficient,

and shall define the correlation matrix by employing those notions. The correlation coefficient

r ≡ rXiXj is defined as the covariance sXiXj ≡ s(Xi, Xj) divided by a product sXisXj of

S.D.’s (i.e., standard deviations) of each variate. For convenience, it would be much better to

standardize it in advance as the quantity obtained from variates with variance 1. So that, let

us now put

zi =
xi

sXi

=
xi

∥x̃i∥
. (9)

Then we may consider the inner product for those vectors x̃i and x̃j to get

⟨x̃i, x̃j⟩ =
1

n

n∑
k=1

(xki − x̄i) · (xkj − x̄j) = sXiXj
, (10)

which is the covariance of variates Xi and Xj . Therefore, its correlation coefficient is given by

rXiXj =
sXiXj

sXisXj

=
⟨x̃i, x̃j⟩

∥x̃i∥ · ∥x̃j∥
= ⟨z̃i, z̃j⟩. (11)

3

� (9)

Then we may consider the inner product for those vectors x̃i  and x̃j to get

	

Next we shall make a square of the norm for the vector x̃i, then it follows that

∥x̃i∥2 = ⟨x̃i, x̃i⟩ =
1

n

n∑
j=1

(xji − x̄i)
2 = s2Xi

. (6)

This quantity is the variance of the variate Xi. Since we have

⟨x̄i, x̃i⟩ = ⟨Pxi, (I − P )xi⟩ = 0, (7)

we can easily get
∥xi∥2 = ∥x̃i∥2 + ∥x̄i∥2 = s2Xi

+ x̄2
i . (8)

図 1 Projection figure

3. Correlation coefficient and covariance

In this section we shall introduce the concepts of covariance and correlation coefficient,

and shall define the correlation matrix by employing those notions. The correlation coefficient

r ≡ rXiXj is defined as the covariance sXiXj ≡ s(Xi, Xj) divided by a product sXisXj of

S.D.’s (i.e., standard deviations) of each variate. For convenience, it would be much better to

standardize it in advance as the quantity obtained from variates with variance 1. So that, let

us now put

zi =
xi

sXi

=
xi

∥x̃i∥
. (9)

Then we may consider the inner product for those vectors x̃i and x̃j to get

⟨x̃i, x̃j⟩ =
1

n

n∑
k=1

(xki − x̄i) · (xkj − x̄j) = sXiXj
, (10)

which is the covariance of variates Xi and Xj . Therefore, its correlation coefficient is given by

rXiXj =
sXiXj

sXisXj

=
⟨x̃i, x̃j⟩

∥x̃i∥ · ∥x̃j∥
= ⟨z̃i, z̃j⟩. (11)

3

� (10)

which is the covariance of variates Xi  and Xj . Therefore, its correlation coefficient is given by

	

Next we shall make a square of the norm for the vector x̃i, then it follows that

∥x̃i∥2 = ⟨x̃i, x̃i⟩ =
1

n

n∑
j=1

(xji − x̄i)
2 = s2Xi

. (6)

This quantity is the variance of the variate Xi. Since we have

⟨x̄i, x̃i⟩ = ⟨Pxi, (I − P )xi⟩ = 0, (7)

we can easily get
∥xi∥2 = ∥x̃i∥2 + ∥x̄i∥2 = s2Xi

+ x̄2
i . (8)

図 1 Projection figure

3. Correlation coefficient and covariance

In this section we shall introduce the concepts of covariance and correlation coefficient,

and shall define the correlation matrix by employing those notions. The correlation coefficient

r ≡ rXiXj is defined as the covariance sXiXj ≡ s(Xi, Xj) divided by a product sXisXj of

S.D.’s (i.e., standard deviations) of each variate. For convenience, it would be much better to

standardize it in advance as the quantity obtained from variates with variance 1. So that, let

us now put

zi =
xi

sXi

=
xi

∥x̃i∥
. (9)

Then we may consider the inner product for those vectors x̃i and x̃j to get

⟨x̃i, x̃j⟩ =
1

n

n∑
k=1

(xki − x̄i) · (xkj − x̄j) = sXiXj
, (10)

which is the covariance of variates Xi and Xj . Therefore, its correlation coefficient is given by

rXiXj =
sXiXj

sXisXj

=
⟨x̃i, x̃j⟩

∥x̃i∥ · ∥x̃j∥
= ⟨z̃i, z̃j⟩. (11)

3

� (11)

Consequently, the covariance matrix S for p pieces of variates Xi  (i = 1, 2, . . . , p) is given by
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Consequently, the covariance matrix S for p pieces of variates Xi (i = 1, 2, . . . , p) is given by

S =




s2X1
sX1X2

· · · sX1Xp

sX2X1 s2X2
· · · sX2Xp

· · · · · · · · · · · ·
sXpX1 sXpX2 · · · s2Xp




= (⟨x̃i, x̃j⟩)i=1,2,...,p;j=1,2,...,p ∈ M(p× p) (12)

and the correlation coefficient matrix R is written as

R =




1 rX1X2 · · · rX1Xp

rX2X1 1 · · · rX2Xp

· · · · · · · · · · · ·
rXpX1 rXpX2 · · · 1




= (⟨z̃i, z̃j⟩)i=1,2,...,p;j=1,2,...,p ∈ M(p× p). (13)

4. Composite variate in multivariate analysis

It is of extreme importance to make up a composite variate in multivariate analysis. In

this section we shall investigate how the variance of composite variate which is obtained by

summing variates with a proper weight, is related to the variance of the original variate. In

addition to that, we shall try to express their relation with vectors.

For p pieces of vectors xi (i = 1, 2, . . . , p), and αi’s with

p∑
i=1

α2
i = 1 and αi > 0,

the composite variate vector is given by

F =

p∑
i=1

αixi, (14)

and its vector F̃ is also given by

F̃ =

p∑
i=1

αix̃i with

p∑
i=1

α2
i = 1. (15)

Consequently, the variance of the composite variate F is computed and given by

s2F = ∥F̃∥2 = ⟨F̃, F̃⟩ =
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where α = (α1, . . . , αp). For the composite variate vector G, i.e.
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where α = (α1, . . . , αp). For the composite variate vector G, i.e.

G =

p∑
i=1

αizi with

p∑
i=1

α2
i = 1,

we can have

G̃ =

p∑
i=1

αiz̃i. (17)

While, the variance of the composite variate G is given by

s2G = ∥G̃∥2 = ⟨G̃, G̃⟩ =

⟨
p∑

i=1

αiz̃i,

p∑
j=1

αj z̃j

⟩

=

p∑
i=1

αi

p∑
j=1

αj⟨z̃i, z̃j⟩ = ⟨Rα,α⟩ with α = (α1, α2, . . . , αp). (18)

Since R is a symmetric matrix, we are able to get the following representation

R =

p⊕
i=1

λiEi with λ1 ≥ λ2 ≥ · · · ≥ λp, (19)

where Ei is a projection onto a one-dimensional eigenspace (or characteristic space) mutually

orthogonal, peculiar to the eigenvalue λi of R. Hence it follows immediately that

s2G = ⟨Rα,α⟩ =
p∑

i=1

λi⟨Eiα, α⟩ =
p∑

i=1

λi∥Eiα∥2

� λi

p∑
i=1

∥Eiα∥2 = λi

�����
p⊕

i=1

Eiα

�����
2

= λ1∥α∥2 = λ1

p∑
i=1

α2
i = λ1. (20)

Furthermore, it is easy to see that

s2G =

p∑
i=1

λi∥Eiα∥2 ≥ λp

p∑
i=1

∥Eiα∥2 = λp, (21)

so that, we can obtain
λp � s2G � λ1. (22)

Here, λ1 is the maximum eigenvalue of R and λp is the minimum eigenvalue of R.

5. Cumulative coefficient of determination

In this section we shall introduce the notion of coefficient of determination, and define

the cumulative coefficient of determination. Since we can regard each z̃i as a series of vectors

being linearly independent, it follows that ∥G̃∥ > 0, in other words,

⟨Rα,α⟩ = s2G = ∥G̃∥2 > 0. (23)
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On this account, we can deduce naturally that

λ1 ≥ λ2 ≥ · · · ≥ λp > 0. (24)

When we denote by αi (i = 1, 2, . . . , p) the unit eigenvectors subordinated to the eigenvalues

λi of R, the composite variate vector

Gi =

p∑
j=1

αijzj with

p∑
j=1

α2
ij = 1 (25)

weighted by each component αij is called the i-th principal component. Since ⟨αi, αj⟩ = 0 for

i ̸= j, we observe with ease that

sGiGj = ⟨G̃i, G̃j⟩ =

⟨
p∑

k=1

αikz̃k,

p∑
ℓ=1

αjℓz̃ℓ

⟩

=

p∑
k=1

αik

p∑
ℓ=1

αjℓ⟨z̃k, z̃ℓ⟩ = ⟨Rαj , αi⟩ = λj⟨αj , αi⟩ = 0. (26)

Moreover, it proves to be that

s2Gi
= ∥G̃i∥2 = λi⟨αi, αi⟩ = λi. (27)

On this account, the total sum of eigenvalues of the correlation coefficient matrix R is equiv-

alent to that of variances of all the principal components. Therefore, we call

pi =
λi

λ1 + λ2 + · · ·+ λp
(28)

the coefficient of determination of the i-th principal component, and the total sum of co-

efficients of determination up to the i-th principal component is also called the cumulative

coefficient of determination up to the i-th principal component. Notice that λ1+λ2+ · · ·+λp

= p.

6. Principal components analysis : example 1

Let us now consider the situation where some achievement test consists of five subjects:

namely, mother tongue (X1), mathematics (X2), social studies (X3), science (X4), English

(X5). The comprehensive evaluation of the achievement test is mainly due to the total sum

S of the scores (or marks): that is to say,

S = X1 +X2 +X3 +X4 +X5,

then obviously the obtained result is not rational if that is the case where the average and

variance of each subject are not equal. Especially, it is clear that the specific subject with large

variance does have decisive influence over the total sum, namely, the results of achievement

test.

6
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i ̸= j, we observe with ease that

sGiGj = ⟨G̃i, G̃j⟩ =

⟨
p∑

k=1

αikz̃k,

p∑
ℓ=1

αjℓz̃ℓ

⟩

=

p∑
k=1

αik

p∑
ℓ=1

αjℓ⟨z̃k, z̃ℓ⟩ = ⟨Rαj , αi⟩ = λj⟨αj , αi⟩ = 0. (26)

Moreover, it proves to be that

s2Gi
= ∥G̃i∥2 = λi⟨αi, αi⟩ = λi. (27)

On this account, the total sum of eigenvalues of the correlation coefficient matrix R is equiv-

alent to that of variances of all the principal components. Therefore, we call

pi =
λi

λ1 + λ2 + · · ·+ λp
(28)

the coefficient of determination of the i-th principal component, and the total sum of co-

efficients of determination up to the i-th principal component is also called the cumulative

coefficient of determination up to the i-th principal component. Notice that λ1+λ2+ · · ·+λp

= p.

6. Principal components analysis : example 1

Let us now consider the situation where some achievement test consists of five subjects:

namely, mother tongue (X1), mathematics (X2), social studies (X3), science (X4), English

(X5). The comprehensive evaluation of the achievement test is mainly due to the total sum

S of the scores (or marks): that is to say,

S = X1 +X2 +X3 +X4 +X5,

then obviously the obtained result is not rational if that is the case where the average and

variance of each subject are not equal. Especially, it is clear that the specific subject with large

variance does have decisive influence over the total sum, namely, the results of achievement

test.
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the coefficient of determination of the i-th principal component, and the total sum of coefficients 
of determination up to the i-th principal component is also called the cumulative coefficient of de-
termination up to the i-th principal component. Notice that λ1 + λ2 + · · · + λp = p.

6.  Principal components analysis: example 1
Let us now consider the situation where some achievement test consists of five subjects: 

namely, mother tongue (X1), mathematics (X2), social studies (X3), science (X4), English (X5). 
The comprehensive evaluation of the achievement test is mainly due to the total sum S of the 
scores (or marks): that is to say,

	 S = X1 + X2 + X3 + X4 + X5,

then obviously the obtained result is not rational if that is the case where the average and variance 
of each subject are not equal. Especially, it is clear that the specific subject with large variance 
does have decisive influence over the total sum, namely, the results of achievement test.

On this account, when the inspected values of distinct kinds are given, then it suffices to find 
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the total score for weighted inspected values of several kinds in order to analyze, compare and 
evaluate them in a comprehensive manner. It is the principal components analysis that can realize 
concretely the comprehensive evaluation of such an achievement test, by taking correlation of an 
aggregate of variates given into consideration as well as by expressing exactly the variance that 
plenty of variates possess and by computing the weighted total sum of scores in a reasonable man-
ner.

The next table is the results of the achievement test executed at a junior high school in Kanto 
area. Let us now analyze the principal factors for pupils with good marks. Incidentally, the full 
scores of Xi’s (i = 1, 2, 3, 4, 5) are 250, 200, 200, 200, 200 in numerical order. The size of samples 
is twenty-eight, namely, n=28, that just corresponds to a class.

表 2  achievement test result no.1

No. 1 2 3 4 5 6 7 8 9 10
X1 210 133 154 150 139 116 140 121 128 138
X2 13 11 33 8 4 3 26 4 35 17
X3 54 62 111 55 53 50 97 45 106 75
X4 53 60 87 73 70 39 91 51 153 90
X5 51 77 74 60 44 49 40 35 39 36

表 3  achievement test result no.2

No. 11 12 13 14 15 16 17 18 19 20
X1 148 150 123 109 131 127 127 101 113 131
X2 27 20 19 5 2 26 22 11 19 15
X3 87 84 55 28 29 93 80 46 73 62
X4 88 85 70 43 66 117 84 79 74 101
X5 40 31 44 21 63 100 42 41 47 39

Let mother tongue (X1), mathematics (X2), social studies (X3), science (X4), and English (X5)

be our analytic variates. The averages (x̄i) and SD (sXi) are computed and given below.
The correlation coefficient matrix R is computed and given below.

表 4  achievement test result no.3

No. 21 22 23 24 25 26 27 28
X1 104 121 86 120 110 107 87 113
X2 6 22 8 24 2 23 13 14
X3 38 81 53 73 28 69 46 45
X4 70 112 48 125 58 135 86 87
X5 30 89 38 83 68 36 56 47
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表 5  Table of averages and SD’s

X1 X2 X3 X4 X5

x̄i

sXi

126.321
23.7217

15.4286
9.3596

63.5
22.5587

81.9643
27.1734

50.7143
18.9659

	

表 4 achievement test result no.3

No. 21 22 23 24 25 26 27 28

X1 104 121 86 120 110 107 87 113

X2 6 22 8 24 2 23 13 14

X3 38 81 53 73 28 69 46 45

X4 70 112 48 125 58 135 86 87

X5 30 89 38 83 68 36 56 47

表 5 Table of averages and SD’s

X1 X2 X3 X4 X5

x̄i 126.321 15.4286 63.5 81.9643 50.7143

sXi 23.7217 9.3596 22.5587 27.1734 18.9659

R =




1 0.235678 0.34314 −0.020316 0.104512
0.235678 1 0.919158 0.773093 0.202687
0.34314 0.919158 1 0.649357 0.230223

−0.020316 0.773093 0.649357 1 0.244674
0.104512 0.202687 0.230223 0.244674 1




We compute the i-th principal components (Gi) (i = 1, 2, 3, 4, 5), eigenvalues, eigenvectors,

coefficients of determination, and cumulative coefficients of determination. For simplicity, we

use the abbreviations, and e.g.v. stands for the eigenvalue of R, c.d. stands for the coefficient

of determination, and c.c.d. stands for the cumulative coefficient of determination.

表 6 Table of principal components

G1 G2 G3 G4 G5

e.g.v. of R 2.72824 1.02635 0.910796 0.275144 0.0594524

c.d. (%) 54.5648 20.527 18.21592 5.50288 1.189048

c.c.d. 54.5648 75.0918 93.30772 98.8106 100

Next we shall present the values of the eigenvectors. We shall use the simplified notation

for presentation only here. For instance, we use a1 for ai1 for the i-th principal component.

For the first principal component, the eigenvector is given by

a1 = 0.199344, a2 = 0.579625, a3 = 0.566614, a4 = 0.501909, a5 = 0.226569.

8

We compute the i-th principal components (Gi) (i = 1, 2, 3, 4, 5), eigenvalues, eigenvectors, 
coefficients of determination, and cumulative coefficients of determination. For simplicity, we use 
the abbreviations, and e.g.v. stands for the eigenvalue of R, c.d. stands for the coefficient of deter-
mination, and c.c.d. stands for the cumulative coefficient of determination.

表 6 Table of principal components

G1 G2 G3 G4 G5

e.g.v. of R 2.72824 1.02635 0.910796 0.275144 0.0594524
c.d. (%) 54.5648 20.527 18.21592 5.50288 1.189048

c.c.d. 54.5648 75.0918 93.30772 98.8106 100

Next we shall present the values of the eigenvectors. We shall use the simplified notation for 
presentation only here. For instance, we use a1 for ai1 for the i-th principal component. For the first 
principal component, the eigenvector is given by

a1 = 0.199344, a2 = 0.579625, a3 = 0.566614, a4 = 0.501909, a5 = 0.226569.

For the second one,

a1 = 0.910652, a2 = −0.077446, a3 = 0.0793738, a4 = −0.392279, a5 = 0.0673457.

For the third one,

a1 = −0.0847083, a2 = −0.177542, a3 = −0.152475, a4 = −0.0262406, a5 = 0.968177.

For the 4th one,

a1 = −0.350839, a2 = 0.228842, a3 = 0.517846, a4 = −0.742356, a5 = 0.0727026.

For the 5th one,

a1 = −0.0266714, a2 = −0.757728, a3 = 0.617443, a4 = 0.205968, a5 = −0.0384624.

According to our analysis for the principal components analysis method, we conclude that the 
principal factors for G1 consist of the high scores of mathematics, social studies and science; while 
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the the principal factors for G2 consist of the high scores of mother tongue and science.

	

図 2  G-1, G-2 graph No.1

Lastly we shall compute the values of G1 and G2, and then plot the position of (G1, G2) in the 
graph sheet. The conclusion is clear. Form the graph No.1, we can observe that pupils of no.1, 3, 
16, 9 are quite remarkable existence with high scores. We shall show the data of G1, G2) just for 
reference. For example, Dk = η, ζ indicates that the position for the pupil no.k is (η, ζ), in other 
words, (G1,G2) for No.k pupil is equal to (η, ζ).

Here are the data. D1=−0.04,0.68.     D3 =0.55,0.21.     D16 =0.50,−0.05.     D9=0.65, 
−0.19.

7.  Principal components analysis : example 2
The next table is the results of the achievement test executed at another junior high school in 

different Kanto area. Let us now analyze the principal factors for pupils with good marks. Inciden-
tally, the full scores of Xi’s (i = 1, 2, 3, 4, 5) are 250, 100, 200, 100, 100 in numerical order. The 
size of samples is eighteen, namely, n = 18, which is a little bit fewer than the previous example.

表 7  achievement test result no.4

No. 1 2 3 4 5 6 7 8 9 10
X1 125 175 183 169 166 161 114 175 127 174
X2 9 16 16 12 18 13 15 5 13 12
X3 85 185 144 153 156 95 109 169 104 110
X4 32 51 32 49 42 31 65 69 75 42
X5 38 58 58 58 63 57 44 63 49 64
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表 8  achievement test result no.5

No. 11 12 13 14 15 16 17 18
X1 140 129 150 203 128 178 142 176
X2 11 15 14 19 16 28 18 20
X3 58 93 57 148 88 149 96 73
X4 52 27 40 46 52 56 93 70
X5 48 48 49 83 54 80 73 84

Let mother tongue (X1), mathematics (X2), social studies (X3), science (X4), and English (X5)

be our analytic variates. The averages (x̄i) and SD (sXi) are computed and given below.

表 9 Table of averages and SD’s

X1 X2 X3 X4 X5

x¯i

sXi

156.389
24.4112

15
4.77261

115.111
37.6089

51.3333
17.088

59.5
12.9754

The correlation coefficient matrix R is computed and given below.

	 R =




1 0.286587 0.586262 −0.121107 0.7492
0.286587 1 0.12102 0.127386 0.621705
0.586262 0.12102 1 0.0115262 0.325712
−0.121107 0.127386 0.0115262 1 0.351789
0.7492 0.621705 0.325712 0.351789 1




We compute the i-th principal components (Gi) (i = 1, 2, 3, 4, 5), eigenvalues, eigenvectors,

coefficients of determination, and cumulative coefficients of determination. For simplicity, we

use the abbreviations, and e.g.v. stands for the eigenvalue of R, c.d. stands for the coefficient

of determination, and c.c.d. stands for the cumulative coefficient of determination.

表 10 Table of principal components

G1 G2 G3 G4 G5

e.g.v. of R 2.42554 1.21882 0.838328 0.47426 0.043048

c.d. (%) 48.5108 24.3765 16.7666 9.4852 0.860959

c.c.d. 48.5108 72.8873 89.6539 99.1391 100

Next we shall present the values of the eigenvectors. We shall use the simplified notation

for presentation only here. For instance, we use a1 for ai1 for the i-th principal component.

For the first principal component, the eigenvector is given by

a1 = −0.546508, a2 = −0.414885, a3 = −0.396698, a4 = −0.140295, a5 = −0.59342.

For the second one,

a1 = 0.364592, a2 = −0.331086, a3 = 0.428744, a4 = −0.724871, a5 = −0.219535.

For the third one,

a1 = 0.0124341, a2 = −0.606354, a3 = 0.509504, a4 = 0.606203, a5 = −0.0714419.

For the 4th one,

a1 = 0.454184, a2 = −0.539636, a3 = −0.60807, a4 = 0.00492321, a5 = 0.36433.

For the 5th one,

a1 = 0.601634, a2 = 0.243682, a3 = −0.171658, a4 = 0.295589, a5 = −0.679571.

According to our analysis for the principal components analysis method, we conclude that the

principal factors for G1 consist of the high scores of mother tongue, mathematics, and English;

while the the principal factors for G2 consist of the high scores of social studies and science.
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coefficients of determination, and cumulative coefficients of determination. For simplicity, we use 
the abbreviations, and e.g.v. stands for the eigenvalue of R, c.d. stands for the coefficient of deter-
mination, and c.c.d. stands for the cumulative coefficient of determination.

表 10  Table of principal components

G1 G2 G3 G4 G5

e.g.v. of R 2.42554 1.21882 0.838328 0.47426 0.043048
c.d. (%) 48.5108 24.3765 16.7666 9.4852 0.860959

c.c.d. 48.5108 72.8873 89.6539 99.1391 100

Next we shall present the values of the eigenvectors. We shall use the simplified notation for 
presentation only here. For instance, we use a1 for ai1 for the i-th principal component. For the first 
principal component, the eigenvector is given by

a1 = −0.546508, a2 = −0.414885, a3 = −0.396698, a4 = −0.140295, a5 = −0.59342.

For the second one,
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a1 = 0.364592, a2 = −0.331086, a3 = 0.428744, a4 = −0.724871, a5 = −0.219535.

For the third one,

a1 = 0.0124341, a2 = −0.606354, a3 = 0.509504, a4 = 0.606203, a5 = −0.0714419.

For the 4th one,

a1 = 0.454184, a2 = −0.539636, a3 = −0.60807, a4 = 0.00492321, a5 = 0.36433.

For the 5th one,

a1 = 0.601634, a2 = 0.243682, a3 = −0.171658, a4 = 0.295589, a5 = −0.679571.

According to our analysis for the principal components analysis method, we conclude that the 
principal factors for G1 consist of the high scores of mother tongue, mathematics, and English; 
while the the principal factors for G2 consist of the high scores of social studies and science.

図 3  G-1, G-2 graph No.2

Lastly we shall compute the values of G1 and G2, and then plot the position of (G1, G2) in the 
graph sheet. The conclusion is clear. Form the graph No.1, we can observe that pupils of no.1, 3, 6, 
12 are quite remarkable existence with high scores. We shall show the data of G1, G2) just for ref-
erence. For example, Dk = η, ζ indicates that the position for the pupil no.k is (η, ζ),in other 
words, (G1, G2)for No.k pupil is equal to (η, ζ).

Here are the data.    D1 =0.63,0.18.     D3 =−0.18,0.35.     D6 =0.13,0.21.     D12=0.37, 0.13.
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